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The suggested vehicle kilometers of travel procedures 
are practical and are based on sampling theory. The 
random selection of days and locations to count obviates 
the need to apply specific adjustment factors. It is hoped 
that cities and states will apply these procedures in the 
development of their initial sampling plan. As informa­
tion on the reliability of vehicle kilometers of travel 
estimates are assembled, it will be possible to refine 
methods and pinpoint parameters. 

Further research is desirable to obtain information 
on the variance of the distribution of freeway, arterial, 
and local stree~ links. This information will make it 
possible to directly estimate the vehicle kilometers per 
link, thereby allowing greater clarity in sampling frames 
and procedures. 
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Empirical Comparison of Various Forms 
of Economic Travel Demand Models 
Chong K. Liew and Chung J. Liew, Department of Economics, 

University of Oklahoma, Norman 

Transportation planners are interested in assessing fu­
ture conditions of intercity travel demands and in know­
ing the passenger's response to a fare hike. Planners 
need to be able to forecast correctly how a reduction in 
air fare would affect the passenger demand for airlines 
and other competing modes such as rails ... nd buses. 

To answer these questions, we introduce several·dif­
ferent forms of demand equations, which were developed 
by many economists (1, 2). To be consistent with the 
theory of consumer behclvior, all demand equations 
should satisfy three basic properties: homogeneity, 
summability, and symmetry. Traditional demand analy­
sis in intercity travel demand (3-5) has never explic-
itly introduced the three properties in the formulation 
of demand equations. In many cases, the final form of 
reduced equations becomes a double-log form. The own 
and cross elasticities are a popular tool for the evalua­
tion of the passenger's response to the price hike. When 
the signs of the estimated parameters are inconsistent 
with their experiences, an inequality-constrained double­
log equation is often introduced to impose correct signs 
(4, 6). The market cross elasticities fail to correctly 
measure the substitutability among alternative travel 
modes because those elasticities include the income ef­
fects. 

We adopt five popular demand models: 

1. A double-log demand model, 

2. An inequality-constrained double-log demand 
model, 

3. A weighted Stone model (7), 
4. The Rotterdam system ofdemand equations (~, 

and 
5. A homogeneous translog demand model (!!_). 

The last three models have firm foundations in the theory 
of consumer behaviors, and the parameter estimation 
of the models has been done by imposing three basic 
properties (i.e., homogeneity, summability, and sym­
metry). The first two models have very loose ties with 
the theory of consumer behavior. 

One feature of our analysis is a comparative study 
that answers the following questions: (a) Does the choice 
of functional form matter in predicting substitutability 
among intercity travel demand? (b) Is it necessary to 
tie the model to the theory of consumer behavior to get 
a reliable result? and (c) Are market cross elasticities 
proper indicators of substitutability? 

Another interesting feature of our model is the use 
of a compensated demand concept. Conventional inter­
city travel demand models ( 1, 3-5, 9, 10) fail to introduce 
this theoretically important and usefuTconcept. The 
compensated demand concept can be used to correctly 
measure both consumer surplus and substitutability. 

Our demand analysis differs from conventional inter:.. 
city modal-split models in one important aspect. The 



conventional models employ trips as the variable of in­
terest whereas our model employs the distance of travel. 
Use of travel distance instead of trip simplifies con­
ceptual understanding of intercity travel-demand be­
havior by excluding trip-related variables, such as trip 
origin, destination, and length. Furthermore, travel 
distance, which is a continuous variable, directly ties 
with many policy-related variables , such as energy con­
sumption in transportation, accident frequency rates, 
and pollution control measures. 

THE MODELS 

We assume that a consumer has an additively separable 
utility function in terms of several group commodities 
such as food, intercity travel, clothing, energy, and 
leisure. The consumer maximizes his or her utility in 
terms of these group commodities, which have money 
and time constraints. From the first-stage maximiza­
tion, the consumer decides how much money (M) is re­
quired for the intercity travels and how much time (T} 
he or she can allocate for the intercity travels. 

