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The paper compares two types of measurements of trip times: those pro
vided by the standard network algorithms are compared with trip-time 
components o~sorved along the traveler's path from home to work and 
back. The two types of measurements are found to be different. The 
root mean square errors of the network measurements with respect to 
observed values are very large (75-135 percent of the mean value) for the 
non-line-haul travel time components. The means and the variances of 
the network measured variables, as a rule, are much smaller than the 
variances or means of the manually coded observed-travel times. Coeffi
c'ients estimated by using the two types of data are not numerically 
similar. Statistical tests show that at least the alternative-specific con
stants' and the level-of-service variables' coefficients are different in 
the models developed by using the two types of data. Finally, the effect 
of substantial errors in level-of-service measurements on travel forecasts 
is discussed. It is also shown that good (short-run) travel forecasts can 
be obtained from the network-based models provided that consistent 
network coding conventions are followed and incremental forecasts are 
avoided. 

For several reasons the development and use of dis
aggregate travel-demand models, and this does not 
mean logit and probit models only, has increased sub
stantially in recent years. Disaggregate travel
demand models are based on information of individual 
traveler's choice rather than on percentage choices of 
groups of travelers. The transportation level-of
service attributes (e.g., travel time and cost compo
nents) that enter these travel-demand models have 
normally been obtained in one of two ways. Either the 
times and costs have been those that the respondent 
reported in. the interview (often c~lled perceived travel 
times and costs) or the travel times and costs have 
been obtained from the coded transportation network 
by using network models such as the urban transporta
tion planning system (UTPS). These are often termed 
the network or aggregate travel times and costs be
cause they are in the zone-to-zone values. In a few 
studies the travel times and costs have been those 
experienced by the travelers as measured by observa
tion along the paths and the times of day used by the 
travelers. 

In this paper the observed travel time and cost mea
surements are compared with those obtained from the 
coded networks. Statistical tests are then conducted to 
examine whether the coefficients of a mode choice esti
mated by using the types of data are equal. 

Two sets of data were used to conduct the analyses. 
A subset of home-interview data collected before the 
opening of the Bay Area Rapid Transit System (BART) 
in 1972, which contained 142 observations, were 
originally used to conduct the analyses. The results 
of this work were reported earlier (1). Since some of 
the results of this earlier wo1·k were statistically in
conclusive, a new set of data, collected in 1975, aCte1· 
the opening of BART, were prepa.red. Thes e data con
tain approximately 700 observations. 

The experienced values of travel times and costs 
would appear to be preferable to the network-based 
values. This is because the person included in the 
sample may not have the same travel characteristics 

as the average person does and because individual travel 
behavior is presumably a derivative of one's own rather 
than the zone's transportation circumstances. However, 
to obtain observed travel- time and cost components is a 
time-consuming and expensive process; few J'esearchers 
have the resources available and the patience to do that. 
It is far easier to use existing networks to calculate the 
travel-time components and hope that the errors, if any, 
are minor. 

Given that all the cuJ:rent models used in production 
planning are based on network information, it is impor
tant that the networks yield information on service levels 
and result in models that are equivalent to the service 
levels and models obtained by using the observed values 
of service variables. This assumption of equivalency, 
now made, needs verification. 

COMPARISON OF THE EXPERIENCED 
AND NETWORK TRAVEL-TIME 
MEASUREMENTS 

The way in which the two types of values were ob
tained needs to be defined. In the pre-BART data 
the observed transit travel times were obtained by 
asking the transit agency's information service to 
route travelers as if an inquiry call for a transit 
route was made by the traveler. The observed auto
mobile travel times were based on travel- time runs 
(moving-vehicle method) made at various times of day 
and by routing travelers at the minimum time path at 
their time of travel. In the post- BART data the ob
served transit fravel times were measured along the 
route travelers l'eportedly chose or would choose for 
their transit trip. The observed automobile travel 
times were obtained as in the pre- BART data. 

