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Review and Assessment of 
Paratransit Models 
J. W. Billheimer, G. R. Lucas, and R. W. Wilmuth, 

Systan, Inc., Los Altos, California 

The development of integrated paratransit systems has been accompanied 
by the development of a wide range of modeling and analytic activities 
designed to shed light on the delicate balance between supply, demand, and 
cost in a paratransit network. Modeling and analytic approaches have 
ranged from complex situations to simple rules of thumb. Of the wide 
range of theoretical models developed so far by academics, researchers, and 
consultants, relatively few have been applied in a practical planning context, 
and the results of these limited applications have been mixed. A compre­
hensive survey of the analytic procedures and tools developed to address 
paratransit planning and evaluation problems is presented. Modeling pro­
cedures are described and classified, the historical development of the 
models is traced in the context of the parallel development of paratransit 
systems, the performance of existing models is compared, and the attri­
butes and application potential of several general classes of models are 
summarized. 

The development of integrated paratransit systems has 
been accompanied by the development of a wide range of 
modeling and analytic activities designed to shed light on 
the delicate balance among supply, demand, and cost in 
a paratransit network. Modeling and analytic approaches 
have ranged from complex simulations to simple rules 
of thumb. Of the wide range of theoretical models de­
veloped to date, relatively few have been applied in a 

Figure 1. Broad classification of existing models. 
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practical planning context, and the results of these lim­
ited applications have been mixed. 

A comprehensive literature search, accompanied by 
extensive discussions with members of the paratransit 
community, has resulted in the identification of more 
than 70 references that deal with the modeling of flexibly 
routed transportation systems. This paper summarizes 
the development, classification, and application poten­
tial of the models represented in the literature. A more 
detailed examination of model attributes, as well as a 
comparison of the relative capability and ease of use of 
similar models, can be found elsewhere(_!). 

SURVEY OF EXISTING MODELS 

General Classifications 

A coarse system of classification for existing models 
that is based on the level of model complexity and the 
focus of the modeling effort is shown in Figure 1. This 
classification system divides paratransit models into 
two distinct groups: 

1. Micromodels, which deal with a fine level of de­
tail and focus on the relations between individual vehi­
cles and passengers, and 

2. Macromodels, which deal with a coarser level of 
detail and focus on individual service areas and region­
wide performance rather than on individual vehicles and 
passengers. 

Micro models 

Micromodels are primarily used to address analytic 
questions and explore detailed vehicle-passenger rela­
tions in a single service area. Detailed simulations and 
disaggregate supply-demand models serve as two ex­
amples of the general classification of micromodels. 
Current and past micromodels of paratransit systems 
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Figure 2. Historical development of paratransit 
systems and models. 
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include the computer simulations developed by North­
western University (2, 3), Westinghouse, (4), General 
Motors (5), and FordMotor Company (§);Princeton ' s 
generalized feede1· simulation model (7); the computer­
aided routing systems (CARS) simulatTun developed by 
the Massachusetts Institute of Technology (8-10) and up­
dated in the advanced dial-a-ride (ADAR) project (11); 
and, on a somewhat less detailed level, the supply:­
deinand models developed by Cambridge Systematics, 
Inc ., and Multisystems, Inc. (12). 

Macromodels 

Macromodels can range in complexity from sophisticated 
stochastic models to simple rules of thumb. Four levels 
of complexity were identified in classifying macromodels 
for this state-of-the-art review. These four levels al'e, 
in order of decreasing com,Plexity, (a) stochastic models, 
(b) deterministic models, (c) empirical models, and (d) 
rules of thumb. 

There are no clear lines of demarcation that separate 
these classifications, and the distinctions between ad­
jacent categories tend to blur at the edges. A similar 
classification scheme was used by Wilson and Hendrick­
son (13) in reviewing paratransit supply models. The 
criteria to be included in each category are described 
in a general way below: 

1. Stochastic models-Stochastic models approach 
micromodels in level of complexity, depth of detail, and 
data requirements. Relatively few stochastic models of 
paratransit systems have been developed thus far. Sto­
chastic queueing models have been formulated to repre­
sent exclusive-ride taxi systems (14, 15), and Markov 
models of many-to-one and many-[ci:.many paratransit 
services have been developed ( 16, 17). 

