Field Performance of Aggregate-Lime-Pozzolan Base Material

M. C. Wang and W. P. Kilareski, Pennsylvania Transportation Institute, Pennsylvania State University, University Park

The behavior and performance of pavements that contain aggregate-lime-pozzolan (ALP) base material are evaluated and compared with those of a crushed-stone base. Performance data collected include present-serviceability index, rutting, and cracking. The response of the ALP pavement to 80-kN (18 000-lbf (18-kip)) equivalent axle loadings (EALs) is analyzed by using an elastic-layer computer program. Pavement response is related to performance data to establish limiting criteria. The limiting criteria developed constitute the basis for the determination of the structural coefficient of ALP material. The results of the study indicate that the ALP material, in comparison with the crushed-stone aggregate, provided a stiff base that considerably reduced rutting. Furthermore, the PSI value decreased much slower in the ALP pavement, and cracking developed much earlier and propagated much faster in the crushed-stone pavement. No non-traffic-associated cracking appeared in either type of pavement. The limiting criteria, which were developed for the ALP pavement to withstand 1 million EALs without significant surface cracking and excessive rutting, were a maximum pavement surface deflection of 0.28 mm (0.011 in), a maximum radial tensile strain at the bottom of the base course of 41.0 µm/m (0.000 041 in/in), and a maximum compressive strain at the top of the subgrade of 160.0 µm/m (0.000 160 in/in).

Within the range of layer thicknesses studied, the structural coefficients of the ALP material were, approximately, 0.33, 0.29, and 0.25 for surface layer thicknesses of 3.8, 6.4, and 8.9 cm (1.5, 2.5, and 3.5 in), respectively.

There is ample evidence to indicate that lime with fly ash is an effective agent in stabilizing aggregate for pavement construction (1). The total energy required in the production of aggregate-lime-fly-ash (ALFA) mix is very low because the mixes generally require a small amount of lime. On the other hand, the required fly-ash content is considerably high, usually from three to five times that of the required lime content. Thus, the use of fly ash for stabilization can at least alleviate the problem of disposing of the ever-increasing quantity of fly ash. These two factors have aided in the increasing use of ALFA material in recent years.

In spite of the increase in the use of ALFA material in pavement construction, most agencies base the thickness and quality design of ALFA layers on empirical rules. Although it is likely that some degree of empiricism will always be required to account for factors that are not readily analyzable, improved methods of thickness design are needed. General steps required for the development of an improved design technique have been proposed by the Committee on Structural Design of Roadways of the American Society of Civil Engineers (ASCE) (2). Included in these steps are the establishment of failure criteria and performance studies in the field.

A research program on the field performance of various base-course materials was undertaken at the Pennsylvania Transportation Research Facility of the Pennsylvania State University. The base-course materials studied were aggregate-lime-pozzolan (fly ash), dense-graded crushed stone, aggregate cement, bituminous concrete, and aggregate bituminous. The performance of aggregate cement and bituminous concrete pavements is discussed in papers by Wang and Larson and by Wang and Kilareski elsewhere in this Record. This paper discusses the performance of pavements that contain aggregate-lime-pozzolan base courses. Limiting strain criteria and limiting deflection criteria were developed from field performance data and data on pavement response. The results of this study provide information that would be useful in the design steps identified by ASCE.

AGgregate-Lime-Pozzolan Material

The aggregate-lime-pozzolan (ALP) base material studied was composed of 3 percent by weight of lime, 15 percent by weight of fly ash, and 82 percent by weight of aggregate. The mix design was determined by the Bureau of Materials, Testing, and Research of the Pennsylvania Department of Transportation (PennDOT). The aggregate was a crushed limestone. The tables below summarize the gradation and the basic properties for aggregate, lime, and fly ash (1 mm = 0.039 in):