The network values were obtained through standard 
network models and associate either peak or off-peak 
values \vith the travelers, depending on when the trip 
took place. 

The pre- BART data we1·e prepared independently of 
the present research. The post- BART data were p1·e
pared later under the supervision of Talvitie. Round
trip travel time and cost values are used in both sets 
of data. 

The comparison of the observed (0) and network (N) 
travel times may be started by listing the means and 
variances of the travel-time components of interest. 
These appear in Table 1 for the post- BART data. 
Examination of the values in Table 1 reveals interesting 
differences. The variances and the means in the ob
served data cells appear to be consistently highe1· than 
those in the network data. The greatest concern, on the 
basis of the values in Table 1, appeal's to be with the 
out-oI- ve hlcle time components . The average coded 
walk time to BART is 28.7 min; however, the observed 
value is more than fourfold, 123.0 min. (Note that this 
average pertains to all travelers, not just those who chose 
to use BART with walk access.) 

In order to gain more knowledge of the similarities 
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Table 1. Means and SD of travel time and cost components by mode and type of measurement-post-BART data. 

BART with 
Bus with BART with BART with Drive-Park 

Time or Cost Automobile Walk Access Walk Access Bus Access Access 
Component 
(min) Type Mean SD Mean SD Mean 

On-vehicle time N 45,2• 24.6. 68.5" 34. 7• 44.2 
0 50.5" 20.1· 77.3' 35.0· 37.3 

Walk time N NA NA 18.4 5.1 28.7 
0 8.6 25.2 23.0 24.8 123.0 

Headway N NA NA 29 .0 18.5 16.5 
0 NA NA 29 .0 18.1 20.7 

Transfer time N NA NA 19.1 13.4 12.8 
0 NA NA 35,4 23.4 26.8 

Number of transfers N NA NA 2.7 1.1 2.9 
0 NA NA 2.6 0.9 2.3 

Cost per wage N 37.3 33.5 14.8 14.4 16.7 
0 31.9 29.4 14.8 14.4 17.4 

•Pre-BART data value. 

Table 2. Correlation coefficients, intercepts, and slopes for regressions 
between the observed and network measurements-post-BART data. 

Travel Time 
Component Correlation 
and Mode Coefficient Intercept a SE Slope b SE 

On-vehicle time 1 

BART and walk 0.74 3.1 o. 77 0.77 0.04 
On-vehicle time, 

BART and bus 0.77 5.8 3.0 0.92 0.06 
On-vehicle time 1 

BART and park 0 .61 22.4 2.0 0.62 0.04 
Walk time, bus 0.22 3.5 1.1 1.06 0.26 
Walk time, BART 

and walk 0.31 10.0 20.3 3.94 0.68 
Walk time, BART 

and bus 0.24 6.0 4.6 0.54 0.17 
Walk time, BART 

and park 0.26 5.3 4.4 1.48 0 .30 
Headway, bus 0.39 18.0 1.6 0.38 0 .05 
Headway, BART 

and walk 0.40 12.3 1.1 0.45 0.06 
Headway, BART 

and bus 0.27 23. 7 2.4 0.32 0.09 
Headway, BART 

and park 0.40 12.3 1.1 0.45 0.06 
Transfer time, 

bus 0.28 25.9 2.8 0.49 0.12 
Transfer time, 

BART and walk 0.28 18.8 3.3 0.63 0.22 
Transfer time, 

BART and bus 0.36 27.4 2.6 0.43 0,09 
Transfer time, 

BART and park 0.28 18.8 3.3 0.63 0.22 

between the experienced and network travel-time 
values, regressions were run to obtain correlation coef
ficients, intercepts, and slopes. Ideally, we would like 
to obtain a.correlation coefficient of one, an intercept 
of zero, and a slope of unity. The more we deviate 
from these values the less equal are the two sets of data. 
The correlation coefficients, intercepts, and slopes are 
given in Table 2 for post-BART data. 

