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Equilibrium Trip Assignment:
Advantages and Implications for Practice

R. W. Eash, Chicago Area Transportation Study

B. N. Janson and D. E. Boyce, University of Illinois, Urbana-Champaign

During the past 10 years the problem of assignment of vehicles to large,
congested urban transportation networks according to the principle of
equal travel times has been solved and an efficient, convergent computer
algorithm devised. Although the algorithm is available in the Urban
Transportation Planning System, many practitioners continue to use the
heuristic trip-assignment algorithms devised in the early 1960s. As in
many other cases, this slow implementation of a new, improved algorithm
appears to come from (a) a lack of understanding of its basic concepts,
(b) an unfamiliarity with the computer program for applying the algo-
rithm, and (c} a lack of evidence concerning the new algorithm’s perfor-
mance in large-scale applications. These three issues are addressed in this
paper. Based on the experience with its implementation on a large net-
work, it is recommended that equilibrium trip assignment should always
be used instead of iterative assignment. Better results, as judged by the
criterion of equalizing travel times for alternative paths between each
origin-destination pair, will always be obtained with the equilibrium algo-
rithm for any given amount of computational effort. Which method best
replicates the observed vehicle flows may depend on the detail of the
network, the adequacy of the capacity-restraint functions, and the time
period of the assignment (24 h or peak period).

Assignment of vehicles to large, congested urban trans-
portation networks has been a problem of interest to
transportation planners and researchers for over two
decades. Initially, heuristic or approximate solution
techniques were developed for the problem. Later,
several convergent algorithms were devised and some
were tested, culminating in an International Symposium
on Traffic Equilibrium Methods at the University of
Montreal in 1974 (1-3).

Despite these theoretical and practical developments,
relatively few applications are being made of equilib-
rium assignment, despite its availability in the Urban
Transportation Planning System (UTPS) (4) and its de-
sirable attributes. Two reasons are apparent for this
situation,

1. Practitioners have experienced difficulty in under-
standing the formulation of the equilibrium-assignment
problem and the algorithms devised to solve it, and

2, Practitioners were uncertain about whether the
algorithms were superior to competing algorithms, such
as iterative and incremental assignment, for large
networks.

This paper will explain the equilibrium-assignment
problem and the algorithm in terms that are familiar to
practitioners and report on a large-scale, prototype
implementation of the model. The implementation pro-
vides convincing evidence that equilibrium assignment
is the method of choice for congested networks. The
shortcomings of existing capacity-restraint functions
and the weaknesses of 24-h assignments are evident
from this application.

The problem of trip assignment in the sequential
urban travel-forecasting process is how to assign (or
allocate) a specified number of vehicles (or persons) to
the paths taken from each origin to each destination. The
path chosen by each traveler is generally assumed to be
the path that minimizes his or her journey time, or
some combination of time and cost. All travelers are
assumed to have identical perceptions of travel time
and cost. If the network is congested, that is, if each

link's travel time depends on the flow of vehicles on that
link, then the following equilibrium problem results:
Find the assignment of vehicles to links such that no
traveler can reduce his or her travel time from origin
to destination by switching to another path. These equi-
librium conditions were stated by Wardrop (5) and are
commonly referred to as the Wardrop conditions.

The user-equilibrium problem has been stated mathe-
matically in several forms: the conceptually simplest
form is stated below. Let

v, = number of vehicles per unit time on link a of
the network;

S.(v,) = generalized travel time on link a, which in-
creases with flow v (a typical congestion func-
tion is t,[1 + 0.15(v,/c.)*] where t, is the
travel time with zero flow, and c, is a mea-
sure of the capacity per unit time of link a);

i; = number of vehicles of i to j on path r; and
1} = 1 if link a belongs to path r from i to j, 0
otherwise,

If the trip matrix (T,,) is given, then the equilibrium

assignment of trips to links may be found by solving the
following nonlinear programming problem:

min 2 f"a S.(x)dx (N
* Jo

subject to

v, = ZTZ S X )
Il P

?Xi'j =Tj; 3)

Xjj=0 4)

For all links a in the network; i =1,...N;j=1,...N;
and N = number of zones.

This is a nonlinear programming problem with a con-
vex objective function subject to two sets of linear con-
straints and two sets of nonnegativity conditions. Con-
straint set Equation 2 states that the flow of vehicles v,
on link a is equal to the sum of the flows from all zones
i to all zones j that use that link. Constraint set Equa-
tion 3 states that the number of vehicles from zone i to
zone j over each path used must sum to the specified
number of trips (T1 J). Constraint set Equation 4 ensures
that no flow is negative.

Now consider the objective function (Equation 1),
S.(x) is the link-congestion or capacity-restraint function
for link a. The integral term is the area under the link-
congestion function from zero flow to flow v,. In Figure
1, S, is the average travel time. The area under curve
S, has no (known) interpretation. Why, then, should we
be interested in minimizing the sum of these areas over
all links? The answer to this question is conceptually
simple. The link flows for which this objective function
achieves its minimum value are those that satisfy the
equilibrium conditions stated by Wardrop.