At the second stage, the consumer allocates the in­
tercity travel budget (M) and travel time (T) on various 
travel modes so as to maximize his or her utility. The 
usual Lagrangian solutions provide the derived demand 
equations, which are expressed in terms of unit costs 
(Ptt i = 11 ... , n), speed (t1, i = 1, . . . , n), time {T), and 
money (M) budgets for the intercity travel demands: 

X; =Xi (P1, ... Pn , t1, .. . t 8 , M, T) (I) 

where i = 1, ... , n. Equation 1 is the usual starting 
point of empirical demand equations. We have selected 
four popular forms of demand equations. 

Double-Log Form 

The double-log demand equation provides various market 
elasticities directly from the estimated coefficients. 
However, there is no guarantee that all estimated coef­
ficients will have a right sign. To avoid such diffi­
culty, we introduce the inequality-constrained double­
log demand equation. 

Inequality-Constrained Double-Log Form 

We may impose positive signs on all cross elasticities 
and negative signs on all own elasticities. However, 
they may not satisfy the basic properties of the theory 
of consumer behaviors. 

Weighted Stone Model 

We impose the summability, homogeneity, and symmetry 
conditions on the Stone model (7). This can be done by 
multiplying the budget share to -Stone's demand equation 
and properly restricting the values of parameters: 

s;log X; = l: (bJ1 log PJ) + bm; log M* + btit + b,; log SR+ b01 (2) 
jeC 

with the restrictions 

l: bmi = 1 (summability) 
ieC 

bit = bii (symmetry) 

l: bil = 0 (homogeneity) 
l•C 

(3) 

(4) 

(5) 

where 

bu = S1 a11, 
bl! = S1 aH, 
bt1 = S1 at1, 
b. 1 = s 1 a, 1, 

bo1 = S1 ao11 
log M* =log M - ,;_ (sJ) log PJ, 

C = air, bus1;c or rail mode, 
s J = the money budget share of j th mode, 

SR = the ratio of airline speed to the bus-rail 
speed, and 

t = time trend. 
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aH, a.11 at 11 a, 11 and ao1 are the parameters of Stone's 
demand equation and all for j, i.:C are compensated ' 
elasticities. 

Rotterdam System of Demand 
Equations 

s;d log x1 = l: (bi1d log P;) + bm1d log M* +bu + b,;d log SR (6) 
jeC 

(with the same restrictions as in Equations 3-5) 

Homogeneous Translog Demand 
Equations 

Alternatively, we may begin with a specific form of in­
direct utility function. We assume that the consumer 
bas a homogeneous translog indirect utility function. By 
using Roy's identity, we have the following budget share 
equations~ 

s1 = -~ [bii log (pi/M) I + a, 1 log (SR) + a 11 t + a01 
jeC 

(7) 

The symmetry and homogeneity in Equations 4 and 5 
and normalization(~ aJ = -1) are imposed. 

DESCRIPTIONS OF DATA AND 
EMPIRICAL RESULTS 

Intercity passenger kilometers, prices per passenger 
kilometer, and number of passengers by each mode (air­
line, bus, and railroad) for 1947-1974 were collected 
from Transportation Facts and Trends (11) . The average 
aruiual speed of the airline se1·vice is obtained from the 
Handbook of Airline Statistics (12). The average speed 
of bus and rail is gathered fromFederal Highway Ad­
ministration (FHWA) and Amh'ak respectively. The 
speed data of the rail mode include not only intercity 
trains but also suburban trains, including waiting time, 
whereas the speeds of airline and bus are the ave1·age 
maximum speed of the trip, not including waiting time. 
Because of this factor, the difference in speed between 
the bus and rail modes is not great. Hence the speed of 
the airline mode versus the speed of the bus-rail mode 
is considered. 