<table>
<thead>
<tr>
<th>Aggregate</th>
<th>Lime</th>
<th>Fly Ash</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sieve Size (mm)</td>
<td>Percentage Passing</td>
<td>Percentage Passing</td>
</tr>
<tr>
<td>50</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>19</td>
<td>93</td>
<td>-</td>
</tr>
<tr>
<td>9.5</td>
<td>53</td>
<td>-</td>
</tr>
<tr>
<td>4.75</td>
<td>28</td>
<td>-</td>
</tr>
<tr>
<td>2.36</td>
<td>17</td>
<td>-</td>
</tr>
<tr>
<td>1.18</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>0.6</td>
<td>7</td>
<td>-</td>
</tr>
<tr>
<td>0.3</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>0.15</td>
<td>2</td>
<td>97.7</td>
</tr>
<tr>
<td>0.075</td>
<td>-</td>
<td>85.4</td>
</tr>
<tr>
<td>0.045</td>
<td>-</td>
<td>82.9</td>
</tr>
</tbody>
</table>

The chemical properties of lime and fly ash given in the second table are taken from the work of Cumberledge and others (3).

TEST PAVEMENTS

Four test pavements that contained ALP base were constructed at the Pennsylvania Transportation Research Facility. Two were installed in the summer of 1972, and the other two were constructed in the fall of 1975 (the construction of the base course took place from October 22 through November 3). Each of the four pavements contained a 6.4-cm (2.5-in) bituminous concrete surface and a 20.3-cm (8-in) subbase layer. The first two pavements had a 20.3-cm base; the other two pavements contained a 15.2-cm (6-in) and a 10.2-cm (4-in) base, respectively. One of the first two pavements was in a cut, and the other was in a fill section. The fill section was replaced by the last two pavements after about 1.1 mil-
Sieve Size Specification

<table>
<thead>
<tr>
<th>Sieve Size (mm)</th>
<th>Specification Limits</th>
<th>Field Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>19</td>
<td>52-100</td>
<td>95.0</td>
</tr>
<tr>
<td>9.5</td>
<td>36.5</td>
<td>55.1</td>
</tr>
<tr>
<td>4.75</td>
<td>24.5</td>
<td>41.2</td>
</tr>
<tr>
<td>2.36</td>
<td>-</td>
<td>32.2</td>
</tr>
<tr>
<td>1.18</td>
<td>10-30</td>
<td>21.3</td>
</tr>
<tr>
<td>0.8</td>
<td>-</td>
<td>14.8</td>
</tr>
<tr>
<td>0.3</td>
<td>-</td>
<td>10.9</td>
</tr>
<tr>
<td>0.15</td>
<td>-</td>
<td>8.8</td>
</tr>
<tr>
<td>0.075</td>
<td>0.10</td>
<td>-</td>
</tr>
</tbody>
</table>

The crushed-stone pavement was overlaid with 6.4 cm (2.5 in) of bituminous concrete after approximately 940 000 EAL applications.

The subgrade soil at the research facility was predominantly soil classification A-7. The first two ALP pavements (constructed in 1972) were subjected to traffic approximately two months after completion of the base-course construction. For the last two ALP and crushed-stone pavements (constructed in 1975), traffic was started about one month after the base course was completed. The traffic was initially provided by a conventional truck tractor that pulled a semitrailer and a full trailer. After about 1.5 million EALs, another full trailer was added to increase the rate of loading. The single-axle loading was within the range of 80-107 kN (18 000-24 000 lbf). Complete information on design, construction, material properties, and traffic operation is available elsewhere (4, 5).

FIELD EVALUATION

Field testing of pavement performance was conducted periodically. Rut depth was measured biweekly every 12.2 m (40 ft) in both wheel paths by using an A-frame that was attached to a 2.1-m (7-ft) long base channel. Surface cracking was surveyed and mapped biweekly. Surface roughness was measured in both wheel paths by using a MacBeth profilograph. The roughness factors obtained from the profilograph data were converted into pavement present serviceability index (PSI) by using Equations 1 and 2 given in the paper by Wang and Larson elsewhere in this Record.