Examination of the numbers in Table 2 shows that, 
except for some isolated time components, the desired 
values for correlation, intercepts, and slope are not 
achieved. Statistically speaking, the hypotheses that the 
slopes should equal unity and the intercepts are zero must 
be soundly rejected for all variables, except in two or 
three isolated cases. In fact, the numbers of Table 2 do 
not appear to represent regressions between two types 
of measurements of the same variable. 

The information produced so far about the similarities 
and dissimilarities of observed and network measure
ments of travel times can be conveniently summarized 
by using two measures: the root mean square error 
(RMSE) and Theil's U-coefficient. The former is often 
used as an all-around measure of goodness of fit; the 
latter measure is zero for perfect measurements (or 
forecasts) and has an upper bound of one. Furthermore, 

SD Mean SD Mean SD 

21.4 45.0 20.1 41.3 24.9 
22.5 48.1 24.1 48.1 25.4 

8.6 25.3 6.3 13.5 5.7 
109.0 19.6 18.3 25.3 31.9 

8.0 20.4 15.5 18.5 8.0 
9.1 30.4 18.8 20. 7 9.1 
6.9 23 .1 16.7 12.8 6.9 

15. 7 37 .2 20.1 26.6 15. 7 
1.4 4.6 1.3 2.9 1.4 
0. 7 2.6 0.9 2.9 0.7 

10.3 21. 7 14.3 17.3 10.5 
10.3 20.8 11.4 24.3 13.9 

Theil's U-coefficient can be decomposed to three com
ponents (denoted UM, U5

, and Uc), which indicate the pro
portional loss in accuracy due to differences in means, 
standard deviations, and covariances, respectively. 
These useful summary measures are given in Table 3 
for the post- BART data. 

The results in Table 3 are interesting. Except for 
the line-haul travel times, BART and walk or park head
ways, and the cost variables, the RMSEs are roughly 
equal in magnitude to the means of the observed times 
and costs, which indicates large errors in measure
ment. The same result is conveyed by the Theil's U
coefficient; the U-coefficient obtains very large values 
for out-of-vehicle time components. If we impose an 
arbitrary but reasonable U-coefficient value of 0.20-
0.25 for acceptably accurate measurements, then even 
some on-vehicle and travel-cost measurements fail 
to meet the standard. The components of the U
coefficient indicate that, with some exceptions, the 
largest share of the error comes from the covariances 
between the network and observed values. 

As a final item before actually estimating choice 
models by using the two types of measurement,it is 
instructive to examine typical frequency plots of some 
of the travel variables. The analysis performed by 
McFadden and Reid (2) tells that zonal averages will 
yield consistent estimates for coefficients, given that 
the distributions of variables are not skewed. Thus, 
the distribution of the variables for the entire sample 
(one can envision it to be one large zone) ought not to 
be skewed either if good coefficients are to result from 
using zonal averages. In examining the frequency plots 
it is good to keep in mind that most of the difference 
between the two types of measurements is due to co
variances. Thus, the frequency plots for the two mea
surements can look similar without the measurements 
being similar because measurements in any given 
interval may not pertain to the same individuals. 

It is natural to start with the plots of on- vehicle 
times. An automobile on-vehicle time plot is shown in 
Figure 1. An examination of the plot in Figure 1 suggests 
that there is a great deal of similarity between the two 
types of measurement; the only noticeable difference is 
the fat tail of the observed automobile on-vehicle time 
distribution. One might suspect that the lack of fat tail 
in the network times distribution is due to i.mp1·oper ac
counting of congestion e.ffects. A x2 test against tile null 
hypothesis (that the distributions of the two measure
ments are the same) was, however, rejected at the 0.95 
level of confidence. 