An ordinary least-squares estimation was used to esti­
mate the parameters of the double -log model. Some of 
the estimated coefficients in the double-log model turn 
out to have wrong signs. For example, several market 
cross elasticities turn out to be negative. 

We impose correct signs on the parameters of the 
double-log demand model and estimate the parameters. 
We use an inequality-constrained least-squares estima­
tion method ( 13, 14) . 

These two models fail to satisfy the homogeneity, 
symmetry, and summability conditions. We impose the 
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three conditions on Stone' s model, the Rotterdam sys ­
tem of demand equations and the homogeneous tr ans­
log demand mcxlel s . Parameter s of these models are 
estimated by the nonlinear maximum-likelihood estima­
tion method. Table 1 gives the results of parameter 
estimations. 

compensated cross elasticities, income elasticities , and 
own p:1·ice elastici ties. The first two models -double ­
log (DL) model and inequality-cons trained double -log 
(ICDL) model-provide r ather incons is tent empi rical re ­
sults. 'T'he ma,rk t ·os s elasticities, which include the 
income effe ts subs tantially differ, depending on the 
choice of the models . The results of demand elastici­
ties are given in Table 2. 

The latter three model s -weighted Stone (WS) , Rot­
terdam (RD), ru1d the hom.ogeneous trans log (HTD) -pro­
vide fairly consistent empil•ical r esults, particulal'ly in 

Table 1. Parameter estimation. 

Inequality-Con-
Double Log strained Double Log Weighted Stone 

Equation Parameter t-Value Parameter t-Value Parameter 

Air 
Air fare -1.08 -20.4 -1.04 -7.53 -0.139 
Bue fare 0.084 1 1.36 0.212 1.32 0.039 0 
Rail fare -0.063 2 -2.42 0.010 0 - 0.099 8 
Money budget 1.15 13.3 1.02 5.12 0.836 
Time trend -0.006 77 -5.71 - 0.008 45 -2 .23 -0.003 96 
Speed ratio 0.153 5.14 0.186 2.19 0.120 
Intercept 0.005 93 0.035 0 0.397 0.892 -0 .277 
R' 0.998 0.997 0.996 
D-W etatie-

tic 1.34 1.43 0.646 
Bue 

Air fare 0.446 1.39 0.338 1.13 0.039 0 
Bue fare -0.859 -2 .29 -0.965 -1.93 -0.044 7 
Rail fare 0.326 2.06 0.298 1.49 0.005 73 
Money budget -0.207 -0.394 0.010 0 - 0.046 7 
Time trend 0.002 91 0.403 0.003 75 0.311 0.000 059 5 
Speed ratio 0.508 2.61 0.459 1.84 -0.032 8 
Intercept -5.01 -4.87 -4.98 -3.00 -0.082 1 
R' 0.712 0.711 0.914 
0-W etatie-

tic 1.16 1.13 0.845 
Rail 

Air fare 0.537 1.59 0.463 1. 54 0.099 8 
Bus fare -0.650 -1.64 0.010 0 0.005 73 
Rail fare -0.666 -4 .00 -0.585 -2.23 -0. 106 
Money budget 0.271 0.491 0.010 0 -. 0.117 
Time trend 0.048 8 6.45 0.003 76 4.01 -0.003 79 
Speed ratio -1.26 -6.61 -1.13 -3 .65 0.136 
Intercept -2.84 -2.63 -1.20 -0 .980 -0 .415 
R' 0.869 0.848 0.803 
0-W statie-

tic 1.53 1.20 0.784 
Log of likeli-

hood func-
ti on 401.0 

•Denotes the bounded value. 