Surface deflections were determined in the wheel paths by using the Benkelman beam and road-rater measurements. Pavement temperature profile and distribution of subgrade moisture were measured by using thermocouples and moisture cells. Two frost-depth indicators were installed at the research facility to measure the depth of frost penetration. Weather data such as wind velocity, precipitation, and temperature were collected by using various meteorological gages.

DISTRESS BEHAVIOR

The distress behavior of the test pavements was evaluated in terms of rutting and cracking. Figure 1 shows the rut-depth data for the ALP and crushed-stone pavements. The figure also shows the seasons in which the rut depths were measured. The two ALP pavements show almost the same amount of rutting until the point at which the fill section was replaced, which indicates that the material properties of the two pavements were quite consistent. Figure 1 clearly indicates that the ALP pavement has much greater resistance to rutting than the crushed-stone pavement. The rate of rutting seems to vary insignificantly with the seasons while the pavements are in structurally sound condition but to increase rapidly in the spring season when the pavements approach a state of failure.

Figure 1 shows that the crushed-stone pavement displayed rutting of about 25.4 mm (1.0 in) at the end of 1 million EAL applications, whereas the ALP pavement had only about 3.8-mm (0.15-in) rutting. The ALP pavement reached a rut depth of 6 mm (0.25 in) at about 1.4 million EALs, whereas the crushed-stone pavement reached this rut depth at only about 0.2 million EALs. The 6-mm rut depth is widely used as a criterion in the design of...
flexible highway pavements (6, 7). These data will be used later as a basis for the determination of the structural coefficient of the ALP material.

The results of a crack survey showed that there was no cracking in either 20.3-cm (8-in) ALP-base pavement at the time when the fill section was removed. A few hairline cracks appeared in the wheel paths in the cut section at approximately 1.12 million EAL applications. After about 2.3 million EALs, two potholes had formed in the ALP pavement. The first pothole developed at about 1.17 million EALs and the second at about 1.36 million EALs. Figures 2-5 show crack patterns mapped at four different times to illustrate the growth of surface cracking in the ALP pavement. It is interesting to note that nearly all cracks initiated in the longitudinal direction. The more numerous longitudinal cracks along the left side of the pavement were probably a result of the installation of a skid-testing facility adjacent to the left edge of the pavement. The construction of the skid-testing facility could have disturbed the original support along the edge of the test pavement. As a result, the edge of the test pavement is under less confinement and is thus more susceptible to the formation of longitudinal cracking.

Figure 6 shows crack patterns developed in the crushed-stone pavement. Hairline cracks initiated in both wheel paths at approximately 56 500 EAL applications. The contrast in the development of surface crack patterns in the ALP and crushed-stone pavements is shown in Figures 2-6. In the ALP pavement, surface cracking initiated in some localized areas; in the crushed-stone pavement, surface cracking developed in the wheel paths at almost the same time throughout the entire pavement. One possible reason for the difference could be the nonuniformity of the ALP material, which is probably attributable to imperfect mixing. Further attempt was made to verify this. Figures 2-6 also show that the rate of growth from class 1 to class 2 and class 3 cracking was much faster in the crushed-stone pavement than in the ALP pavement. Furthermore, apparent temperature or shrinkage cracking was absent in either pavement.

The total areas of class 2 and class 3 cracking that developed in both ALP and crushed-stone pavements are shown in Figure 7. The area of cracking increased very rapidly when the pavements approached a state of failure. A rapid increase in cracking occurred in the ALP pavement during the spring of 1976, primarily because the development of the second pothole. During the same season, the thawing of frozen material and relatively heavy rainfall contributed to the formation of potholes. It should be noted that, among the many test pavements at the research facility, potholes were observed only in the ALP pavement. Possible reasons for this are not to be investigated.

PAVEMENT PERFORMANCE

The variation of PSI with EAL applications for the ALP and crushed-stone pavements is shown in Figure 8. The initial PSI values for the three pavements were almost the same, approximately 3.8. The performance trends of the two ALP pavements were also nearly equal until...
the fill section was removed. For the first million EAL applications, the PSI value decreased by only about 0.3. After that, however, the PSI value dropped at an ever-increasing rate. The data seem to show that the PSI dropped slightly faster in the spring-summer seasons than in the fall-winter seasons. According to the data, it required about 2.15 million EAL applications to reach a PSI of 2.0.