2. Deterministic models-Mostrecent theoretical 
efforts to model the performance of paratransit systems 
can be classified as deterministic models. These 
models typically treat the stochastic aspects of system 
performance by using deterministic approximations 
grounded in geometric p1·obability relations. Examples 
of this ap1lroach can be found in the work of Ward (18-21), 
the Syatan SMART model (22-24), the Multisystems -
macromoclel (25), and Ute desCl'ill ive supply model de­
veloped by Flusberg and Wilson (26). 

3. Empirical models-Empirical models "at-
tempt to develop simple relationships between the key 
attributes of system performance and design" (13), gen­
erally through regression analysis. Early empirical 
models (27) used simulations as a basis for generating 
regression relations; more recent models have reflected 
actual operating experience in developing relations be­
tween factors such as fleet size and demand density or 

ridership and population (28, 29). 
4. Rules of thumb-RulesOf thumb represent a dis­

tillation of conventional wisdom, operating experience, 
modeling results, and "quick-and-dirty" calculations 
reduced to single sentences that have the ring, although 
not necessarily the reliability, of axioms. Examples of 
rules of thumb are the following: "It is considered neces­
sary to maintain the level of service such that the ratio 
of waiting plus travel time for a demand-responsive trip 
to the time required to make the same trip by automo­
bile does not exceed 3 .O" (30) or "an average of one 
seat per 1040 population" represents a rough cut at the 
total number of seats needed to start a dial-a-ride 
service (31). 

Model Genealogy 

Figure 2 traces the development of paratransit models 
over time and relates that development to the historical 
introduction of paratransit systems in U.S. cities. The 
graph at the top of the figure charts the approximate 
number of operating paratransit systems in U.S. cities 
between 1967 and 1977. The flow diagrams beneath the 
graph trace the chronological development of major para­
transit macromodels and micromodels over the same 
period and show the genealogical relations between sue~ 
cessive modeling efforts. 

Between 1967 and 1970, when there were relatively 
few paratransit systems operating in the United States, 
most efforts to model the paratransit concept took the 
form of complex simulations. At least four different 
simulations were developed during this period by 
Northwestern (2), Westinghouse (4), General Motors 
(5), and the Massachusetts Institute of Technology 
(M.I.TJ (9, 10, 32). As more and more paratransit 
systems were introduced in U.S. cities between 1972 
and 1977, more and more system models were devel­
oped. But the relative complexity of the theoretical 
models diminished as operating experience with real 
systems was gained. When this paper was written, only 
one of the original simulations-the M.I.T. model-was 
known to be still in use. The most recent modeling ef­
forts reflect regression analysis of operating systems 
(29, 31). 
-IfTs not surprising that elaborate simulation models 

should give way to simpler, empirical models as oper­
ating experience with actual systems increases. The 
simpler models are more accessible to planners than 
the simulation models, require fewer data to apply, are 
more easily understood, and offer results that are no 
less trustworthy than those of complex models for sev­
eral basic planning tasks. Simulations contributed to 
the early understanding of demand-responsive systems 
by illuminating the nature of basic supply-demand rela­
tions and contributing to the education of the simulation 
developers, several of whom went on to help plan oper­
ating systems and develop less complex models. Al­
though certain basic research questions remain that can 
best be answered through the use of detailed simulations, 
many practical operating decisions that relate to fleet 
size, service area, and operating policies can be guided 
just as readily by empirical models. 

Early modelers of paratransit systems tended not only 
to develop more complex models than later analysts but 
also to be more optimistic. Early paratransit models 
were supply models that treated demand exogenously and 
had no internal capability for reconciling supply and de­
mand levels. Nor was there much operating experience 
to provide an external reference for such a reconcilia­
tion. Modeling results were thus heavily dependent on 
the level of demand selected by the modeler. Early 
modelers typically overstated system demand and, as 
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operating experience. 
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a res ult( overspecified system service levels. As 
Wilson 13) has observed, "Early studies of the eco­
nomic feasibility of dial-a-ride suffered particularly 
from this problem, overestimating demand by between 
one and two orders of magnitude, leading to an over­
optimistic economic assessment of the system." 

The discrepancy between overly optimistic early ex­
pectations for demand-responsive systems and actual 
experience is reflected in Figure 3, which compares 
early planning guidelines developed by the Mitre Cor­
poration (28) with later guidelines that r eflect a wider 
range of operating expe1·ience (33). As Figure 3 shows, 
although the later guidelines based on operating expe­
rience with 66 systems overlap a portion of the area 
covered by the earlier guidelines, the ridership levels 
and demand density reflected by actual operating sys­
tems are but a fraction of the range anticipated in 
earlier theoretical work. 

