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Confidence Intervals for Choice 
Probabilities of the Multinomial 
Logit Model 
Joel Horowitz, U.S. Environmental Protection Agency 

This paper describes three methods for developing confidence intervals 
for the choice probabilities in multinomial legit models. The confidence 
intervals reflect the effects of sampling errors in the parameters of the 
models. The first method is based on the asymptotic sampling distribu· 
tion of the choice probabilities and leads to a joint confidence region for 
these probabilities. This confidence region is not rectangular and is use· 
ful mainly for testing hypotheses about the values of the choice proba· 
bilities. The second method is based on an asymptotic linear approxima
tion of the relation between errors in models' parameters and errors in 
choice probabilities. The method yields confidence intervals for individ· 
ual choice probabilities as well as rectangular joint confidence regions for 
all of the choice probabilities. However, the linear approximation on 
which the method is based can yield erroneous results, thus limiting the 
applicability of the method. A procedure for setting an upper bound on 
thll error caused by the linear approximation is described. The third 
method is based on nonlinear programming. This method also leads to 
rectangular joint confidence regions for the choice probabilities. The 
nonlinear programming method is exact and, therefore, more generally 
applicable than the linear approximation method. However, when the 
linear approximation is accurate, it tends to produce narrower confidence 
intervals than does the nonlinear programming method, except in cases 
where the number of alternatives in the choice set is either two or very 
large. Several numerical examples are given in which the nonlinear pro· 
gramming method is illustrated and compared with the linear 
approximation method. 

The multinomial logit formulation of urban travel-demand 
models has a variety of theoretical and computational 
advantages over other demand-model formulations arid 
is receiving widespread use both for research purposes 
and as a practical demand-forecasting tool (1-3). How
ever, travel-demand forecasts derived from- logit 
models, like forecasts derived from other types of 
econometric models, are subject to errors that arise 
from several sources, including sampling errors in the 
estimated values of parameters of the models, errors 
in the values of explanatory variables, and errors in the 
functional specifications of the models. Knowledge of 
the magnitudes of forecasting errors can be important in 
practice, particularly if either the errors themselves 
or the costs of making erroneous decisions are large. 
This paper deals with the problem of estimating the mag
nitudes of forecasting errors that result from sampling 
errors in the estimated values of the parameters of logit 
models. Specifically, the paper describes techniques 
for developing confidence intervals for choice probabili
ties and functions of choice probabilities (e.g., aggre
gate market shares, changes in choice probabilities 
caused by changes in independent variables) derived from 

logit models, conditional on correct functional specifica
tion of the models and use of correct values of the ex
planatory variables. 

A model's forecasting error can be characterized in 
a variety of ways, including average forecasting error 
and root-mean-square forecasting error, in addition to 
confidence intervals for the forecast. Among the vari
ous error characterizations, only the confidence inter -
val provides a range in which the true value of the fore
cast quantity is likely to lie. Methods for developing 
confidence intervals for the forecasts of linear econo
metric models are well known ( 4). However, these 
methods are not applicable to logit models, which are 
nonlinear in parameters. Koppelman (5, 6) has analyzed 
the forecasting errors of logit models andhas described 
the ways in which various sources of error contribute to 
total error in forecasts in choice probabilities. Koppel
man 's error measures do not include confidence inter
vals for the choice probabilities although, as will be 
shown later in this paper, one of his error measures can 
be used to derive approximate confidence intervals. 

Three methods for estimating confidence intervals 
for the choice probabilities of logit models are described 
in this paper. All of the methods lead to asymptotic con
fidence intervals in that they are based on the large
sample properties of the estimated parameters of the 
models. The first method is based on the exact asymp
totic sampling distribution of the choice probabilities 
and leads to a joint confidence region for these prob
abilities. This region is useful mainly for testing hy
potheses about the values of the choice probabilities. 
The region is not rectangular and, therefore, is diffi
cult to use in practical forecasting. Moreover, the 
methods used to derive the confidence region cannot be 
readily extended to functions of the choice probabilities. 

The second method is based on an asymptotic linear 
approximation of the relation between sampling errors 
in models' parameters and sampling errors in choice 
probabilities. The linear approximation method yields 
confidence intervals for individual choice probabilities 
as well as rectangular joint confidence regions for all of 
the choice probabilities. The method can easily be ex
tended to functions of the choice probabilities. However, 
the linear approximation on which the method is based 
can yield erroneous results, thus limiting the method's 
applicability. A procedure for placing an upper bound 
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on the error caused by the linear approximation is 
described. 