The walk time (bus with walk access) frequency dis
tribution in Figure 2 indicates that the network-coded 
walk time has a highly peaked distribution; however, the 
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Table 3. RMSE and Theil U-coefficients of travel time 
Theil U 

components-post-BART data. Mean 
Variable (Observed) RMSE u u" u' u' 

On-vehicle time 
BART and walk 37.2 17.4 0.26 0.16 0.00 0.84 
BART and park 48.1 23.2 0.32 0.09 0.00 0.9 1 
Automobile (pre-BART) 50.5 13.1 0.17 0.16 0.10 0. 74 

Figure 1. Frequency plot-automobile in-vehicle 
time. 
FRO 

TIME 

Figure 2. Frequency FRO 
plot-walk time. 

13 MIN 21MIN 

Bus (pre-BART) 
Walk time 

Bus 
BART and walk 
BART and bus 
BART and park 

Headway 
Bus 
BART and walk 
BART and bus 
BART and park 

Transfer time 
Bus 
BART and walk 
BART and bus 
BART and park 

Cost per wage 
Automobile 
BART and walk 
BART and bus 
BART anrl park 

TIME 

distribution of the observed walk times both peaks 
earlier and is much fatter. The appearance of the two 
distributions is as expected. Traffic zones are connected 
to network with relatively few common values and the 
observed values show a scatter, which relates to the 
location of individuals with respect to the bus- line 
configuration. 

The frequency plot for bus headways (round trip, 
directional headway summed) appears in Figui·e 3. 
Note that the network headways are shorter in duration; 
their distribution also has a noticeably thinner tail 
than that of the observed headways. The apparent 
reason for this is that zones have been connected to 
trunk-line streets on which many bus lines operate 
and have low headway for consecutive buses. In 
actuality the travelers' origins and destinations are 
dispersed within the zones, and by taking note of 
schedules the travelers can gain the advantage of 
nearer bus lines in spite of their lower service fre
quency. 

The frequency plot for transfer time in Figure 4 
shows similar characteristics on the distribution of 
headways. Again, it appears Chat the majority of net
work paths use trunk- line streets that have frequent 

77.2 18.8 0.16 0.22 0.00 0.78 

23.0 24.5 0.63 0.03 0.64 0.33 
123.0 143.1 0.85 0.43 0.50 0.07 
19.6 19.1 0.50 0.09 0.27 0.64 
25.3 33.1 0. 77 0.13 0.63 0.25 

29 .0 20.3 0.42 o.oo 0.00 1.00 
20.'I 9.7 0.32 0.05 0.01 0.94 
30.4 23.2 0.53 0.18 0.02 0.80 
20.7 9. 7 0.32 0.05 0.01 0.94 

35.4 28.6 0. 59 0.33 0.12 0.55 
26.8 20 .8 0. 60 0.45 0.18 0.37 
37.2 25.4 0.50 0.31 0.24 0.45 
26.8 20. 8 0.60 0.45 0.16 0.37 

31.9 19.2 0.30 0.08 0.05 0.87 
17.4 4.6 0.16 0.03 0.00 0.97 
20.8 8.0 0.23 0.01 0.13 0.86 
24.3 11.3 0.33 0.38 0.09 0.53 

bus service and, where transfers are necessary, the 
transfer times are quite short. The observed transfer 
times show, in contrast, that travelers use routes 
that are convenient for them on some other grounds 
besides the headways of transfer buses. The distribu
tions of transfer times also show that paths built by 
network algorithms do not cojncide with paths actually 
taken by h'a velers-a fact well known to most trans
portation planners. 

The two types of measurements (observation and 
network) of trave l-tune vai·iables are certainly dif
ferent. On the basis of the correlation analysis and 
the frequency plots we would not expect to obtain 
similar models with the two types of data. This is 
because there were large differences in the measure
ment and because the frequency distributions were not 
normal but were highly skewed. This latter result also 
enables the conclusion that the coefficients obtained 
,x,dth the aggregate net\vork du.ta are biased. 