MODEL PERFORMANCE 

The findings of a series of comparisons made among 
models of a specific type and function are summarized 
here. In the case of microsimulations, inputs, outputs, 
and assumptions of different models were compared; 
past and potential uses of simulations in paratransit 
planning and analysis were reviewed; and the advantages 
and disadvantages of the simulation approach were item­
ized. In the case of macromodels, the performance of 
the simpler demand, supply, and cost models was com­
pared by using sample data from a range of existing 
services. The details of the comparison process are 
discussed by Billheimer and others (.!_). 

Simulation Models 

A simulation model is an attempt to create artificial 
events related to artificial objects in a manner that 
parallels what occurs in a real system. The interrela­
tion of the modeled events is often complex even though 
the specification of the individual events and objectives 
may be simple. Simulation is an effective tool in de­
veloping an understanding of system behavior when the 
relations between model events and objects are easily 
understood and specified but the cumulative effect on the 
whole system is uncertain. The chief advantage of the 
simulation approach to paratransit modeling is that it 
enables the analyst to model those details of the inter­
action between passengers and vehicles that cannot be 
treated effectively in purely analytic models and permits 
the investigation of different algorithms of vehicle con­
trol. 

Although the simulation approach supports the ex-
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ploration of detailed system dynamics, it has several 
serious disadvantages. Simulation models are cumber­
some, inflexible, subject to statistical sampling errors, 
and limited in the scope of their application. They are 
cumbersome because they usually have extensive data 
requirements, and some familiarity with computers is 
needed if they are to be used effectively. Since existing 
demand-responsive simulations usually model only one 
type of service, they are somewhat inflexible for analyz­
ing alternative service types. Furthermore, extensive 
data requirements may make it difficult to model more 
than one setting. The cost of using simulation models 
can be high and, because of the detailed, specific nature 
of the input requirements, the results typically are not 
readily transferable to other systems and settings. 

Existing simulations are incapable of addressing one 
of the most important problems in the analysis of 
demand-responsive systems, the problem of demand 
prediction. The analyst must use some other approach 
to estimate demand and then use the simulation to ex­
plore the relation between demand and such supply­
related questions as fleet size or response time. In 
the past, this process has not led to notably accurate 
estimates of either supply or demand (1, 13). 

Since the cited disadvantages can be-severely limiting 
in certain applications, extreme caution should be ex­
ercised if simulations are to be used in such activities 
as feasibility analyses, systems design, or model cali­
bration. Nonetheless, simulation remains the most ef­
fective tool for evaluating paratransit control algorithms 
and is one of the few methods currently available for ob­
taining disaggregate measures of system performance. 

Disaggr egate Models of Supply ancl 
Demand 

Few existing models treat paratransit supply and de­
mand interactively at the disaggregate level-that is, 
focus on individual trip makers or socioeconomic groups 
rather than on entire service areas and treat the rela­
tion between supply and demand interactively. The most 
significant one is a model developed by Cambridge Sys­
tematics and Multisystems (12) that places a sophisti­
cated analytic tool in the hands of the user without bur­
dening him or her with excessive input requirements and 
appears to be a potentially valuable tool for analyzing 
systems that have reached a steady state. 

Macromodels 

Existing macromodels of j)aratransit s ystems have ad­
dressed ci,uestions of s ystem demand (rider ship and far e 
elas ticity) , supply (fleet s ize), performance (level of 
s erv ice and r esponse time), and cost. A hybr id class 
of models, designated as supply and demand models, has 
attempted to balance the interlocking relation between 
supply and demand. This relation is typically more 
complex in demand-responsive systems than in conven­
tional fixed-route systems. In both types of systems, 
ridership is heavily dependent on service quality. In 
conventional systems, however, service quality is rela­
tively independent of ridership except when the capacity 
of the system is approached. By way of contrast, in 
demand-1·esponsive systems, service quality may suffer 
as riders lll'tN.ncreases over all ranges of demand. In an 
attempt to reft~ct this interactive relation, certain sup­
ply and demandi models iterate between ridership esti­
mates and serviae measurements until an equilibrium 
point is appr oacheCI This iteration can be accomplished 
by computer, as in l 1~ase of the mbdel recently de­
veloped by Cambridge s tematics and Multisystems (g), 
or by the successive ap lka ion of nomographs, as in an - ., 



32 

Table 1. Analytical estimation of demand density in five test cities. 