This point can be readily grasped if we consider a
highly simplified example (6). Let A and B be two links



that connect node 1 to node 2, as shown in Figure 2a. A The intersection of these two functions gives the equi-
total of 8000 vehicles travel from node 1 to node 2. librium travel time of 63.3; the equilibrium flows are

To assign these vehicles to the two links, plot the 2153 vehicles on link A and 5847 vehicles on link B.
congestion for link A, mark off the required flow (8000), This graphical solution may be stated mathematically
and plot the second function in the reverse direction. as follows:

Figure 1. Congestion function S(x)

for a given link.
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VA Vi
min f Sa(x)dx + f Sp (x)dx 5)
() 0

subject to
va + v = 8000 6)
va,vp=0 @)

Note that the area under the congestion functions in Fig-
ure 2b is equal to 220 674, which is the value of the ob-
jective function.

Now, consider any other solution than the one given
by the intersection of S, and S,, say v, = 2000 (see Fig-
ure 2¢). The area under the two congestion functions for
this solution is the same as in 2b plus the small
triangular-shaped area that lies between 2000 and
2153, which has an area of 1326, Thus all solutions
other than the equilibrium solution have a larger value
of the objective function than does the equilibrium solu-
tion. Hence, the solution that minimizes the sum of the
integrals of the congestion functions for all of the links
is the equilibrium solution.

ALGORITHM FOR EQUILIBRIUM
ASSIGNMENT

Next, consider how we solve the equilibrium-assignment
problem for large networks. The equilibrium-
assignment algorithm, which is commonly used, has

a structure somewhat similar to the version of the iter-
ative assignment in the Federal Highway Administration
(FHWA) PLANPAC computer programs (7). To illus-
trate these similarities and differences each of three
algorithms is outlined, and a simple three-link example
is solved.

Equilibrium-Assignment Algorithm

Given (a) a network with congestion functions for each
link, (b) a trip matrix to be assigned, and (¢) a current
solution for the link loadings (v,), perform the following
steps:

1. Compute the travel time on each link S,(v,) that
corresponds to the flow v, in the current solution;

2. Trace minimum path trees from each origin to
all destinations by using the travel times from step 1;

3. Assign all trips from each origin to each destina-
tion to the minimum path (all-or-nothing assignment);
call this link loading (w,);

4, Combine the current solution (v,) and the new as-
signment (w,) to obtain a new current solution (v.) by
using a value )\ selected so as to minimize the following
objective function:

P f " 8,(x)dx ®
0

where v, = (1 - A) v, + Aw,; and
5. If the solution has converged sufficiently, stop;
otherwise return to step 1.

Initially, a current solution can be obtained by per-
forming an all-or-nothing assignment based on free-flow
times, This initial assignment is then used to compute
revised travel times to perform another all-or-nothing
assignment (steps 1-3). The two assignments are then
combined by using a weight )\ selected so as to give a
new solution that minimizes the objective function of the
nonlinear programming problem. This parameter can
be readily determined by use of a one-dimensional
search technique.

The change in the value of the objective function pro-
vides a measure of the convergence of the algorithm.
As the change approaches zero, so does the value of the
parameter A\. Thus, the equilibrium assignment is a
weighted combination of a sequence of all-or-nothing
assignments. The algorithm is not heuristic, that is,

a method found to give good solutions. Rather, it is the
Frank-Wolfe method for solving nonlinear programming
problems applied to the equilibrium-assignment prob-
lem. LeBlanc (3) gives a rigorous derivation of the
algorithm, -

Now, consider a very simple example of the use of
the algorithm. A three-link network is defined by adding
link C to the network in Figure 2:

Se = 21[1 +0.15(v./1500)]1% )

Even this simple problem cannot be solved graphically.

The results of applying the algorithm to this problem
are given in Table 1, Five iterations are given after an
initial solution. For each iteration, the all-or-nothing
assignment is given on the first line followed by the new
solution on the second line. The travel times given for
each link are the values of the congestion functions for
the link flows shown, The values of the objective func-
tion and XA were given on the right-hand side of the table,

The initial solution assigns all 8000 vehicles to link
A. Inthe first iteration, all vehicles are assigned to
link B, which results in the same combined solution
shown in Figure 2. Next, all vehicles are assigned to
link C, which results in the first good approximation of
the equilibrium solution and has an objective function of
174 807, TIterations 3-5 refine this solution by making
small adjustments on the order of 1 percent or less. One
could effectively stop the algorithm after iteration 3
since a very small decrease in the objective function
and a small value for A were found. Iterations 4 and 5
are given only to indicate how the algorithm continues
to converge.

Table 1. Equilibrium assignment.

Link A Link B Link C Equilibrium
Objective

Iteration Step Flow Time Flow Time Flow Time Function A
Initial solution 8000 9231.0 (1] 20.0 0 21.0 14 864 600
1 3 0 8000 0

4 2153 63.3 5847 63.3 0 21.0 220 674 0.731
2 3 0 0 8000

4 1598 29.7 4341 33.2 2060 32.2 174 807 0.258
3 3 8000 0 0

4 1666 32.3 4296 32.6 2039 31.8 174 697 0.011
4 3 0 0 8000

4 1659 32.0 4277 32.4 2065 32.3 174 687 0.004
5 3 8000 0 0

4 1666 32.3 4273 32.3 2062 32.2 174 686 0.001




Iterative Assignment

As a further basis for understanding the equilibrium-
assignment algorithm, the FHWA version of iterative
assignment is now sketched (7, pp. 189-193). The algo-
rithm requires the same input information as does equi-
librium assignment. To execute the algorithm, perform
four iterations of the following sequence and compute the
mean of the four all-or-nothing assignments.