COMPARISON OF MODE CHOICE 
MODELS DEVELOPED WITH 
SERVICE MEASUREMENTS 

The model specifications used in the tests repoi-ted 
in this section is a minor variant of the model specifi
cation developed by the urban b:avel demand forecasting 
project (UTDFP) at the University of Califomla, 
Be1·keley (3 ). The large1· post- BART sample of 700 
observations will be used. The earlier paper (1), which 
used only the small pre- BART data set, resulted in 
inconclusive answers. Even so, the main hypotheses 
seemed to be supported by the previous analyses. 

First, the coefficients of both system and socio
economic variables were found to be numerically dif
ferent, though the statistical evidence to support the 
existence of such differences was inconclusive. The 
reason for these differences was ascribed to the 
correlations between the socioeconomic and service 
attributes, which correlations were taken to be mani
festations of people's travel and other choices. It was 
then concluded that the observed service- level calcula
tions preserve these correlations and are likely to yield 
unbiased coefficients and demand elasticities (given a 
go~d model specification) while the network calculations 
do not appear to preserve these correlations and, by 
simple logic, must yield coefficients that are statistical 
artifacts. An example clarifies this. Assume that two 



Figure 3. Frequency FRO 
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Figure 4. Frequency FRQ 
plot-transfer time. 

Table 4. Chi-square statistics for various tests of coefficient equality 
in models developed by using observed and coded network-based 
service attribute data. 

x'- statistic Critical x•" 
Accept or 

Hypotheolo Reject 

1. Equality of alternative 
specific constants 35.4 12.8 Reject 

2. Equality of coeffi(>lents of 
service variables 53.0 12.6 Reject 

3. Equality of coefficients of 
Reject' socioeconomic variables 33.0 14.1 

4. Equality of coefficients of 
service variables given 
unequal alter natl ve 
specific constants 29.0 12.6 Reject 

5. Equality of coefficients 
ol aocioeconomic vari-
ables given unequal 

Accept' alternatl ve 5.2 14.1 

•At 0,05 level. 
b For these tests the assumption of statis;tically independent samples may not have been strictly met. 

travelers who have different socioeconomic attributes 
reside in the same zone and go to work in the same des
tination zone. The network algorithms assign these two. 
people identical values for the service attributes . The 
choice model in turn attributes the choice to the different 
socioeconomic attributes (because the service attributes 
are equal) even though the service levels may contribute 
to the choice. 

Second, the models that were developed by using travel 
times and costs from networks were observed to have 
coefficients whose relative values were approximately 
equal to those used in building the network paths . For 
example, if walk and wait times were weighed two in 
building the paths, then this same ratio (two to one) was 
observed in the choice model. Variable specification also 
seemed to have an effect; the arguments to support it are 
lengthy and not repeated here. The obvious hypothesis 
then was that the conventions used to build the paths and 
create the variables procreate the choice models based 
on coded network service data. We conjectured that if 
(a) networks in two or more cities are coded by using 
similar conventions, (b) paths are built by using similar 
weights, and (c) variables are created by using same type 
of rules (e.g., wait time is one-half of the headway up to 
10 min of headway and one-fourth thereafter) then, with 
normal low percentage of transit users, the resulting 
choice models for those cities should indeed be identical. 
The models so obtained are not, of course, really be
havioral or transferable travel-demand models, but 
only reflections of the coding procedures. 

Third, the socioeconomic and system attributes were 
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found to increase the predictive power of the models only 
slightly. 

The more ample post- BART data support these hy
potheses, which were arrived at by use of the small pre
BART data set. The appropriate statistical test for 
many of the hypotheses pr esented in this paper is a 
nested (Chow-like) likelihood r atio test. McFadden (4) 
has shown that if we have two independent samples (A
and B), a test for the equality of the coefficients is pos
sible. Let LA and La be the maximum log likelihood 
levels attained for the samples A and B and LAa be the 
maximum log likelihood for the combined sample, then 
X2 = -2(LAa - LA - La) is distributed X2 with K degrees 
of freedom, where K is the number of parameters. 
The same test can be used to test the equality of a 
subset of coefficients (e.g., coefficients of the service 
attributes). 