City 

Naugatuck, Connecticut 
Merrill, Wisconsin 
Danville, Illinois 
Syracuse, New York 
Orange, California 

Note: 1 km~ = 0.386 mile2 • 

Figure 4. Comparison 
of four approaches to 
estimating fleet size. 

Demand Density (trlps / km2 / h) 

Predicted 

Empirical Empirical Fit 
Fit to to Population 

Observed Population Density 

0.3 0.4 0.77 
1.3 0.8 1 
1.2 0.15 0.31 
0.06 0.31 0.8 
2 1.16 1. 7 

Tripe per 5cJ*e Km per How 

Least Squares 
rn to Existing Data 

2 4 9 10 
Trips per Squaro Mile per Hour 

Lea 
Systems 

0.9 
0.4 
0.12 
0.85 
5.2 

earlier macromodel developed by the Mitre Corporation 
(34). 

Comparisons of Demand Models 

In an effort to assess the utility of existing demand 
models, six of the simpler models were tested by using 
data from five sample dial-a- ride cities (see Table 1). 
The cities were chosen because, collectively, they span 
a spectrum of city types: small urban areas, large low­
density areas, and thickly populated inner cities. None 
of the cities chosen was used in calibrating the six de­
mand models tested, which are identified below: 

1. Empirical fit of demand to service-area popula­
tion in 43 cities that have dial-a-bus transit systems (29); 

2. Empirical fit of demand density to population for 
the same 43 cities (29); 

3. Empirical fitOf demand to both population and 
population density on several Canadian dial-a-bus opera­
tions (35)· 

4. Use of nomographs that reflect both the fare and 
the population density of the service area (36); 

5, The rule of thumb, e.g., 13.5 passenger trips/ 
day/km 2 (35 passenge1· trips/day/mile2

) (31); and 
6. Simultaneous estimates of demand and vehic~e 

supply by the use of nomographs obtained by an empiri­
cal fit to dial-a-bus data for 16 cities (34). 

The actual demand densities observed in each of the 
five test cities (in trips per square kilometer per hour) 
as well as values estimated by using methods 1 through 
6 above are given in Table 1. Although more extensive 
tests should be made as additional data become available 
from operating systems, certain observations appear to 
be justified on the basis of the current analysis. It is 
evident in Table 1 that method 6, the Mitre nomograph 
technique, performed more consistently than the other 
methods. It seldom produced widely inaccurate es ti-

LEX/TRAN Los Angeles Mitre 
Calculator Guidelines Nomographe 

1.16 1.12 0.33 
7.7 1.1 0.7 
1.54 0.58 1.5 
2.7 0.9 0.2 
9.65 1.12 1.8 

mates and sometimes gave excellent ones . The superior 
performance of this model can be traced jointly to the 
broad spectrum of city types used in its calibration and 
to the theoretical soundness that arises from considera­
tions of supply-demand equilibrium. Most empirical 
approaches to demand prediction performed poorly in 
this test and, except in the case of the Mitre model, 
there seemed to be little overall connection between the 
sophistication of a model and the quality of its results. 

Models of Fleet Size 

Models for estimating fleet size attempt to predict the 
number of vehicles needed to serve a given area. Most 
fleet-size models require demand as an input and show 
approximately linear relations to demand. If demand is 
known, many methods of fleet-size estimation perform 
well in test cases; without demand estimates, most such 
methods fail miserably. Only the Mitre nomograph 
technique, because of its equilibrium structure, pro­
duced useful estimations of fleet size without accurate 
demand input. Figure 4 compares the fleet size (in ve­
hicles per square kilometer) predicted by four simple 
models based on demand densities with a least-squares 
fit to data from 66 existing systems. 

Performance and Cost Models 

Cost models usually attempt to predict the operating 
costs of a new system. Because demand-responsive sys­
tems are characteristically labor intensive, labor costs 
typically account for between 50 and 80 percent of total 
system costs. In practice, system costs vary widely as 
a function of wage rates, work rules, and union prac­
tices. Existing models range from very simple rules 
of thumb to more complex, computer-based methods. 
The simple models are generally based on fits to one 
key variable, such as fleet size or labor wages. Their 
performance in test cases is generally adequate for pur­
poses of preliminary planning, but they leave many vari­
ables unaccounted for and hence give the user no mean­
ingful information on controlling costs. 