The third method is based on nonlinear programming. 
This method yields rectangular joint confidence regions 
for the choice probabilities and can be extended to func
tions of the choice probabilities. The method does not 
require approximation of the relations between sampling 
errors in models' parameters and sampling errors in 
choice probabilities and, therefore, is more generally 
applicable than is the linear approximation method. 
Several numerical examples are given in which the 
nonlinear programming method is illustrated and com
pared with the linear approximation method. 

PROPERTIES OF THE LOGIT MODEL 

In the multinomial logit model, the probability that in
dividual n selects alternative i from a set of J. available 
alternatives is given by 

Pin =exp(Yiny~ exp(Yjn) (!) 

where Pin is the probabiiity that aiternative i is chosen 
by individual n, and Vl• (j=l, ... , J 0 ) is the systematic 
component of the utility of alternative j to individual n. 

For each alternative i, V 1• is assumed to be a linear 
function of appropriate explanatory variables. Thus 

M 

Vir. = ~ Ximnl'.l:'.m 

m=l 

where 

M =the number of explanatory variables, 

(2) 

x1 •• = the value of the m th explanatory variable for 
alternative i and individual n, and 

C'i,, = the coefficient of explanatory variable m. 

The values of the coefficients (or parameters) C'i,, ordi
narily are not known a priori and are estimated from 
observations of individuals' choices by using the method 
of maximum likelihood. Details of the estimation pro
cedure and the statistical properties of the estimated 
coefficients are described by McFadden (7). 

Denote the estimated coefficients by (il,,; m=l, 
:.·., M }. For each alternative i and individual n define 
Vin by 

- M 

Vin=~ XLmnam 
m=1 

(3) 

v1• is the estimated systematic utility function for alter
native i and individual n. V 10 is a random variable by 
virtue of its dependence on the random variables (a, J. 
Define 

Pin= exp(Vini/#, exp(Vjn) (i = l, ... , Jn; n = 1, ... , N) (4) 

P1• estimates the probability that individual n makes 
choice i and is the forecast of the choice probability that 
is used in applications of the logit model. Accordingly, 
the subsequent sections of this paper hare concerned with 
the development of ranges about the P 10 that are likely 
to contain the true choice probabilities P w 

Assume that the coefficients (a,} have been estimated 
by .the method of maximum likelihood by using a data 
set that consists of observations of N individuals' 
choices. Then for large N, the estimated coefficients 
(a.} are asymptotically jointly normally distributed with 

mean values (a,,} and covariance matrix A - 1, where 

N Jn 

Ars = - ~ ~ (Xirn - X.rn) (Xisn - X.,0 ) Pin (r,s = 1, ... , M) (5) 
n=l j=l 

and 

Jn 

X.rn = ~ Xjrnpjn (6) 
j=J 

In addition, the quadratic form 

M M 

QU!_,g_) =~ ~ (ai -CTj)Aij(aj -CTj) (7) 
i=l j=l 

tends asymptotically to the chi-square distribution with 
M degrees of freedom. 

Let one of the J. alternatives available to individual 
n be considered a numeraire, and de11ote this alterna
tive by t. Then the random variables ('V,n - Vt.; i=l ,' 
... , Jn; irft} are linear combinations of the asymptoti
cally normally distributed random variables (a.} and 
are themselves asymptotically jointly normally distrib
uted with mean values (V 1• - Vt.; i=l, ... , Jn; i I- t} and 
covariance matrix c. -1, where 

M M 

(C~1 )ij = ~ ~ (A-1),,(X1rn - XtrnHXjsn - X1snl (8) 
r=l s=J 

and (i, j=l, ... , J.; i, j I- t). In addition the quadratic 
form 

Jn In 

R(Yn, Ynl = ~ ~ (Cn)ij [(Vin - Yin) - (Vin - Ytnll 
i=1 j=) 

i,j=ft 

X [(Yjn - Ytnl -(Yjn - Y1nll (9) 

is asymptotically distributed as chi-square with J. - 1 
degrees of freedom. 

In practical applications of logit models, the prob
abilities Pin and, therefore, the matrix A in Equation 5 
are not known due to their dependence on the unknown 
coefficients (a,,}. Therefore, Pin is approximated by 
Pin in Equation 5. This approximation is used without 
further comment in the rest of this paper. 