The results of the various tests are shown in Table 4, 
and the models are estimated by using the observed and 
network variables that appear in Table 5. In Table 4 the 
tests on subsets of coefficients all lead to rejection of 
equality of coefficients (tests 1- 3 ). Tests 4 and 5 follow 
orthodox statistical testing of hypothesis. That is, given 
the inequality of alternative-specific dummies (test 1 ), 
a test is made about whether the system variables have 
equal coefficients (test 4) with negative results. Finally, 
given the inequality of alternative-specific dummies and 
system variable coefficients, a test is made for the 
equality of socioeconomic variables' coefficients (test 5) 
with affirmative results. Thus, the tests unequivocally 
show that the models developed by using the observed 
and coded network service data are different. This is 
not a surprising finding, given the large discrepancies 
in the two types of measurements found in the first 
section. 

Turning then to the model coefficients, we were un
able to reproduce the coefficients of the UTDFP model, 
which was developed by using the network measurements. 
The greatest discrepancy is in the automobile and driver 
and drivers variables. In the UTDFP model these coef
ficients were between 3.0 and 5.0 and 1.0 and 2.0, re
spectively; coefficients of this magnitude were also esti
mated by Atherton and Ben-Akiva (5). On the other 
hand, models developed observed service-level attributes 
that seem consistently to produce coefficients similar 
to those in our study, which are substantially smaller 
(6, 7). This discrepancy was not investigated in depth 
at thls time. It is suspected that one of the chief rea
sons for discrepancies is the possibility of having 
choice-based samples. Network coding and manual coding 
exclude different travelers from the sample. Another 
reason may be the use of different rules to exclude al
ternatives. A third reason may be the use of different 
model specification. How these three causes affect 
model coefficients will be investigated later . 

Note that, by using the observed data, the out-of
vehicle time components do not seem to be valued more 
dearly than the in-vehicle time components. In con
trast, when the network data are used the ratio of walk 
time to in-vehicle time is 1.9. This is approximately 
the same as used in building the paths in the network, 
where this ratio was 2.0. These same ratios are not 
observed for the wait times. However, there were sub
stantial perturbations to these data after the paths were 
run, which makes the analysis of the effect of coding 
and pathbuilding conventions to model impossible with 
the present data (8, 9, 10). 

Third and finaITy,-the models have a low explanatory 
power over and above the explanatory power contained 
in the alternative-specific dummies. The overall propor
tion of successful predictions increased little more than 
10 percent, or from 54 to 67 with observed service 
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Observed Service Network Service Table 5. Model specification, 
coefficients, and t-values. Alternative Entered, 

Variable Zero Otherwise .. Coefficients t-value Coefficients t-value 

Income 1 -0.0000674 2.5 -0.0000246 1.0 
Drivers in household 1, 3,6 0. 788 4.5 0.929 5.1 
Drivers in household 7 0. 717 3.6 0.854 4.8 
Head ol household 1 0.192 0. 9 0.658 3,5 
Employment density 1 -0.00144 3.1 -0.00166 3.8 
Automobiles per driver 1,3,6 I. 781 3.9 1.976 4.3 
Automobiles per driver 7 1.021 2.0 1.340 3.1 
Cost per wage (min) 1-7 -0.0469 6.4 -0.0304 5.2 
Jn-vehicle time (min) 1-7 -0.012 2 1.7 -0.0329 4.4 
Walk time (min) 1-7 -0.0170 4.3 -0.0634 3.6 
Headway (min) 3-6 0.00735 0. 7 -0.0186 2.3 
Transfer time (min) 3-6 -0.0173 1.3 -0.00039 0.03 
Number of transfers 3-6 - 0.393 2.1 0.0288 0.3 