1. Compute the travel time on each link 8,(v,) cor-
responding to the flow v, in the current solution;

2. Compute a weighted mean travel time (S.), which
consists of the current travel time [S.(v.)] and the
travel time (8.) from the previous iteration:
8= 0.758, +0.255,(v,) (10)

3. Trace minimum path trees from each origin to
all destinations by using the weighted travel times S;’
from step 2;

4. Assign all trips from each origin to each destina-
tion to the minimum path (all-or-nothing assignment);
call this link loading v,; and

5. Return to step 1 and replace v, with v,.

The use of a weighted mean travel time is an attempt to
prevent the method from oscillating widely in computing
minimum paths. Note, however, that the link loadings
are not averaged until the final step, although the link
travel times reflect implicitly the all-or-nothing assign-
ments at each iteration.

The same three-link example is solved by using this
algorithm in Table 2. The new travel times are given
in each iteration as a basis for determining the next as-
signment. Following four all-or-nothing assignments,
the mean flow is computed. The objective function of
the equilibrium-assignment problem is computed for
each iteration and for the final solution. This function
provides a useful measure for comparison of the equi-
librium and iterative assignments. The final value of
the objective function for the iterative assignment has a
somewhat higher value than for the equilibrium assign-
ment, Thus the iterative assignment is not as close to
true equilibrium. This conclusion can also be drawn by

comparing the travel times that correspond to the final
link loading in Tables 1 and 2. At equilibrium, these
travel times should be equal.

Another weakness of the iterative-assignment algo-
rithm is that there is no reliable rule about how many
iterations to perform or what weights to use in com-
puting the mean travel times. Had one more iteration
of the algorithm been performed (or one less), the re-
sult would have been much different. With the equilib-
rium procedure, the overall result always improves
with each iteration; the number of iterations depends
only on how much improvement is desired.

Incremental Assignment

Another heuristic assignment procedure that has been
widely used is incremental assignment., There are two
types of incremental loading of a network. In the first
type each origin-destination flow is divided into n equal
parts, typically four. Each part is assigned by using
all-or-nothing assignment; the link-loading and travel
times are updated following the assignment of each in-
crement. Following the assignment of the nth part, the
link loadings are summed to determine the final loading.
An alternate method developed by the Chicago Area
Transportation Study (CATS) is the tree-by-tree method.
In this case each row of the trip table is assigned com-
pletely by all-or-~nothing assignment; the travel times
are updated following each assignment.

Table 3 gives the results of the first incremental
method applied to the three-link example, Four incre-
ments are used. By coincidence the final result happens
to be the same as that given by the iterative method.
The objective function value applies only to the final so-
lution in this case., As with iterative assignment, the
number of increments is an important determinant of
the quality of the solution. In this case, however, the
quality tends to improve as the number of increments
increases.

In all three methods, a similar number of all-or-
nothing assignments are performed to obtain a solution.
No conclusions should be drawn about the relative qual-
ity of the solutions among the three methods, since such
a small example could be quite misleading. The purpose
here is only to educate and to compare the actual calcu-

Table 2. FHWA iterative assignment.

Link A Link B Link C Equilibrium
Objective
Iteration Step Flow Time Flow Time Flow Time Function
Initial solution 8000 9231.0 0 20.0 0 21.0 14 864 000
1 2 2319.0 20.0 21.0
4 0 15.0 8000 1717 0 21.0 402 726
2 2 1743.0 57.9 21.0
4 0 15.0 0 20.0 8000 2570.0 4 245 796
3 2 1311.0 48.4 658.3
4 0 15.0 8000 171.7 1] 21.0 402 726
Mean flows and
corresponding
travel times 2000 51.0 4000 29.5 2000 31.0 177 967
Table 3. Incremental assignment. Link A Link B Link C Heuilibriom
Objective
Increment Step Flow Time Flow Time Flow Time Function
1 Assignment 2000 0 0
Sum, time 2000 51.0 0 20.0 0 21.0
2 Assignment 0 2000 0
Sum, time 2000 51.0 2000 20.6 0 21.0
3 Assignment 0 2000 0
Sum, time 2000 51.0 4000 29.5 0 21.0
4 Assignment 0 0 2000
Sum, time 2000 51.0 4000 29.5 2000 177 967

a0




lations performed in each case.

APPLICATION OF AN EQUILIBRIUM-
ASSIGNMENT ALGORITHM

This section presents an application of equilibrium as-
signment to a large-scale trip table and network by
CATS. The only other report of such an application

was made by Florian and Nguyen (8) for a medium-sized
network for Winnipeg. Applications have also been made
by the Los Angeles Regional Transportation Study, but
no results have been published.

The Equilibrium-Assignment Program

A program to perform equilibrium assignment was de-
veloped cooperatively by CATS and the University of
Illinois, Urbana-Champaign. This program uses mod-
ules of the FHWA System-370 PLANPAC program bat-
tery, including programs for tree building, network
loading, and network travel-time updating. The
equilibrium-assignment program, which incorporates
the existing PLANPAC programs, is illustrated in Fig-

Figure 3. Equilibrium assignment combined with PLANPAC programs.

HIGHWAY NETWORK
HISTORICAL RECORD
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Note: PLANPAC program names in parenthesis.

ure 3. Analysts familiar with PLANPAC will recognize
that the sequence of program steps shown in this figure
differs only slightly from the usual application of the
PLANPAC programs. The equilibrium-assignment pro-
gram simply replaces the program VOLAVG, which is
used to average loadings from separate assignments.
But whereas the analyst must arbitrarily select how the
two sets of link volumes are to be weighted in VOLAVG,
the equilibrium-assignment routine internally deter-
mines the weighting of the link loadings that most nearly
results in an equilibrium assignment.