In the following discussion the subscript n, which 
denotes the individual, will not be used unless needed 
to prevent confusion. The choice probabilities will be 
understood to apply to an individual. The explanatory 
variables Ximn will be assumed to have known, fixed 
values. All uncertainty in the choice probabilities will 
be due to their dependence on the unknown coefficients 
(a,, 1 

Confidence Intervals for Choice 
Probabilities in Binary Logit 
Models 

If there are only two alternatives in the choice set (J=2), 
then c-1 is a scalar. Therefore, if Z.12 is the 100 (1 - •12) 
percentile of the standard normal distribution, a 
100(1-£) percent confidence interval for V1 - V2 is 

(10) 

Denote the left- and right-hand expressions of inequali
ties by band B, respectively. Then, the expressions for 
the 100 (1-£) confidence intervals for P1 and P2 in the 
binary logit model are 

1/[ 1 + exp(-b)] "'P1 .; 1/[ 1 + exp(-B)] (11) 



and 

1/( 1 + exp(B)] .; P2 .; 1/( 1 + exp(b)] (12) 

These simple expressions for confidence intervals exist 
only for binary choice models. 

Joint Confidence Regions for the 
Choice Probabilities Basj:l(} on 
Asymptotic Sampling Distribution 

Equation 4 for the estimated choice probabilities can be 
rewritten as 

i>1 = exp(V; - v4[1 + ~ exp<Vi - v1)] (i -f t) (13) 

i\=1-Li>i (14) 
jft 

where t denotes the numeraire alternative. Equation 13 
defines a transform ation from the random variables 
ctl - Vt; jft} to the random variables (Pl ; ift}. This 
transformation has a nonsingular Jacobian matrix. Ac
cordingly, the joint yrobability-density func.tion of the 
random variables (f> 1; i;lt}, conditional on Pt, can be 
derived by using standard procedures (!!_). The result is 

-1 

f({i>i i-ft} I!\)= (21T)<'-n)/l ICIY' (fl Pi) 
J=! 

x exp{-(Yi) ~ ~ C1i [log(Pi/P1) - log(Pi/P1)] 
I J 

x [log(~/P1 ) - log(Pi/P,)]} (15) 

where \ C \ denotes the determinant of the matrix C and 
the quantity on the left-hand sid~ denotes tl1e joint 
probability-density :function of (P 1; i#°t}, conditional on 
Pt. • 

The conditioning of density function 15 on ,,Pt can 
be removed by noting frpm Equation 14 that Pt is com
pletely determined by (P1; i#}. Thus, t}.1e joint 
probability-density function of all of the P 1 (i=l, ... , J) 
is 

(16) 

where 6 is the Dirac delta function. Equation 16 con
stitutes a multivariate generalization of the univariate 
S6 distribution (9), The univariate distribution has been 
applied in a transportation context by Westin (10), who 
used the distribution to develop aggregate forecasts from 
a binary logit model. 

The distribution in Equation 16 is highly intractable. 
To develop a confidence region for P1 it i~ more con
venient to work with the distribution of the logarithms of 
the choice probabilities than with the distribution of the 
probabilities themselves. Specifically, Equation 4 im
plies that 

(17) 

Equations 9 and 17 together imply that the random vari
able R * defined by 

- 1 1 - -
R*(f, f) = L L ,Cii[log(Pi/P1) - log(Pi/P1)] 

i=i j=l I 
l,J!'t ' 

x [log(Pi/P,) - log(Pj/P,)] (18) 
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has the chi-square dis tl:ibution with J-1 degrees of free
dom. Let x2 ( £, K) denote the 100 (1 - £) percentile of 
the chi-square distribution with K degrees of freedom. 
Then, the inequaiity 

R*(f, f) .;X2(E, J - 1) (19) 

together with Equation 14 define a joint 100 (1 - £) per
cent confidence region for {P 1; i= l, ... , J}. Specifi 
cally , given estimated values of Cf> 1 ; i= 1, ... , J}, th.e 
confidence region consists of the set of all P 1 (i=l, 
... , M) such that Equation 14 and inequality 19 are 
satisfied. 

The confidence region defined by Equation 14 and in
equality 19 is not rectangular and, therefore, is difficult 
to use in practical forecasting . In particular, the con
fidence region does not directly yield constants b1 and B1 
(i=l, ... , J) such that b1 s:p1 s:B1 with a speciiied level 
of confidence. However, the confidence region can be 
used to test hypotheses about the values of the P 1• Let 
the null hypothesis be P1 = P1*, P2 = P2*, ... , PJ = PJ*, 
and assume that ,; P 1*= 1. Substitute P 1* for P 1 in Equa
tion 18 and compute R*. Then, the null hypothesis is 
rejected at the € significance level if R * fails to satisfy 
inequality 19. 