Alt 1 dummy 1 -1.116 1.6 -2.910 3.4 
Alt 3 dummy 3 -5.206 7.7 -5.502 8.5 
Alt 4 dummy 4 -0.579 I. 7 -1.154 3.1 
Alt 5 dummy 5 0.0842 0.3 -1.285 4.1 
Alt 6 dummy 6 -2.744 4.9 -3 .769 6,5 
Alt 7 dummy 7 -2.993 4.6 -3.690 6.1 

Number of observations 676 700 
Log likelihood at zero -904.95 -1134.2 
Log likelihood at maximum -614.50 - 711. 58 
Proportion successfully predicted 0.67 0.61 

•Alternatives: 1 =drive alone, 2 =bus with walk access, 3 =bus with automobile access, 4 =BART with walk access, 5 =BART with bus access, 6"" BART with 
automobile a.::1.:e::;i;, 1:111d 7 = shared ride. 

variables and from 54 to 61 network measurements when 
both the socioeconomic and the service variables were 
added to the model. This has to be considered a low 
payoff-too much of the behavior is explained by the 
unobserved vru:iables. 

CONCLUSIONS 

The conclusions of this paper are obvious. On the 
level-of-service side, substantial e1-ro1·s are possible 
and can result both in inaccurate forecasts and biased 
model coefficients. On the demand side, incremental 
forecasts should be avoided by using models based on 
network information because of biased coefficients. 
However, it is not concluded that ball-park travel 
prognoses cannot be made by using current network
based model systems. 

The forecasting accuracy of the models is nearly 
identical, regardle ss of the type of data used. The 
saying "data do not matter" bas, apparently with justifi
cation, circulated among travel-demand modelers. 
The network-based models seem to have simple aggre
gation properties. Koppelman 's (11) careful in-depth 
study on aggregation shows that predictions with zonal 
averages seem to perform remarkably well. There 
are two 1·easons that cause this to be the case. First, 
netwo1·ks ignore the with.in-zone variances, the som·ce 
of aggregation bias. Table 1 shows that between-zone 
variance (network data} accounts for 10-60 percent of 
tbe t otal variance (observed data) for the excess time 
components and about 70-90 percent of the on-vehicle 
time variances. Thus, by using the networks there is 
not much left to aggregate as far as the service vari
ables are concerned. Second, assume that the network 
travel times and costs are errors-in-variables-type 
vru:iables or 

Z=X+v 

where 

Z =the network values, 
X = the true values, and 
v =a (random) error. 

(I) 

Let us then assume that X and v are independently and 
normally distributed with means m. and zero and vari
ances of a~ and a; . These are reasonable assump-

tions. Any time a trip is taken but the trip time is not 
known exactly, it is a random variable; and this ran
dom vaniable is independent of the traveler's location 
within the traffic zone . The hypothesis in disaggregate 
travel-demand models is that the choices of travelers 
depend on the true values or, in a regression sense, 

Y =CT+ f3X + e (2) 

The use of linear regression is justified because of the 
clarity of the result and because of the fact that the logit 
curve is nearly linear for small coefficient values, or 
over the relevant rnnge (due to both the small variances 
in the networks and variable defintions, e .g., automo
bile and drivers viu:ies between 0 and 1; however, vari
able numbe1· of drivers may introduce a serious non
linearity ). 

In predicting, we do not know the true value X but 
the network value Z, and thus, \Ve need to obtain 
E (XI Z), but this is equal to 

E(X IZ) = (a~mx + ai Z)/(a'J +ail 

and 

(3) 

(4) 

where a and (3 are the consistent errors-in-variables 
estimators for a and (3. On the other hand, the least
squares predictor is 

Y = Y + b(Z- Z) 

where b is just an ordinary least-sqU<<tres (OLS) esti
mator of Y on Z. It can be shown that 

b = {3 / (1 + aJ/ai) 

or 

Y = "l + b(Z- Z) 

(5) 

(6) 

(7) 

Y =CT+ {3m, + /3(Z- Z)/(l + aJ/ai) (8) 

Because E (v) = 0, Z is an unbiased estimate form,, 
and 

Y =CT+ /3[(aJm, + aiZ)/(a; + ai)J (9) 



But this is exactly what was obtained by using the con
sistent errors-in-variables coefficients ai and f3, Equa
tion 4. 