There is one feature of the PLANPAC programs that
greatly simplifies the use of the equilibrium-assignment
algorithm—this is the format of the highway network file.
In the PLANPAC battery, highway network files are
maintained in a binary file, called the network historical
record. For each iteration the new link volume and
recomputed link travel time are successively added at
the end of a link record. Thus, all of the information
needed for the calculation of a new equilibrium link vol-
ume (except )) can be stored in one link record. New
equilibrium link volumes can then be tagged at the end
of the historical record (just like any other link volume)
and passed directly into the CAPRES program to recom-
pute link travel times.

The program to compute the equilibrium assignment
has an uncomplicated linear structure. Logic of this
program is as follows:

1. The capacity-restraint curves are read into
memory;

2. The control card that identifies the location in the
network historical record of the current solution and the
current all-or-nothing assignment is read;

3. The network historical record is read, and the
link capacities and both sets of link volumes and times
are loaded into arrays;

4, A one-dimensional search procedure is executed
to find the value of X that minimizes the objective func-
tion computed from the current solution and the current
all-or-nothing loading; and

5. The historical record is reread and a new histori-
cal record is written, which contains the new current
solution,

BASE DATA

Network and trip-table data for the application were ob-
tained from a subarea transportation study for DuPage
County, Illinois, This is a suburban county in north-
eastern Illinois, which covers an area of approximately
900 km? (350 miles®) directly west of Cook County and
the city of Chicago. The eastern half of the county is
quite developed and has several major retail and employ-
ment centers. Current county population is about

500 000 persons; county employment is about 250 000
jobs. A wide range of traffic conditions can be observed
in the county, including congestion and delay on many
arterials.

Although the DuPage County network is for a subarea
study, the assignment network is still quite large. There
are nearly 29 000 one-way links and 9400 nodes in the
1975 network. Approximately one-third of the network
is contained within the primary study area of DuPage
County and a 10-km (6-mile) wide collar around the
county. The network in this area is detailed and in-
cludes all roads except minor local streets. Out-
side of the primary study area the network is more ag-
gregated, but it still contains all major and minor ar-
terials.

The zone system has 906 zones in DuPage County plus



Figure 4. The equilibrium assignment 1300
objective function versus A.
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an additional 93 zones for the remainder of the north-
eastern Illinois region.

Definition of Capacity-Restraint
Functions

Three different sets of capacity-restraint functions were
used to determine their effect on the algorithm's per-
formance: (a) CATS original capacity-restraint curves,
(b) the standard FHWA capacity-restraint curves, and
(c) a revised set of FHWA capacity curves. Instead of
using the actual functions, the curves are entered into
the program as a set of data peints. The functicn is then
approximated by chords connecting these points.

The CATS capacity-restraint curve used in this ap-
plication is

S=14(2" + 1)/2 (1
The standard FHWA capacity function is
S=1to[1+0.15(v/c)*] (12)

where to = free-flow link travel time and v/c = link flow
to capacity ratio.

Algorithm Convergence Toward
Equilibrium

One of the first questions raised in dealing with the
equilibrium-assignment algorithm is, How quickly does
the assignment converge to equilibrium ? Figure 4
shows how the objective function varies with different
values of ) through three iterations by using the CATS'
capacity-restraint function. In the first iteration, the
objective function is strongly concave and has a mini-
mum at ) = 0.34, The objective functions for the next
two iterations flatten out considerably; by the third iter-
ation the optimal value of the objective function differs

from the objective function at X equal to zero by less than
10 percent. Nearly identical results were obtained by
use of the standard FHWA capacity-restraint function.

This experience from the DuPage study suggests that,
for all practical purposes, equilibrium is reached after
four iterations of the equilibrium-assignment algorithm.
This corresponds to the building and loading of five sets
of minimum-time-path trees since one additional all-or-
nothing assignment is needed to find an initial solution.
The building of the minimum-time paths is the most ex-
pensive operation in each iteration. The one-dimensional
search does not significantly increase the computation
time as compared with an FHWA iterative assignment.
Execution of the BUILDVN program for the DuPage net-
work requires 10 min of central processing unit (CPU)
time on an IBM 370/168 computer.

Further documentation of how X converges is tabu-
lated in Table 4, which lists the values of the objective
function for separate runs of four iterations on each of
the two capacity-restraint functions. Although the value
of the objective function is much different for the two
equilibrium-assignment runs, performance of the algo~
rithm is not significantly altered. By the fourth itera-
tion, X values of less than 0.10 are attained in both ex-
amples. Therefore, four iterations would appear to be
sufficient for large networks over a reasonable range of
capacity-restraint functions.

COMPARISON OF EQUILIBRIUM AND
FHWA ITERATIVE ASSIGNMENTS

The equilibrium-assignment objective function was com-
puted for a conventional FHWA iterative assignment to
determine how well this heuristic approximates equi-
librium link loadings, The results for the iterative as-
signment are shown in the right-hand column of Table 4,
These calculations were made by using the standard
FHWA capacity-restraint functions and are directly
comparable with the adjacent column, The objective



Table 4. Xs and objective functions
for two sample runs.