Table 2. Demand elasticities. Inequality 

All five models predict the own market price elastic-

Homogeneous 
Rotterdam Tranelog 

t-Value Parameter t-Value Parameter t-Value 

70.9 -0.120 -16.0 -0.045 7 -2.87 
16.3 0.031 2 5.05 0.012 7 1.94 
75.0 0.089 3 11.6 0.033 0 2.53 

141.0 0.857 55.3 
-5 .86 -0.006 09 -2 .88 0.003 35 4.97 

5.35 0.130 2. 75 -0.136 6.20 
-10.7 - 0.642 -20.2 

0.859 0.607 

1.34 0.784 

16.3 0.031 2 5.05 0.012 7 1.94 
-6.44 - 0.032 3 -4.02 -0.005 54 -0. 786 

1.09 0 .00110 0.157 -0.007 19 -1.93 
2.27 0.031 8 2.30 
0.141 0.000 553 1.36 0.000 195 0.833 

- 2.81 0.001 66 0.194 -0.015 7 -2.79 
-4.62 -0.027 5 -2. 71 

0.041 7 

1.68 

75.0 0.089 3 11.6 0.033 0 2.53 
1.09 0 ,001 10 0.157 0.007 19 -1.93 

- 25 .3 -0.090 4 - 7.90 -0 .025 8 -2 .26 
7.26 0.111 5.33 

- 5.82 0.003 05 2.76 0.003 54 -6.17 
6.56 -0 .075 8 -3 .12 0.152 7.96 

-16.3 -0.330 -12.2 
0.386 0.706 

1.62 0.979 

388.8 248.3 

Weighted Homogeneous 
Elasticities Double-Log Constrained Stone Rotte rdam Trane log 

Own price 
Air -1.08 -1.04 -1.00 -1.01 -0.945 
Bus -0.859 -0.965 -1.15 -0.830 -0.863 
Rail -0 .666 -0.585 -0.979 -0 .846 -0.790 

Income 
Air 1.15 1.02 1.00 1.03 1.00 
Bus -0 .207 0.010 0 1.15 0.785 1.00 . 
Rail 0.271 0.010 0 0.951 0.902 1.00 

Speed 
Air 0.153 0.186 0.144 0.156 0.163 
Bus 0.508 0.459 -0.810 0.041 0 0.390 
Rail -1.26 -1.13 1.11 -0. 616 -1.24 

Crose elasticity 
Air-bus fare 0.084 1 0.212 0.006 2 -0.004 40 -0.015 2 
Air- rail fare -0.063 2 0.010 0 -0 .004 0 - 0.020 0 -0.039 4 
Bus-air far e 0.446 0.338 0.002 0 0.114 -0.315 
Bus- r ail fare 0.326 0.298 0.000 45 -0.069 4 0.178 
Rail-air fare 0.537 0.463 0.016 0 - 0.028 0 -0.268 
Rail-bus fa re - 0.650 0.010 0 0.008 1 -0 .027 6 0.058 5 

Compensated 
cros s elasticitie s 

Air-bus fare 0.131 0.253 0.046 7 0.037 3 0.025 2 
Air- rail fare 0.077 8 0.135 0. 119 0.107 0.083 5 
Bus-ai r fa re 0.273 0.346 0.963 0.770 0.522 
Bus- r ail fare 0.301 0.299 0.141 0.027 2 0.301 
Rail-air fare o. 764 0.471 0.811 0.726 0.568 
Rail- bus fare -0.639 0.010 4 0.046 6 0.008 94 0.098 9 



ity of airline demand to be near 1: -1.08 for DL model 
-1.04 for ICDL model, -1.00 for WS model, -1.01 for 
RD model, and -0.945 for HTD model. The bus and rail 
own price elasticities vary, depending on wbich model 
we choose. WS predicts as high as -1.15 for bus and 
-0.979 for rail services, whereas lCDL predict as low 
as -0.585 for rail service. RD predicts -0.830 for bus. 
All five models correctly predict the sign of the own 
p1·ice elasticities or au three modes. The income elas -
ticities of intercity airline demand l'ange from 1.00 to 
1.15. WS RD, and HTD predict the income elasticities 
of i·ailroad demand to be very close to 1.0. DL and ICDL 
appear to predict very low i11come elasticity of rail. The 
income elasticity of bus demand varies from 1.15 by WS 
to 0. 785 by RD. 