Even though the OLS coefficients b in Equation 7 are 
not unbiased they yield unbiased forecasts. Thus, for 
prediction purposes the network-based models, whether 
aggregated or disaggregated, can be used with success, 
provided that conventions for network coding and path 
building are not changed and out-of-range predictions 
not made. Note that incremental forecasts cannot be 
made because the demand elasticities are not unbiased. 

A good example of how poorly done network coding 
results in wrong travel forecasts is provided by the BART 
patronage predictions. In the UTDFP sample the follow
ing shares were observed for BART patronage, and pre
dicted by using the network information; in the third line 
revised predicted shares are shown by using the average 
observed service levels where they differ from the network 
values by more than 5 min. 

Shared 
Share Drive Ride Bus BART 

Observed 0.595 0.22 0.12 0.065 
Predicted (network service variables) 0.53 0.21 0.135 0.125 
Revised (observed service variables) 0.60 0.24 0.11 0.05 

The error in prediction is almost totally due to network 
coding; the remainder can be attributed to unforeseen 
land-use changes and other highly unpredictable items, 
such as reliability; aggregation error may also be 
present. 

Discussions of the difficulties in validating demand 
models, of which the Metropolitan Transportation Com
mission (MTC) model system discussion serves as a 
good example, are exclusively directed to the problems 
associated with the demand models to the total neglect 
of the service side. Webber (12) discusses at length 
the mistakes made by plannerSfor not knowing that 
supposedly out-of-vehicle time is valued in people's 
minds two to three times more than the in- vehicle time 
and attributes, among other things, the 100-percent mis
take in BART patronage forecasts to this lack of knowl
edge about travel behavior. 

Given that (a) the bulk of the explanatory power is 
in the constant terms of the demand model, (b) pre
sumably the unobserved attributes that underlie these 
constants change only slowly, and (c) travelers do not 
seem to be very sensitive to h ·avel times and costs (irnd, 
hence, mino1· errors in se1·vice variables, say 5 min, 
do not substantially affect the predictions), it should be 
hard to make a bad prediction in the short run-pro
vided, of course, that the service levels are not pre
dicted wrongly. 

Although networks can be used to give adequate ball
park travel forecasts in many planning situations, their 
usefulness is limited. We mentioned that incremental 
forecasts could not be made by using network-based 
models because of their biased coefficients. Careful 
coding of networks is also costly and time consuming 
and depends on good human judgment. This heavy reli
ance on human judgment in network coding can be a two
edged sword. On one hand it can be used to guard 
against foolish mistakes, often attendant with the blind 
use of models, but on the other hand human judgment 
lends itself too easily to errors of commission. 
Planners who want demand figures to justify, for 
example, a rail transit link should code short-access 
links and weigh them heavily in building network paths 
and also in travel-demand models. In case of BART, the 
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access walk times were underestimated more than four
fold (123 min versus 28 min). Such errors are going 
to show up in predictions even if the behavioral weights 
are not guessed correctly. Furthermore, there is 
evidence that no mistake was made by using equal 
weights for the travel-time components. 

It seems to us that academicians and planners alike 
have been too attracted to debating and estimating 
statistically the mysteries of human behavior (with little 
success one might add) to pay attention to the obvious, 
which is directly observable and requires really no 
insight to human behavior-the level of service pro
vided by the transportation system. A good effort to 
improve our capabilities in the entire supply side of 
transportation is desirable. 
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