Equilibrium Assignment

FHWA Iterative Assignment

CATS Capacity Restraint

FHWA Capacity Restraint FHWA Capacity Restraint

Iteration A Objective Value X Objective Value Objective Value
1 0.34 151 x 10° 0.34 227 x 10° 481 % 10°
2 0.23 120 x 10° 0.21 177 x 10° 917 ¥ 10°
3 0.22 112 x 10° 0.20 156 x 10° 728 % 10°
4 0.25 112 x 10° 0.07 154 x 10° 790 * 10°,
255 X 10°
20Objective value for assignment formed by averaging iterations 3 and 4
Table 5. FHWA iterative and equilibrium-assignment 7 ol
results for DuPage study (CATS capacity-restraint e Eoil
function). Counted Volume Average Average RMS Error Average RMS Error
Group Range Count Volume (%) Volume (%)
0-500 243 1 702 1 012.3 1 750 960.0
500-1 000 706 1495 226.3 1 556 226.9
1 000-2 000 1456 2 099 93.2 2 086 89.7
2 000-3 000 2 462 2 535 54.7 2 665 55.0
3 000-5 000 3971 4 045 47.4 4014 45.6
5 000-10 000 7 002 6 808 317.1 6 831 41.1
10 000-15 000 12 057 11 823 32.4 11 632 27.2
15 000-20 000 16 780 16 735 27.9 16 270 26.0
20 000-25 000 21 714 19 815 21.5 18 028 23.9
30 000-40 000 36 300 35 644 7.5 27 446 26.17
Entire volume range 6 352 6 383 39.8 6 223 43.2

Table 6. Average assigned volumes by using different capacity-restraint functions after four iterations of the equilibrium-

assignment algorithm.

Adjusted FHWA Capacity

CATS Capacity Curve FHWA Capacity Curve Curve

Counted Volume Average Average RMS Error Average RMS Error Average RMS Error
Group Range Count Volume (%) Volume (%) Volume (%)
0-500 243 1750 960.0 1688 978.1 1683 979.8
500-1 000 706 1 556 226.9 1601 244.9 1621 2417.5
1 000-2 000 1456 2 086 89.7 2187 110.0 2161 105.6
2 000-3 000 2 462 2 665 55.0 2916 67.1 2 862 65.8
3 000-5 000 3971 4 014 45.6 4331 52.9 4 259 50.7
5 000-10 000 7 002 6 831 41.1 7 067 42.6 7 038 42,2
10 000-15 000 12 057 11 632 27.2 11 393 29.4 11 472 28.5
15 000-20 000 16 780 16 270 26.0 14 581 23.0 14 939 23,1
20 000-25 000 21 714 18 028 23.9 17 104 29.8 17 276 28.2
30 000-40 000 36 300 27 446 26.7 28 485 24.0 28 652 23.6
Entire volume range 6 352 6 223 43.2 6293 45.1 6 291 44,3

function for the mean of the third and fourth FHWA iter-
ations is almost 50 percent greater than the objective
function for the equilibrium-algorithm loadings after
four iterations. Clearly, the conventional iterative
approach produces a rather poor approximation of equi-
librium,

The comparison of equilibrium and FHWA iterative
assignment was further investigated by comparing the
results of two assignments by using CATS' capacity-
restraint functions. The link flows given in Table 5 are
those produced by the fourth iteration of the algorithm.
Included in this table are approximately 600 links in
DuPage County for which traffic counts were available.
The data listed in the table come from the output of the
PLANPAC program CAPRES., Each flow entry is the
average flow assigned on all links in the link's class,
and the root mean square (RMS) error column lists
the RMS error as a percentage of the average count for
the class, For a selected set of links with traffic counts
within DuPage County, the two assignments showed sig-
nificant differences. The equilibrium-assignment flows
are generally less than the FHWA assignment flows on
higher-flow links. Whether this is a general bias be-
tween the two techniques is impossible to tell at this

point; the results of Table 5 may just point up the limi-
tations in the capacity-restraint functions.

IMPACT OF DIFFERENT CAPACITY-
RESTRAINT FUNCTIONS

In order to examine the above point one step further,
different functions were tested to determine how they
affected the results of the equilibrium-assignment algo-
rithm. CATS capacity-restraint functions were used in
the algorithm first, then the FHWA set of curves was
used, and finally an adjusted set of FHWA curves was
inserted in the algorithm, The adjusted curves were
tested because of an apparent underassignment of high-
volume links and overassignment of low-volume links
by the algorithm when the FHWA curves were used. The
adjusted FHWA capacity curves were set so that the ca-
pacity of a high-capacity link is effectively increased by
10 percent and the capacity of a low-capacity link is de-
creased by 10 percent.

Table 6 provides some results from these three
equilibrium-assignment runs, which incorporate dif-
ferent capacity-restraint functions. There are no sub-
stantial differences between any of the assignments. The



use of CATS original capacity-restraint function provides
an assignment slightly closer to actual counts, but the
results are not significantly better than the remaining two
assignments. All three assignments tend to overpredict
traffic on low-volume links, partially because the local
street network over which the beginning and ending seg-
ments of trips travel is incomplete. Comparison of the
second and third assignments shows that the effect of the
adjustment to the FHWA curves is almost negligible.

The changes that do occur, however, are in the de-
sired direction, which indicates that some control over
the assignment can be exerted through capacity-restraint
functions. Since the equilibrium-assignment algorithm
produces a convergent series of assignments, it should
be possible to calibrate these functions according to
route type or location in an urban area.