From the beginning, the PSI value dropped much faster for the crushed-stone pavement than for the ALP pavement, which would indicate a shorter service life for the crushed-stone pavement. The performance data also indicate that the crushed-stone pavement can only sustain 0.7 million EAL applications before it reaches a PSI of 2.0.

From the beginning, the PSI value dropped much faster for the crushed-stone pavement than for the ALP pavement. The performance data also indicate that the crushed-stone pavement can only sustain 0.7 million EAL applications before it reaches a PSI of 2.0. This service life is much shorter than that of the ALP pavement. The PSI value immediately after overlay was only about 2.5, which is much lower than the PSI after initial construction. A possible reason for this could be that the crushed-stone pavement is so short—only 33 m (100 ft) long—that it is rather difficult to control the thickness of overlay uniformly by using routine construction equipment.

MATERIAL PROPERTIES

The strength and fatigue properties of the ALP material were determined based on specimens both compacted in the laboratory and taken from the pavement. The laboratory-compacted specimens were 15.2 cm (6 in) in diameter and 25.4 cm (10 in) in height and were molded by using the modified AASHTO compaction effort to the same moisture content and dry density as those in the pavement. The compacted specimens were embedded in the soil at the research facility to cure under the same environmental conditions as the test pavement. Several core samples 10.2 cm (4 in) in diameter and 20.4 cm (8 in) in height were taken from the test pavement after about 1.1 million EALs. Note that the 1.1 million EALs were achieved after approximately 20 months of traffic. Test results indicated that the laboratory-compacted specimens had almost the same strength properties as the core samples.

Triaxial compression tests were conducted on four-week-old and one-year-old specimens under various confining pressures up to 0.14 MPa (20 lbf/in²). Test results indicated no significant effect of confinement on the compressive strength within the range of conditions studied. Based on the results of six tests, average compressive strength and strain at failure were 17.1 MPa (2490 lbf/in²) and 0.0142, respectively, for one-year-old specimens and 5.2 MPa (750 lbf/in²) and 0.010, respectively, for four-week-old specimens.

The fatigue property was evaluated by using repeated-load flexural tests on beam specimens. The beam specimens, which were compacted in the laboratory, had dimensions of 8.25x8.25x45.75 cm (3.25x3.25x18 in). The beam specimens were simply supported at both ends and were subjected to repeated loading at two points within the span. Each loading point was located at equal distance from its nearest support to ensure pure bending at the middle of the span. The repeated loading had a duration of 0.1 s and a frequency of 20 cycles/min. Test results gave $K_1 = 2.80 \times 10^{-4}$ and $K_2 = 2.17$ for the following fatigue equation:

$$N = K_1 (1/e)^{K_2}$$

where N = number of load repetitions to failure and ϵ = tensile strain.

In addition, repeated-load triaxial compression tests were conducted by using the same repeated loading to determine the modulus of resilient deformation. For confining pressures up to 0.21 MPa (30 lbf/in²) and de-
viatoric stresses up to 0.45 MPa (65 lbf/in²), the resilient modulus was found to be practically independent of confining pressure, deviatoric stress, and the number of load repetitions. The resilient modulus was averaged at 16400 MPa (2.38 million lbf/in²).

PAVEMENT RESPONSE AND LIMITING CRITERIA

Pavement response was analyzed for the weather conditions that are most critical to pavement performance by using an elastic-layer computer program and the appropriate material properties. The computer program adopted was the BISAR program developed at Koninklijke Shell in Denmark. Material properties needed are the modulus of elasticity and Poisson’s ratio of each pavement constituent material. The elastic modulus of the ALP material has already been given. Poisson’s ratio is taken to be 0.15, according to previous research results (11).