Performance models attempt to estimate some vari­
able in order to predict system performance. A variety 
of analytic techniques are devoted to the estimation of 
average wait and ride times. They perform adequately 
for test cases but require information on demand and 
fleet size. Some models attempt to analyze performance 
by considering system productivity. Test cases reveal, 
however, that these approaches have tended toward over­
estimation. As more and more operating data that re­
flect relatively low levels of productivity have become 
available, models have become increasingly conserva­
tive in estimating this factor. Figure 5 shows the grad­
ual decrease of productivity estimates over time as they 
approach the median figure of six passengers per 
vehicle hour reported by a sampling of 60 general-
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as a function of average 
demand density. 
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market dial-a-bus systems (33). 

General Observations 

The failure of many models to produce accurate results 
in test cases can be traced to a number of factors. Chief 
among these are unrealistic optimism, a narrow range 
of calibration sites, and insufficient screening of sample 
data. Early demand-responsive transportation models 
tended to reflect an optimism about demand potential that 
was not borne out by operating e:xperience. As a result, 
many early models produce grossly inaccurate estimates 
of demand, and they are usually unable to deal effectively 
with realistic demand levels. 

Thus far, approaches that involve the use of surveys 
have not been effective predictors of demand. The main 
difficulty lies in the tendency of respondents to overes­
timate their potential use of a system that is still in the 
planning stages. In practice, advance surveys have 
yielded results that would promise ridership levels 
more than 10 times those actually e:xperienced. Ex­
trapolation from these very large values of "noncom­
mitment" demand to relatively small values of real de­
mand rarely produces accurate predictions of real de­
mand. 

The user of any model of demand-responsive trans­
portation systems must ensure that the assumptions used 
in developing the model accurately reflect the situation 
in the area of interest. Several empirical models have 
been calibrated for cities that have a narrow range of 
demogr aphic traits and perform poorly when applied to 
areas outside that range (1). Nonetheless, the relative 
success of certain models-in predicting demand in areas 
similar to the calibration regions suggests that future 
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empirical models should attempt to segregate data from 
different types of systems. Currently, many empirical 
models mix data from many-to-many services in at­
tempting to develop relations between demand or fleet 
size and demographic characteristics. This practice 
reduces the likelihood of obtaining an acceptable fit to 
existing data. As more data from operating systems be­
come available, it may be possible to stratify the sam­
ples used in calibrating empirical models by demographic 
characteristics and type of service so that more accuracy 
can be obtained. 

POTENTIAL USES 

Figure 6 associates potential model applications with 
various levels of complexity identified in the model re­
view process. In many cases, an application may span 
several levels of model complexity. In general, of 
course, the more complex micromodels are theoretically 
capable of undertaking any of the tasks designated for 
less complex models. However, the cost, the inflexi­
bility, and the undependable record of these models dic­
tate that they be considered only for tasks that cannot be 
handled by the simpler models. By virtue of their po­
sition in the midrange of system complexity, determin­
istic macromodels appear to have the widest range of 
potential uses. Simple enough to be used and understood 
by a wide range of users, they remain sufficiently de­
tailed to provide insights into the complex relations that 
link supply, demand, and cost parameters. 

SUMMARY 

As the first of the micromodels developed to represent 
paratransit systems, computer simulations have been 
tested in many of the applications listed for all model 
levels in Figure 6. These micromodels have shown 
themselves to be well suited for the detailed analysis 
necessary in the design and evaluation of scheduling and 
dispatching algorithms. However, Wilson, one of the 
early developers of the simulation approach to para­
transit modeling, notes in his review of supply models 
(13) that "e:xperience suggests a good deal of caution in 
tne use of simulation models for planning new systems." 
Simulation models have not fared well in past planning 
tasks for a variety of reasons, including their depen­
dence on exogenous demand estimates, their failure to 
reflect important stochastic elements, their inflexi­
bility, the significant investment of time and cost re­
quired for their application, and their relative inacces­
sibility to the planning community. The planner who is 
designing a small demand-responsive system typically 
does not need the level of detail provided by a simulation 
model, lacks the time and sophistication necessary to 
adapt and apply the model, and could probably not justify 
the relatively high cost of analysis in light of the rela­
tively low cost of the system itself. 

Nonetheless, the simulation approach "remains the 
most effective tool in algorithm design and the only way 
to obtain disaggregate measures of system performance" 
(13). Existing simulations have been limited even in 
these applications by an inability to represent more than 
one control algorithm and the failure to replicate aggre­
gate performance measures within acceptable limits of 
accuracy. These deficiencies in existing simulation 
models have led the Urban Mass Transportation Admin­
istration to fund the design and development of a more 
flexible microsimulation model that is capable of repli­
cating and evaluating a wider range of service and con­
trol alternatives (37). 