A ch:rnge in price of a transportation mode affects not 
only the demand for that mode but also U1e dema11d for 
the alternative modes. The latter is measured by the 
cross elasticities. However, the ma1·ket cross elastic­
ities do not correctly measure the substitutability 
among alternative modes since the elasticities include 
the income effects. We notice that the empirical results 
of the market cross elasticities become substantially 
different dependit1g on the choice of the model. For ex­
ample, the cross elasticity of airline price with respect 
to i·ailroad demaad va1·ies from 0.537 by DL model to 
-0.268 by HTD model. The unstable nature of the mar­
ket cross elasticities seems to originate from the un­
stable income effects. As we take income effects out 
and constl'ain the homogeneity, summability, and sym -
metry conditions, the compensated cross elasticities 
(predicted by different models) become relatively close 
values. 

The compensated cross elasticities that exclude the 
income effect correctly measure U1e degree of substitu­
tion among alternative transportation modes. The RD 
model bas all negative cross elasticities except one case. 
However, when we take the income effect out, all com­
pensated cross elasticities become positive, which im­
plies that ail·line, bus, and rail intercity demands have a 
substitutional relationship. Similar results are obtained 
in the WS and HTD models. 

Since the market cross elasticities do not correctly 
provide the degree of substitutability, our discussion 
concentrates on the compensated cross elasticities. WS, 
RD, and HTD predict that a chru1ge in air fare causes 
a significant change in demand for bus and rail. The 
models predict that a reduction in air fare could severely 
reduce the demand for intercity rail and bus travel. For 
example, WS model predicts that a 1 percent decrease 
in air fare could cause a 0.963 percent dec1·ease il1 bus 
travel clema11d and 0.811 percent decrease il1 rail travel 
demand. RD model predicts that the decreases will be 
0. 770 percent for bus travel demand and 0. 726 percent 
for rail travel demand when the air fare drops by 1 per­
cent. The HTD model predicts slightly lower percent­
ages, 0.522 for bus demand and 0.568 for rail demand. 

Neither the change ill bus fare nor the change in rail 
fare significantly affects the intercity ti·avel demand for 
airline services. Passengers are more sensitive to air 
fare change than to bus fare or rail fare change. 

The speed ratio elasti·City of the airline equation ranges 
from 0. 144 by the WS model to 0 .186 by the ICD L model. This 
implies that, as the speed of airline service increases 
1 percent faste1· as compa1·ed with the bus-rail speed, 
it attracts more passengers to the airline industry by 
0.144percent, accord.ingtotheWSmodel. As is expected, 
the rail industi·y loses its passengers. All models ex­
cept the WS model forecast that the rail industry is the 
major victin1 of air speed increases. For example, a 1 
percent speed iucrease in the airline industry decreases 
the rail passenger demand by 1.26 percent (DL model), 
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by 1.13 percent (ICDL model), by 0.616 percent (RS 
model) and by 1.24 percent (HTD model), respectively. 
However, the air speed impact on bus becomes positive 
except for the WS model. The elasticities range from 
0.508 by DL to 0.041 by RD. Possible sources of the 
w1·ong sign are due to tl1e model specification e1-rors 01· 
partly due to the errors from aggregation. Bus is 
mainly used for shorter trips . A data stratification by 
trip distance or by trip pw·pose or inclusion of automo­
bile could improve the empirical results. 

CONCLUSION 

Our empirical results indicate that the family of demand 
equations that are imposed by the homogeneity, sum­
mability, and symmetry conditions provides more stable 
results on the compensated cross elasticities than those 
equations that do n:ot have such conditions imposed. In 
general, tlle market cross elasticities axe very unstable 
and they vary depending on the choice of functional forms, 
even when we impose the tlu·ee basic conditions on their 
demand equations. 