The method used to develop inequality 19 for individ
ual choice probabilities cannot be extended to functions 
of the choice probabilities, such as aggregate market 
shares and changes in choice probabilities caused by 
changes in e:ig>lanl\tory variables. The number of utility 
components V1 - Vt in such functions exceeds the number 
of dependent variables (e.g., aggregate shares, changes 
in choice probabilities) defined by the functions. There
fore, equations such as Equation 17, which define one
to-one mappings between the utility components and the 
dependent variables, do not exist, and chi-square dis
tributed quadratic forms analogous to R* cannot be de
veloped. Moreover, the sampling distributions of ag
gregate shares and changes in choice probabilities con
tain intractable integrals that prevent these distributions 
from being used to form confidence regions. 

Confidence Regions Based on a 
Linear Approximation 

Equation 4 for the estimated choice.probabilities can be 
expanded in a Taylor series about v, =Vi (j=l, ... , J) 
to obtain 

- J 

P; = P; + L (3PJ3Yi)(Yj - Yj) + /J. (i = 1, ... 'J) (20) 
J=! 

where A is a remaindel;: term. As the size of the sample 
used in estimating the Vi approacl1es infinity , A con
verges in probability to zero and P 1 converges in prob
ability to (11): 

- J -
pi= P; + L (3P;/3YiHYi - Vj) (21) 

j=l 

The random variables (V l - Vi} are asymptotically 
jointly normally distributed with mean values of zero 
and covariance matrix 0-1, where 

M M 
(0-1)jk =LL Xj,Xks(A-1 )rs (22) 

f';:; t s=I 

:i.nd A is the matrix defined in Equation 5. Therefore, 
P 1 is asymptotically normally distributed with mean 
value P 1 and variance 
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- J J 

var(P1) = ~ ~ (aPdaV;)(aPdaVk)(D-1 );k (i = I, ... , J) (23) 
j=l k=l 

It follows that an asymptotic 100(1-£) percent confidence 
interval for P 1 is 

(24) 

where Zc/2 is the 1-t:/2 percentile of the standarAd nor
mal distribution. The numerica~ value of va~ (P 1) can 
be approximated by substituting V for V and P for P in 
Equation 23. Equation 21, which is a well-known ap
proximation in mathematical statistics, formed the basis 
of Koppelman's analysis of errors in disaggregate 
models (5, 6). 

Equation24 can also be used to develop rectangular 
joint confidence regions for the PI" Let 11 be a 
100(1-t:/J) confidence region for P1 as given by Equation 
24. Then 

(25) 

Thus (p1; i=l, ... , J} is contained in the J-dimensional 
rectangular region P1 £ 11, ... , P J £ IJ and has a con
fidence level that equals or exceeds 100(1 - t:) percent. 

The confidence interval defined by inequalities 24 and 
the joint confidence region defined by inequality 25 can 
easily be generalized to apply to functions of choice prob
abilities, including aggregate market shares and changes 
in choice probabilities caused by changes in explanatory 
variables. The generalization consists of substituting 
the functions of interest in place of the choice probabili
ties in Equations 21-24. The generalization of Equation 
23 to aggregate market shares is given by Koppelman 
(5, 6). 
- The advantages of the confidence regions defined by 

inequalities 24 and 25 are substantial: The regions are 
rectangular, generalizable to functions of the choice 
probabilities, and computationally tractable. However, 
because of the regions' reliance on the asymptotic ap
proximation of Equation 21, the accuracy of the confi
dence levels associated with the regions can vary greatly 
and may be highly erroneous. This variation in accuracy 
is illustrated in the following examples. 

Consider the univariate, binomial logit model 

P; = exp(Cl'Xi)/[exp(Cl'Xi) + exp(Cl'X2 )] (i =I, 2) (26) 

where X1 is the explanatory variable of the model evalu
ated for alternative i and ll is a constant. Let a be the 
maximum likelihood estimator of ll, and let the sampling 
variance of a be rf. Assume that X1 = O, X2 = 0.1, a= 3, 
and a= 1. Then from inequalities 24, a 95 percent con
fidence interval for Pi is 0.378 s: P1 s: 0.474. The con
fidence level associated with this interval also can be 
computed without using approximation 21 by noting that 
0.378 s: Pis: 0.474 is equivalent to 1.041 s: ll s: 4.980. 
Using the asymptotic normality 0f the estimaled coef
ficient a, the confidence level associated with 1.041 s: 
tl s: 4.980 and, therefore, with 0.378 s: P1 s: 0.474 can be 
computed to be 95.12 percent. Thus, in this example, 
inequalities 24 yield an accurate estimate of the confi
dence level. 