CONCLUSIONS

Although our experience with applications of equilibrium
assignment to large-scale, congested networks is still
limited, we believe that the results reported in this
paper provide convincing evidence that equilibrium as-
signment should always be preferred to FHWA iterative
assignment for congested networks. We reach this con-
clusion for three reasons:

1. Equilibrium assignment provides a better assign-
ment in terms of the overall objective of equal travel
times over all paths used between each origin and des-
tination pair,

2. The computational effort is similar and may be
less in some cases in which the equilibrium algorithm
converges quickly, and

3. Equilibrium assignment can be readily incorpo-
rated into FHWA's PLANPAC battery; moreover, it is
already available in UTPS.

The preliminary results we have presented concern-
ing the ability of equilibrium assignment to reproduce
observed 24-h flows are not as convincing. There are
two reasons for this result. First, the capacity-
restraint functions are probably too crude. This prob-
lem has been explored slightly here, but more study and
experimentation are needed. Second, the use of equilib-
rium assignment to produce 24-h assignments may be
inappropriate in that only the peak periods have truly
congested flow. All-or-nothing assignment may be suf-

ficient for off-peak periods. Additional study of this
question is needed to determine the actual cause of these
apparent differences between ground counts and assigned
flows.
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Equilibration Properties

of Logit Models

Alex Anas, Department of Civil Engineering, Northwestern University,

Evanston, Illinois

Despite the importance of supply-demand equilibration in travel-demand
forecasting and urban planning, no attention has been paid to the equili-
bration properties of logit models of travel demand and residential mo-
bility. The preponderance of logit models in travel demand and related
fields suggests that these properties are worth examining if these models
are to become useful forecasting tools. This paper demonstrates the basic

price equilibration properties of logit models for simplified versions of

six typical problems encountered in travel-demand and residential-location
forecasting. Measures of the differential price of any two alternatives are
derived in closed form and shown to reflect the well-known logit property
of the independence from irrelevant alternatives as long as the population
of travelers and households is one homogeneous group. It is shown that



this property is lost when the population consists of several segments
that have distinct preferences. In such cases closed-form solutions are
not possible and numerical procedures are necessary.

Many problems in transportation systems and urban
planning require an equilibrium relation between de-
mand and supply in order to measure or evaluate
system performance. The crucial steps for the
planner or system analyst are (a) the estimation of
demand functions, (b) the estimation of supply func-
tions, and (c) the performance of a consistent fore-
cast for a future state by equilibrating demand and
supply.

In recent years economists, transportation planners,
and systems analysts have contributed to the develop-
ment and empirical estimation of a class of demand
functions based on the logit and related models of dis-
crete choice. Logit models have been applied widely
in travel-demand and modal-choice analysis and to a
lesser extent in the related areas of housing-market
and residential-location analysis. The best-known
works on the subject are those of McFadden (1) and
Domencich and McFadden (2). Despite the preponder-
ance of logit models as tools of demand analysis, no
attention has been paid to the equilibration properties
of these models. This issue finds brief mention in the
recent book by Domencich and McFadden (2). As they
put it:

If the travel-demand function is structured so that all of the decisions in-
corporated within it are allowed to be responsive to the performance of
the transportation system, then provisions must be made to equilibrate
demand and the performance of the transport system to estimate properly
the effects of changes in the transportation system on trip interchanges.
It is not the purpose of this study to analyze or develop equilibration pro-
cedures, but the implications of a policy-sensitive demand model on other
modeling requirements should be noted.

... failure to equilibrate demand and system performance properly
could result in substantial error in estimating the expected impact of a
facility change on travel volumes and service levels.

In many instances it is realistic to assume that sup-
ply or capacity will be inelastic, at least in the short
run. For such cases, an equilibration problem deter-
mines price adjustments that clear the market by
matching demand and supply for each alternative in the
market. From the practical point of view, the impor-
tance of price adjustments in forecasting may be
demonstrated by the following scenario. Suppose that
a logit model of residential location has been estimated
for a city by using data from 1975. It is now desired to
use this model to forecast residential-location patterns
for 1980 under the assumption that transportation ser-
vices to subarea A of the city will be much improved be-
tween 1975and 1980. Inthe meantime, let usassume that
the housing stockinthe same area remains approximately
constant due to such factors as zoning, unavailability of
vacant land, and high costs of redevelopment. The
1980 travel improvements will strengthen the demand
for subarea A. If the forecasting procedure assumes
that housing prices will remain unchanged between 1975
and 1980, the demand for housing in subarea A may well
exceed the supply of housing units there, assuming other
subareas receive comparatively minor travel improve-
ments. In other areas demand may be found to be below
the supply. To correct this mismatch, housing prices
should increase in those zones where demand exceeds
supply and should decrease in those zones where supply
exceeds demand. The housing market is equilibrated
when a new set of housing prices is found such that de-
mand is less than or equal to supply in every zone.

TRANSPORTATION ANALYSIS AND
URBAN PLANNING PROBLEMS

In this paper several fundamental equilibration proper-
ties of logit models are demonstrated within the context
of six specific problems that are typical in transporta-
tion analysis and urban planning. Problems A through
E are united by the assumption that there is one homo-
geneous population of commuters or households, andthis
assumption enables closed-form solutions. Several
properties of the logit-demand structure are reflected
in these solutions:

1. Price differentials (or the relative prices of
alternatives) are unique, although the level of prices is
nonunique up to the arbitrary specification of any one
price;

2. The well-known logit property of the independence
from irrelevant alternatives (ITA) implies that the rela-
tive prices of two alternatives (or locations) are deter-
mined independently of the information for all other
alternatives (or locations); and

3. Price adjustments tend to absorb advantages
that result from travel improvements so that they are
reflections of these.