The data on subgrade moisture indicated that the maximum subgrade moisture content occurred around the late spring and early summer. At this time of the year, the subgrade moisture content was approximately 21 percent and the average pavement temperature was about 21°C (70°F). The elastic moduli of the bituminous mixture, crushed-limestone subbase, and subgrade materials that correspond to these temperature and moisture conditions are 965.5 MPa (140 000 lbf/in²), 330.9 MPa (48 000 lbf/in²), and 68.9 MPa (10 000 lbf/in²), respectively. In addition, Poisson’s ratio values are 0.40, 0.40, and 0.45, respectively, for the surface, subbase, and subgrade materials. The critical response analyzed included maximum tensile strain in the surface and base courses, maximum vertical compressive strain in the subgrade, and maximum deflection on the pavement surface. These responses were considered because maximum tensile strain and maximum surface deflection are associated with fatigue cracking (11-14), whereas maximum vertical compressive strain is associated with rutting (6, 7, 13).

According to the results of the response analysis, maximum pavement surface deflection, maximum tensile strain at the bottom of the base course, and maximum subgrade compressive strain equal 0.27 mm (0.0107 in), 41.10 μm/m (0.000 041 in/in), and 142.78 μm/m (0.000 143 in/in), respectively. The field data presented earlier indicate that surface cracking appeared at approximately 1.1 million EAL applications. Thus, it would be appropriate to state that, for an ALP pavement to withstand 1 million EALs without surface cracking, the maximum pavement surface deflection and maximum tensile strain in the base course should be no greater than 0.28 mm (0.011 in) and 41.0 μm/m (0.000 041 in/in).

As mentioned before, the number of EAL repetitions required for 6 mm (0.25 in) of rutting is about 1.4 million (Figure 1). The maximum subgrade compressive strain obtained above is related to 1.4 million EAL repetitions in Figure 9. Figure 9 also shows the relations established for pavements with bituminous bases at the research facility (10) and relations established by other researchers (6, 7, 13). It is estimated by extrapolation that the subgrade compressive strain at 1 million EALs equals approximately 160 μm/m (0.000 160 in/in). These three values—maximum surface deflection = 0.28 mm (0.011 in), maximum tensile strain = 41.0 μm/m (0.000 041 in/in), and maximum subgrade compressive strain = 160 μm/m (0.000 160 in/in)—constitute the limiting criteria for the ALP pavement to withstand 1 million EAL applications. One million EAL applications was adopted because it is widely associated with 20-year pavement service life.

STRUCTURAL COEFFICIENT

The structural coefficient of the ALP base material was evaluated by following the same approach as that presented before (10). For this approach, the BISAR computer program was used to determine pavement sections that had various combinations of layer thickness that satisfied the preceding limiting criteria. Table 1 summarizes the results of the computation. The layer thicknesses in the first, second, and last columns of this table provide pavement sections for the calculation of the structural coefficient.

The structural coefficient was computed by using the
the ALP material equals 16 400 MPa (2.38 million lbf/in²) and that of the bituminous concrete base was approximately 2410 MPa (0.35 million lbf/in²), which corresponds to the spring temperature condition (10). Thus, the relative stiffness between the ALP base and the subbase is considerably greater than that between the bituminous concrete base and the subbase materials.

Since the combinations of layer thickness that satisfy the limiting criteria depend on the relative stiffness of the constituent layers, the effect on the base thickness of a unit change in the subbase thickness is less significant for the system that contains a base course much stiffer than the subbase course. As a consequence, the structural coefficient of the subbase material evaluated with the ALP base was lower than that of the subbase material evaluated with the bituminous concrete base.

A similar effect of one layer’s stiffness on another layer’s structural coefficient has also been observed by VanTil and others (16).

SUMMARY AND CONCLUSIONS

The behavior and performance of pavements that contained ALP base were evaluated and compared with those of pavement that contained crushed-stone base. The critical response of the ALP pavement was analyzed using the BISAR computer program and appropriate material properties. The response analysis was related to performance data to establish limiting criteria. The structural coefficient of the ALP material was evaluated based on the limiting criteria developed.