Now let X2 = 1.0 while X1, a, and a remain unchanged. 
Then inequalities 24 yield -0.041 s: P1 s: 0.136 as a 95 
percent confidence interval for Pi. If the confidence 
level associated with this interval is computed directly 
from the asymptotic distribution of a without using the 
approximation 21, a confidence level of 87.5 percent is 
obtained. A true 95 percent confidence interval for P1 
is 0 s: P1 s: 0.205. Thus, in this case inequalities 24 
yield erroneous results. 

Nonlinear Programming Approach to 
Developing Confidence Regions 

A method for deriving joint rectangular confidence re
gions for multinomial logit-choice probabilities without 
using approximation 21 is described in this section. De
note the vectors of true coefficients (ll1, ... , ci,,) and 
estimated coefficients (ll1, ... , ~)by ll and a, respec
tively. Let Q(a, ll) b~ the quaqratic form deflned in 
Equation 7, and let x"(t:, M) be the 100(1 - £)percentile 
of the chi-square distribution with M degrees of freedom. 
Recall that P1 (i = 1, ... , J) is a function of ll. Given 
a and £, define b1(t:) and B 1(t:) for each i by the following 
nonlinear programming problems: 

bi(E) =min P;(Cl') (i =I, ... , J) (27) 

subject to Q(~,~ s: x"(t:,M) 

(28) 

subject to Q(a, ll) s: x2 ( £, M). The maximizations and 
minimizations are carried out over variations in 01. 

Then the inequalities 

bi (E) "pi " B; (E) (i = I, ... , J) (29) 

define a rectangular joint confidence region for the P 1 
with confidence level equal to or greater than 100(1 - £) 
percent (12). 

Another rectangular joint confidence region for the 
P 1 with the same confidence level can be computed by 
considering P 1 to be a function of the utilities (V 1, 
... , VJ). Let R (V, V) be the quadratic form defined 
in Equation 9. Then the solutions to the nonlinear pro
gramming problems 

b; (c) =min P;(Y) (i = I,. .. , J) (30) 

subject to R(~, ~) s: x2( €, J -1) 

B; (E) =max P; (Y) (i = I, ... , J) (31) 

subject to R(V, V) s: x2(t:, J-1) define joint lower and 
upper confidence limits for P1 with confidence level 
equai to or greater than 100(1-t:) percent. The maximi
zations and minimizations are performed over variations 
in V. The confidence limits thus defined are closer to
gether than the 100(1-£) confidence limits defined by 
problems 27 and 28 when J-1 < M. 

The confidence limits defined by problems 27 and 28 
can easily be extended to functions of the choice prob
abilities. The extension consists of using the relevant 
functions of the choice probabilities as the objective 
functions of problems 27 and 28. For example, if Pin 
is the probability that individual n chooses alternative i, 
the aggregate market share of alternative i in a popula
tion of N individuals is 

N 

Tii = (l/N) ~ P;n (i =I, ... , J) (32) 
n=l 

IIi is a function of ll through the P1.. Joint confidence 
limits b1 and B 1 for the IIi with confidence level equal to 
at least 100(1-t:) percent are given by 

b;(E) =min TI;@ (i =I, ... , J) (33) 

subject to Q(~, ~ s: x2 (t:, M) 

B;(E) =max 1;I(g) (i = I, ... , J) (34) 



subject to Q(a, OI) ,;; 2(E, M). 
The joint rectangular confidence region that results 

from the asymptotic linear approximation (inequalities 
24 and 25) can be obtained by solving the nonlinear pro
gramming problems 

b; Ce)= min P; CY) (i = I, ... , J) C35) 

subject to R(:Q°, ~) s: x2
( d J, 1) 

Bt Ce)= max P; CY) Ci= I, ... , J) C36) 

subject to R(V, V) ,;; x2(dJ, 1), where :EJ *(V) is the ex
pression obtmnect by exchanging P 1 with i>, and vJ with 
VJ in Equation 21, and b1 * and B1 *, respectively, are the 
lower and upper confidence limits for P 1 obtained by the 
linear approximation method. As the accuracy of the 
asymptotic linear approximation increases, problems 
35 and 36 approach equivalence with the problems 

b;'Ce) =min Pi CY) Ci= I, ... , J) C37) 

subject to R(y, ~) s: x2
( E/J, 1) 

B;' Ce) = max Pi CY) (i = I , ... , J) (38) 

subject to R(y, ~) s: x2 (E/J, 1). Problems 37 and 38 
differ from problems 30 and 31 only in the right-hand 
sides of their constraints. Comparison of problems 37 
and 3 8 with problems 30 and 31 and problems 2 7 and 2 8 
provides a means of determining whether the asymptotic 
linear approximation or the nonlinear programming 
method yields a smaller joint confidence region for the 
choice probabilities when the linear approximation is 
accurate. If J-l<M, the linear approximation yields nar
rower confidence limits for each of the P1 whenever 