Later we relax the assumption of a homogeneous
population and introduce several population segments
that have different utility functions and choice behavior.
It is shown that the IIA property no longer applies to
the relative prices of two locations. Closed-form solu-
tions are not possible, but I have developed and tested a
numerical solution method (3).

Problem A: Parking Fees and Bus
Fares

Suppose that a city's downtown receives commuters
from a suburb through two travel modes. One is automo-
bile, which requires parking in public lots operated by
the city, The other alternative is to take the bus, which
is also operated by the city. Each commuter pays a
parking fee or a bus fare. The city operates a rush-
hour bus capacity of Ss seats and maintains exactly S,
parking spaces. It receives N suburban commuters
daily and we assume that there is no carpooling; that
is, each automobile commuter drives alone. We also
assume that S, + Se = N. What should be the parking
fare and what should be the price of a two-way bus trip,
assuming that both modes operate without congestion?
Suppose that each commuter decides whether to be
a bus rider or a driver in such a way that aggregate
demand is logistic and given by

2

f; = exp(aP; + Ki)/E exp(aP; +K;)  i=12;0<0 n
=1

where

f1 and f; = the proportion of commuters that take
automobile and bus, respectively,
P, and P, = the parking fee and two-way bus fare,
and
K = § B:Qix = an abbreviation for the remaining
a=l utility terms.

P, and P; are the unknowns to be determined by the city,
which seeks

Nf; (P1,P2) =S4 (2a)

and
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Nf, (P,,P,)=Sp (2b)

which, by using Equation (1), can be rewritten as

N/{1 +expla(P; - Py) + (Ky -K)I} =S4 (3a)
and
N/{1 + exp[a(P; -P,) + (K, -K;)I} =Sp (3b)

By rearranging either Equation 3a or 3b we get,

P, - P, = [(1/a) (K, - K))] - [(1/0)%n (Sp/SA)] (€]

The right-hand side of Equation 4 is the amount by which
the prices should differ so that the number of drivers
exactly matches the number of parking spaces and the
number of riders exactly matches the number of bus
seats. From Equation 4 we note several properties.
First, the equilibrium prices are nonunique: any two
prices that have the same difference (P:-P:) will do.
Second, take the case where Ss=S.. In this case we
have P:- P; = (1/a) (Kz - K1), from which we know that if
Kz > K; then P; > P1—the less attractive mode is priced
lower. Third, suppose that more buses are added and
an equal number of parking spaces is closed. From
Equation 4 this would require increasing P (the price
of parking, which is now scarcer) or decreasing P; (the
price of a bus trip, which is more available). Next,
suppose that a third mode (train) is introduced with the
number of seats (S;) such that Sy + Ss + S; = N, with Ps,
the two-way train fare, and Ks, the remaining utility.
Then, the above derivation can be repeated to derive
Equation 4, but also

Py - P3 = (1/a) (K3 - K;) - (1/e)&n(S7/Sa) (4a)
and
P, - Py = (1/a) (K3 - K;) - (1/e)n (St/Sp) (4b)

Note that Equations 4 and 4a will satisfy

N/{1 +expla(P, - Py) + (K, - K{)] +exp[o(P; - Py)
+(K3-Ki)]} =S4 (5

Equations 4a and 4b are of the same form as Equation

4, and any one of these is a direct reflection of the
property of IIA—the price difference for any two modes

is independent of any other mode. Given an arbitrary
price for any one mode, Equations 4, 4a, and 4b canbe used
to make a unique determination of all the other prices.
But how should this price level be determined? It seems
reasonable to assume that the city should set these prices
so as to cover the cost of operating the modes net of any
subsidies from other sources (assumed to be zero here).
Let the total costs be given by C = C(S, Ss, §). Total
daily revenues are R = P1S) + P2Ss + PaS;. Setting R=C
we can substitute from Equations 4, 4a, and 4b for any
two of the prices and solve for the third, thus determin-
ing the break-even price level.

Problem B: Supply of Buses and
Parking Spaces

In problem A we assumed that the supply of parking
spaces and bus seats is fixed. In this problem we allow
the public authority to determine jointly both the price
levels (P, and P») and also the market size of each mode
(Sx» and Ss) such that Sy + Ss = N. This problem may be
posed as follows: The city contracts with a bus company

that supplies buses and another firm that supplies park-
ing space. Each of these firms operates under regular,
upward sloping supply functions such that S, = F1(P,) and
Ss = F2(P;). The public authority must determine the
regulated prices (P; and P:) under which the two firms
should operate. By using the similarity with problem A
we know that P, and P, should satisfy

Fi(Py) + F,(P;)-N=0 (6)
and
P, - P, = (1/&) (K, - Ky) - (1/a)&n [F,(P,)/F; (Py)] (@]

where Equation 7 is a restatement of Equation 4 and
assures that Nf, (Py, Pz) =F,(P,) for each i. If N is fixed,
P: and P: can be found from Equations 6 and 7. Al-
ternatively, if N is considered flexible another relation-
ship is needed to replace Equation 6. This may be

(Py - ¢))Fy(Py) + (Py - ) F,(P,) =0 (8)

where c; and cz are the costs of supplying a marginal
capacity. Equation 8 states that both operations taken
jointly break even. This may happen in two ways.
Either P; =c;and P; = ¢; or P; > ¢y and P, <c; (or
equivalently P, < c; and P; > ¢z), but (P - ¢1)F(P;) =
- (Ps - ¢2) Fz (P2). This means that mode 1 produces a
surplus of 71 = (P1-¢;) Fi (P;) and mode 2 needs a sub-
sidy of 02 = (c2- P2) F2 (P2). Equation 8 assures that
T1 = 0e and thus both modes are kept in operation, by
taxing mode 1 and by subsidizing mode 2.