The results of this study indicate that ALP material provides a stiffer base with longer service life than crushed-stone aggregate. The ALP pavement displayed much less severe rutting than the crushed-stone pavement. In addition, the PSI value decreased at a much lower rate for ALP pavement than for crushed-stone pavement. Cracking developed much earlier and faster in the crushed-stone pavement. No apparent non-traffic-associated cracking was observed in either type of pavement.

For the ALP pavement to withstand 1 million applications of 80-kN EAL, the maximum surface deflection, maximum tensile strain in the base, and maximum vertical compressive strain in the subgrade must be limited to 0.28 mm (0.011 in), 41 µin/m (0.000 041 in/in), and 160 µm/m (0.000 160 in/in), respectively. The structural coefficient of the ALP material remains relatively constant with respect to the base thickness but varies with the surface thickness. For surface thicknesses of 3.8, 6.4, and 8.9 cm (1.5, 2.5, and 3.5 in), the structural coefficients equal 0.33, 0.29, and 0.25, respectively.

ACKNOWLEDGMENT

The study presented here is part of a research project sponsored by the Pennsylvania Department of Transportation in cooperation with the Federal Highway Administration, U.S. Department of Transportation. Their support is gratefully acknowledged. We wish to express our gratitude to the National Crushed Stone Association for lending us its repeated-load test apparatus for laboratory testing. Our sincere appreciation is extended to T. D. Larson of the Pennsylvania Transportation Institute for his encouragement and review of the manuscript. We are also thankful to S. A. Kutz for his participation in the preparation of the paper. The field data reported here were collected and reduced with the assistance of R. P. Anderson, B. A. Anani, P. J. Ker savage, and S. A. Kutz.
This paper represents our views and does not necessarily reflect those of the Pennsylvania Department of Transportation or the Federal Highway Administration.

REFERENCES

Publication of this paper sponsored by Committee on Flexible Pavement Design.

Structural Design of PCC Shoulders

Jihad S. Sawan and Michael L. Darter, Department of Civil Engineering, University of Illinois, Urbana-Champaign

A structural design procedure for plain jointed portland cement concrete (PCC) highway shoulders has been developed. The procedure can be used to provide PCC shoulders either for rehabilitation of existing pavement or for new pavement construction. All major factors that are known to affect the behavior of PCC shoulders are considered in the mechanistic design approach, including encroaching moving trucks, parked trucks, foundation support, load transfer across the longitudinal joint, shoulder slab thickness and tapering, width of shoulder, and traffic lane slab. The finite-element structural analysis technique was used along with a model for concrete fatigue damage to sum damage for both moving encroaching trucks and parked trucks. A relation was established between accumulated fatigue damage and slab cracking. The shoulder can thus be designed for an allowable amount of cracking, which can vary depending on the performance level desired. Procedures for tying the PCC shoulder to the mainline PCC slab are recommended to provide adequate load transfer and avoid joint spalling. Long-term, low-maintenance performance of the PCC shoulder, as well as significant improvement in the performance of the traffic lane, can be obtained if the shoulder is properly designed.

Portland cement concrete (PCC) shoulders have been constructed for several years on urban expressways and rural highways. They were first constructed on an experimental basis but more recently as regular construction. Since no structural design procedure is available, design has been based on engineering judgment and the performance of a few experimental sections. The purpose of this study is to develop a structural design procedure that considers the major design variables that affect the behavior of PCC shoulders. The design includes the placement of PCC shoulders for the purpose of rehabilitating existing pavements and also for new pavement construction.

Shoulders are an integral part of today’s major highways and are required to provide structural support to (a) encroaching traffic loads from the adjacent traffic lane, (b) emergency parking, and (c) regular traffic if the shoulder is used as a detour around a closed lane or as an additional lane during peak traffic hours. Field results of this study (1) have shown that the PCC shoulder contributes to the structural support of traffic in the adjacent lane so that distress in the lane is significantly reduced.