If Ms: J-1, the linear approximation yields narrower 
limits whenever 

X2 Ce/J , l) <X2 Ce, M) 

C39) 

C40) 

Conditions 39 and 40 will be satisfied at normal con
fidence levels unless the number of coefficients M is very 
small or the number of alternatives J is either two or 
very large . For example, if M = 4 and E = 0.05, condi
tions 39 an,d 40 will be satisfied if 3 s: J s: 24. If M = 5 
and E = 0.05, the conditions will be satisfied if 3 s: J s: 
61. Thus, when the asymptotic linear approximation is 
accurate it will tend to produce smaller joint confidence 
regions than will the nonlinear programming method un
less the choice set either is large or contains only two 
alternatives. Numerical illustrations of the differences 
in the sizes of the linear approximation and nonlinear 
programming confidence regions are given in a later 
section. 

A BOUND ON THE ERROR IN THE 
CONFIDENCE LEVEL 

The errors in the linear approximation confidence levels 
of a binary choice model were previously computed ex
actly. This exact computation is not possible for models 
that have more than two alternatives in their choice sets. 
In multinomial models, nonlinear programming can be 
used to establish upper bounds on the errors in the con
fidence levels obtained from inequalities 24. 

Let P1* be defined as in problems 35 and 36, and let 
a* be the linE_(ar approximation estimate of the standard 
deviation of P1 obtained from Equation 23. Note that P1 * 
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depends on the true coefficients o: through V. For arbi
trary positive K and k define the following sets: 

s, CK)= {g_ l 1 r; -P1 I .;;K\ (41) 

S2 CK) = { g_ I I Pi - Pi I " K \ 

S3 CK) = { g_ I I Pt- Pi I"' Kl 

S4 (K, k) = { g_I I P;' - Pi I "K - k \ 

S5 CK,k)={g_llPt-P1 I"' K+kl 

C42) 

C43) 

(44) 

(45) 

The sets S1 through Ss all depend on the estimated 
coefficients a and therefore, are random events. Let 
Pr(S 1) be the-probability of the event Si (j = 1, ... , 5). 
Note that 

(46) 

and 

(47) 

Therefore, 

PrCS2 )"' Pr(S 5 ) + [I - Pr(S3)] (48) 

Also, 

(49) 

and 

CSO) 

Therefore, 

(S l) 

when probabilities 48 and 51 are combined, 

CS2) 

P1 * - P1 is asymptotically normally distributed with 
mean zero and standard .deviation a*, by virtue of Equa
tion 21. Let 4' denote the cumulative standard normal 
distribution function. Then asymptotically 

Pr(S4 ) = 2 <I> [(K-k)/a'] - I 

Pr(S5 ) = 2 <I> [(K + k)/a' J - I 

PrCSi) = 2 <I> (K/a') - I 

Inequality 52 and Equations 53-55 imply 

2{<l>[(K-k)/a'] -<l>(K/a'))-[l -Pr(S3 ) ] .;PrCS2) -Pr(Si) 

" 2 {<l>[(K + k)/a'] - <l>(K/a')} + [I - Pr(S3 )] 

CS3) 

(S4) 

(SS) 

(S6) 

Given a confidence level 100(1-E) percent, let K be 
given by the solution to 

(S7) 

Note that in the linear approximation method for develop
ing confidence intervals P1 * and P1 are considered to be 
equal. Therefore, 100(1-£) is the confidence level that 
the linear approximation assigns to the interval I P1 - P1 I 
~ K, whereas 100 Pr [SJ(K)J is the confidence level that 
is obtained if the linear approximation is not used. Thus, 
lOO [ Pr(S,) - Pr(S1)J is the error in the confidence level 
that is made by using the linear approximation, and in
equalities 56 bound this error. Specifically, for any k 
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(58) 

where 

F+cK, k) = 2{<l>[(K + k)/a' J - <I>(K/a'}} + [ I - Pr(S,)J (59) 

and 

F(K, k) = -2 {<I>[ (K- k)/a ' ] - <l>(K/a') l + [ 1 - Pr (S3 )] (60) 