Although simulations have generally not served suc­
cessfully as direct system-design tools, they have played 
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an important role in contributing to the modeler's under­
standing of paratransit systems and have supported the 
development of macromodels that are appropriate for 
design work. 

Deterministic models appear to be able to reflect 
many of the important aspects of system operation. If 
expanded to include such stochastic measures as system 
reliability, the most complex of these models-the Multi­
syi:; tems mac~·omodel (25) and the Systan SMART model 
(23)-should prove useful in testing alternative deploy­
ment scenarios, evaluating trade-offs between different 
service combinations, and developing general guide­
lines that relate system design to area characteristics. 

Empirical regression models are currently the most 
accessible tool for the system planner and offer the best 
means for developing rough, rapid estimates of supply, 
demand, and cost. As more and more operating data 
from different systems become available, these models 
should be refined to reflect the impact on supply-demand 
relations of such site-specific factors as climate, his­
torical transit ridership, and automobile ownership. 
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Evaluation of Interpersonal Influences 
in the Formation and Promotion of 
Carpools 
Irwin P. Levin and Morris J. Gray, University of Iowa, Iowa City 

A three·phase analysis of the role of interpersonal factors in carpooling 
performed at the University of Iowa is described. Phase 1 used labora­
tory simulation methods in which respondents rated the relative desira­
bility of alternative carpool descriptions. The desirability of carpooling 
was found to decrease as the number of nonacquaintances in the pool 
increased, and particularly low ratings were given to carpools that con­
sisted wholly of nonacquaintances. In phase 2, attitudinal and behavioral 
data from an existing industry-based carpool promotional program were 
analyzed by using Federal Highway Administration matching techniques. 
The data confirmed the importance of acquaintanceship as a factor in 
carpooling. Phase 3 used the findings from phases 1 and 2 to design and 
implement promising strategies for promoting carpooling. Strategies that 
stressed person-to-person contact between potential carpoolers and used 
existing networks of acquaintanceship to increase the number of carpools 
were emphasized. It is concluded that evaluation of such strategies 
should be useful in formulating future carpool promotional programs. 

Over the years, transportation researchers have in­
creasingly come to realize the importance of social fac­
tors in travel decisions. In particular, the choice of a 
multioccupant mode, such as carpooling, for the journey 
to work involves interpersonal as well as economic fac­
tors. Programs designed to increase carpooling must 
take this into account. The goals of this paper are to 
advance some ideas about the role of interpersonal fac­
tors in ride sharing and to show how these ideas can be 
used to promote carpooling. 

Hartgen (!_), Ho1·owitz and Sheth(~, Kurth and Hood 
@, Levin and others ~. and Ma1·golin and others ® 
all view ride shal'ing as a psychosocial process. Hart­
gen 's review of recent findings leads to four hypotheses 
for why ride sharing is not very common: (a) Car­
poolers have unique trip and travel needs, (b) solo 

drivers lack the information needed to form carpools, 
(c) attitudes of carpoolers are different from those of 
solo drivers, and (d) the social processes involved in 
carpooling are difficult for solo drivers to overcome. 
Hartgen (!) reports that Margolin and Misch used 
decision analysis panels in the Washington, D.C., area 
to develop hypotheses about ride-sharing motivation and 
found that the factors that deter people from carpooling 
include a desire to maintain independence, concern over 
waiting for others, and personal incompatibilities with 
other members of the pool. Among the more interesting 
data in the study by Margolin and Misch on interpersonal 
factors were that 87 percent of their commuters wanted 
to meet prospective members before making any ride­
sharing arrangements and 39 percent felt that they would 
have to know the people first. Since traditional carpool 
matching programs ultimately leave it to the individual 
participant to contact other potential ride sharers on a 
list, a reluctance to contact strangers can be a major 
problem in forming carpools. 

The carpooling research program at the University 
of Iowa (!_, ~ :!) is based on the premise that a thorough 
understanding of the individual decision processes and 
attitudes that underlie ride-sharing behavior is a pre­
requisite for designing and implementing effective car­
pooling programs. Thus, the analysis consists of three 
phases: (a) laboratory simulation studies of the in­
influence of interpersonal factors on attitudes toward 
carpooling, (b) analysis of attitudinal and behavioral 
data from existing carpooling programs, and (c) design, 
implementation, and evaluation of potentially effective 
strategies for promoting carpooling. 