Our conclusion is that it is desirable to impose the 
homogeneity, summability, and symmeti·y conditions. 
The market cross elasticities are theoretically improper 
and empirically unstable in measuring the substitutability 
of inte1·city travel modes. Theoretically sound and em­
pirically stable indicators of substitutability a.re the 
compensated cross elasticities. When the three condi­
tions are imposed, the choice of functional forms yields 
minimal vai-iation on the compensated .cross elasticities. 
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Area Transportation Study 

This paper desc1•ibes the mode-split model used by the 
Chicago Al·ea Transportation Study (CATS). The model 
was formulated in 1972 and was first used In mid-1973 
for the evaluation of the 1995 regional transpol'tation 
plan (!_, ~. Since then, the model has been used as an 
operational tool (3) and has been refined, recalibrated, 
and validated. The current operational version of the 
model is described in this paper. 

CHARACTERISTICS OF THE MODEL 
AS A PLANNING TOOL 

The mode-split model operates as an integral part of 
the CATS transportation planning process. The major 
products of the model are estimates of the number of 
trips by automobile and transit for each origin zone and 
trip purpose. If necessary, these estimates are further 
processed through the CATS planning models, including 
mode-specific trip-distribution models, to provide 
estimates of volumes on specific roads and transit lines. 
In other cases, where such detailed information is not 
required, estimated changes in transit and highway 
demand (in response to proposed policies) a1·e directly 
applicable to the evaluation of those policies. 

As with most mode-split models, the CATS model is 
sensitive to the levels of service provided by various 
transportation modes and to the socioeconomic attributes 
of travelers. However the model is unique in its em­
phasis on the effect of access and egress service on the 
demand for transit. The model provides for an accu1·ate 
description of the access and egress service, con­
sidering both the availability of various submodes and 
the variations in the level of service within zones due 
to spatial dispersion of trip ends. The model's ca­
pabilities make it possible to describe accurately a wide 
range of policies related to ilnp1·ovements in access 
and egress service and to estimate the effects of those 
policies on travel demand. 

STRUCTURE AND OPERATION 
OF THE MODEL 

The CATS mode-split model may be described as an 
application of Monte Carlo simulation principles to 

travel-demand analysis. It may also be described as 
an aggregation procedure, which facilitates the ap­
plication of disaggregate mode-choice models (!, ~ by 
the use of aggregate data. 

straightforward applications of mode-choice models 
in planning ue done in the following way. Data are 
collected on a sample of the population under analysis, 
including (fo1· each trip) i·elevant socioeconomic char­
acteristics, service attributes, and chosen mode. The 
sum of the individual choices, properly weighted, pro­
vides an w1biased estimate of the population's modal 
shares. The sample is used to estimate a mode-choice 
model. A policy to be analyzed is introduced into the 
sample as changes in the level of the attributes that are 
affected by the proposed policy, and the i·esulting 
changes in mode-choice probabilities are calculated. 
The changes in the sum of those probabilities are used 
as estimators of the expected changes in modal shares 
of the population. 

Many successful applications along these lines have 
been documented (~-!!); howeve1', this method has a 
number of deficiencies that se1,iously limit its appli­
cability. The most obvious are the cost and time re­
quil'ed to collect the data and the inability to sample 
future populations. Other deficiencies include the dif­
ficulties of identifying the population affected by a given 
policy and of selecting an effective sample. 

The CATS mode-split model uses the same con­
ceptual approach; the difference is that a pseudosample 
rather than a real sample is used. The pseudosample 
is generated by sampling the frequency distribution of 
the attributes of the population unde1· analysis. This 
approach permits full exploitation of the power of dis­
aggregate models without a need for a real sample. 
The procedures for creating the sample a1:e designed 
to operate not only within the limitations imposed by 
considerations of data availability and analysis costs 
but also with the provision of means for accurately 
describing a wide range of proposed policies. 

Operation of the Model 

The heart of the CATS mode-split model is a procedure 
that repeatedly generates individual samples and mode-