In practice it is usually difficult or impossible to 
evaluate Pr(S3 ). Thus, inequality 58 is not directly use
ful. However, it is possible to establish a computa
tionally t ractable lower boW1d on Pr(S3 ). Given a num
ber 0 that satisfies 0<13 < 1, define k(O) by the following 
nonlinear programming problem: 

k(o) = max I P;' (~) - P; (~) I (6 1) 

subjed tu Q(a, ()() ,; x2(0, M), if M s J -1 and R(y, ~) ~ 
x2 (11 , J -1 ) otl1erw·1se 

Pr [ IP;' - Pi I .; k(o) ] ,. 1 - 5 

and 

Pr {S3 [k(o)l l > I - D 

Given Kand 0, define G+(K, II) and G-(K, II) by 

G+(K, ll) = 2 (<I>{[K +k(o))/a'} -<I>(K/a' )) + 8 

Table 1. Joint 95 percent confidence intervals for the choice 
probabilities in a three-alternative mode choice model. 

(62) 

(63) 

(64) 

Linear Approxi- Nonlinear Programming 

Alternative 

I 
2 
3 

p 

0.402 
0.312 
0.286 

mation Method Method 

b 

0.338 
0.262 
0 .234 

a 
0.467 
0.362 
0.337 

b 

0.338 
0.263 
0.236 

B 

0.470 
0.366 
0.341 

R 

1. 02 
1.02 
1.02 

Note: P =estimated choice probability; b =lower confidence l imit; B =upper confidence 
limit; and R =width of nonlinear programming confidence interval divided by width 
of linear approximation interval , 

Table 2. Joint 95 percent confidence intervals for the choice 
probabilities in a 20-alternatives destination choice model. 

Linea r Approxi- Nonlinear Programming 
mation Method Method 

Alternative p b B b B R 

1 0.022 0.017 0.027 0.017 0.028 1. 10 
2 0.029 0.023 0.035 0.023 0.037 LIO 
3 0.017 0.011 0.022 0.012 0.023 I. I I 
4 0.035 0 .027 0.043 0.026 0,044 1.10 
5 0 .024 0.013 0.035 0.015 0.039 1.13 
6 0 .034 0.029 0.039 0.029 0.040 1.09 
7 0.056 0.039 0.073 0.040 0.078 I. I I 
8 0.036 0.030 0.042 0.030 0.043 1. 10 
9 0.025 0.020 0.031 0.020 0.032 1.10 

10 0 .049 0.041 0.057 0.040 0.058 1.09 
11 0.111 0.075 0.147 0.077 0.157 1.11 
12 0.083 0.075 0.091 0.074 0.092 l.10 
13 0.089 0.066 0. 112 0.066 0.117 1.10 
14 0.066 0.056 0. 076 0.056 0.078 1.10 
15 0. 080 0.069 0. 09 0 0.069 0.091 1. 10 
16 0.077 0.064 0.089 0.064 0 .091 1.10 
17 0.018 0.010 0.025 0.011 0 .028 1.13 
18 0.063 0.052 0.074 0.052 0.075 1.10 
19 0.044 0.033 0.056 0.033 0.058 1.10 
20 0.043 0.037 0.049 0.037 0.050 1.10 

Note: P ""' estimated choice probability; b = lower confidence limit; B = upper confidence 
limit; and R = width of nonlinear programming confidence interval divided by width 
of linear approximation interval , 

G-(K, 5) = - 2 (<I> {[K- k(ll)] /a' l - <I>(K/a')) + 8 

Then 
G+(K, ll) ,. p+ [K, k(ll)] 

G-(K, ll) ;;. F [K, k(ll)] 

and 

I Pr(S2 )- Pr(Si) I" mjn {max[G+(K, ll), G'(K, ll)J} 

(65) 

(66) 

(67) 

(68) 

Inequality 68 defines a computationally tractable upper 
bound on the error in the confidence level obtained from 
inequalities 24. 

The degree to which the right-hand side of inequality 
68 overestimates the error made by linear approxima
tion 21 can be illustrated with the model of Equation 26 . 
It was shown that when X1 = O, X2 = 0.1, a= 3, and a= 1 
in Equation 26, the linear approximation assigns a con
fidence limit of 95 percent to a particular confidence in
terval for the coefficient ()(, whereas a confidence level. 
of 95 .12 percent is obtained for the same interval when 
the linear approximation is not used . In this case the 
linear approximation makes an error of 0.12 percent in 
the confidence level. When X2 = 1.0 and the other param
eters remain unchanged, the linear approximation as
signs a confidence level of 95 percent to an interval 
whose confidence level is found to be 87.5 percent when 
the linear approximation is not used. In this case, the 
linear approximation makes an error of 7.5 percent in 
the confidence level. Inequality 68 gives an upper bound 
on the error in the confidence level of 1.2 percent when 
X2 = 0.1 and 31 percent when X2 = 1.0. Although inequal
ity 68 considerably overestimates the error made by the 
linear approximation in both cases, the error estimates 
obtained from inequality tl8 do distinguish between a case 
in which the linear approximation is useful (e.g. , X2 = 
0 .1), and a case in which the linear approximation is not 
useful (e.g., X2 = 1.0). 

Inequality 68 can be extended to functions of the choice 
probabilities, such as aggregate market shares. The ex
tension is accom12lished by substituting the desired func
tions in place of Pu P1, and P1* in equations and inequali
ties 41-68 and by using the Q form of the constraint in 
problem 61. 

NUMERICAL EXAMPLES 

To illustrate and compare the linear approximation and 
nonlinear programming methods for deveioping confi
dence regions, both methods were applied to two multi
nomial logit models: a 3 -alternative model of work-trip 
mode choice (5) and a 20-alternative model of destina
tion choice fornonwork trips (13) . Typical values of 
the explanatory variables wereused in each case. The 
nonlinear programming problems 27, 28, 31, 32, and 
61 were solved by using the sequential unconstrained 
minimization technique (14). 

Joint 95 percent confidence limits for the choice prob
abilities of the mode choice model are shown in Table 1. 
The upper and lower confidence limits of the choice 
probabilities are, respectively, approximately 17 per
cent above and below these probabilities. The nonlinear 
programming confidence intervals were obtained from 
problems 30 and 31 and are approximately 2 percent 
wider than the linear approximation intervals. Inequal
ity 68 indicates that the errors in the confidence levels 
of the linear approximation confidence intervals consid
ered individually are less than 1.14 percent. Consider
ing the looseness of the bound provided by inequality 68, 
this suggests that the linear approximation achieves ac
ceptable accuracy in this example. 



Joint 95 percent confidence limits for the choice prob
abilities of the destination choice model are shown in 
Table 2. The upper and lower confidence limits of the 
choice probabilities are, respectively, roughly 10 to 40 
percent above and below these probabilities, depending 
on the alternative. The nonlinear programming confi
dence intervals are approximately 10 percent wider than 
the linear approximation intervals. Inequality 68 indi
cates that the errors in the confidence levels of the 
lir.ear approximation confidence intervals considered 
individually are less than 0.8 percent, again suggesting 
that the linear approximation is acceptably accurate. 

CONCLUSIONS 

This paper has described three methods for developing 
confidence regions for the choice probabilities of the 
multinomial logit model. One method involves a direct 
application of the asymptotic sampling distribution of 
the choice probabilities and yields joint confidence re
gions for these probabilities. The confidence regions 
are not rectangular and, therefore, are useful mainly 
for testing hypotheses about the choice probabilities. 

The other two methods are based, respectively, on a 
linear approximation of the relation between errors iil 
the coefficients of a model and erro1·s in the choice prob
abiUties, and on a nonlinear programming approach to 
developing confidence inte·rvals. Both of these methods 
produce joint rectangular confidence regions for the 
choice probabilities, and both can be ~pplied to functions 
of the choice probabilities, such as aggregate market 
shares and changes in choice probabilities caused by 
changes in explanatory variables. The linear 
approximation method also can be used to develop confi
dence intervals for individual choice probabilities. 

The linear approximation method is computationally 
simpler than-the nonlinear programming method . More
over, when the linear approximation on which the method 
is based is accurate, the linear approximation method 
produces a smaller confidence region for a given confi
dence level than does the nonlinear programming metl10d, 
unless the choice set either is very large or contains 
only two alternatives. However, the linear 
approximation method has the disadvantage that it can 
yield erroneous results. 

A p1·ocedure for bounding the error made by the 
linear approximation method has been described in this 
paper. However, this procedure is based on nonlinear 
programming, and the computational effort involved in 
implementing it can equal or exceed the computational 
effort involved in developing confidence regions by the 
nonlinear programming method. If there are a priori 
reasons for believing that the linear approximation 
method will yield accurate results in a particular applica
tion, then the computational simplicity of this method 
makes it preferable to the nonlinear programming 
method. However, if the accuracy of the linear 
approximation method is questionable and resources for 
implementing the bounding procedure are not available, 
then the nonlinear programming method will yield more 
reliable results than will the linear approximation 
method. 

The linear approximation and nonlinear programming 
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methods for developing confidence regions can be applied 
to other utility maximizing models with linear-in
parameters utility functions (e.g., multinomial probit) 
by substituting the choice probabilities of the desired 
model in place of the logit probabilities used in this 
paper. 
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