Problem C: Demand for Housing and

Location Rents

Logit models estimated by Quigley (4), Lerman (5), and
Anas (B) are intended to capture the demand for residen-
tial location or type of housing. Typically, this problem
may be stated as follows: Suppose that there are i =
1...I distinct zones, each of which contains S, identical
housing units. Then, the demand for zone (location) i
can be expressed by the following logit model with
grouped alternatives,
£ = siexp(Ui)/;s,.exp(U,-) i=i.. .0 Zfi=i )
J
If we also assume that each household rents one housing
unit and that the number of housing units in the rental
market is equal to the number of households (N) then
N =IZS,;. This means that each housing unit will be

occupjﬁed. In the short run the supplies (S,) are assumed
fixed for each i. Thus

Nf; =S, foreachi=1...1 (10)
From Equations 9 and 10 we can write

Nf;/Nf; = §; exp(U;)/S;exp(U;) = §,/S; (11)

We can now examine the implication of Equation 11 for
rent adjustments if we first specify the utility function.
Suppose it is given as

Ui:O(Rj"'ﬁTi"‘Ki Dl,ﬁ <0 (12)

where K, is an abbreviation of terms such that Ky =
L % Qu With Qi 2 measure of the nth characteristic

of zone i and ¥, the corresponding utility parameter.
R, is the rent (price) of a housing unit in zone i and
T, is the generalized travel cost associated with zone i.



Equation 11 will hold only if
U= 13)
From this we derive

R; - R; = (B/a)(T; - Ti) + (1/)(K; - K;) a4

This result is analogous to our previous result in prob-
lem A. Suppose that the two zones are identical in all
characteristics except transportation costs, then K, =K,
and the rent differential reflects the transport cost dif-
ferential. The nonuniqueness and other considerations
noted in problem A apply to Equation 14 as well.

Several variants of Equation 14 are worth noting.
Suppose that the utility function was specified as follows,
where Y represents household income,

U; = n{RETPK} o8 <0,K =]T Qir (15)
n=1

or

U =alY-R;-T;] tK; a>0:KiEZ'YnQin (16)
n=1

or

U; =fn{[Y - R; - T;1°K;} a>0,K; =]] Qin 17)
n=1

By using Equation 13, Equations 15-17 will lead to the
following,

Ri/R; = (K, T§/K; TH)*/* for Equation 15 (18)
R - Rj = (1/@) (K] - K;) + (T; - Ty) for Equation 16 (19)
R; - Ry(K;/K)* = (Y - T)) - (Y - T;)(K;/K;)"* for Equation 17 (20)
The nonuniqueness argument applies to these as well.
The ITA property of logit comes through in every case as
the relative rents do not depend on any zone other than

the two we are concerned with. Let K, = K, then Equa-
tions 14 and 18-20 reduce to the following,

R; - Rj = (B/o)(T; - Ty) (21)
Ri/R; = (T}/T; " (22)
R; - R; = T; - T; for both Equations 19 and 20 (23)

The last of these is reminiscent of the early location rent
model developed by Wingo (1) who assumed, rather arbi-
trarily, that rent plus transportation costs add up to the
same constant at every location, namely R, + T, = con-
stant for every i.

In Equations 14 and 18-20, if the rent of any one zone
is arbitrarily fixed, then the location rents of all other
zones are uniquely determined.

Problem D: Impact of a New Travel Mode
on Differential Location Rents

Assume that two locations i and j are identical in all
respects and each is served by the same travel mode—
automobile. Let R, represent location rent for zone i,
as before, and also let Ty, and T,, represent travel
costs by automobile to zone i and zone j. If we as-
sume that demand is given by a logit model of joint
location and mode choice

fim = Siexp(Uip,)/Z Ek Sjexp(U) ZZfip=1 (24)
1 m
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where Uy, is the utility of choosing zone i and mode m
for commuting to zone i. Now suppose that a new travel
mode, transit, is introduced but serves only zone j and
has travel cost T;» # T;;. Let the utility function be

Usia = aRy + BTy4; then with condition TS, = N we can re-

i
peat our previous derivations in slightly different form,
namely

Nfil/(ij1 + Nfj,) = Siexp(Uy )/[Sjexp(Ujl) + §jexp(U;j)1 = Si/S; (25)
By mutiplying Equation 25 by S,/S; we get
exp(Ujy) = exp(Uj;) + exp(Upp) (26)

which implies

exp(aR;)exp(BT;y) = exp(aR;) [exp(BT;;) + exp(BT,)] 27
and
R; - Rj = (1/a)®n[exp(BTj,) + exp(BTi2)] - (B/o) Ty, (28)

If we also assume that Ty, = Ty, that is, that the auto-
mobile costs of the two zones are identical, then the
differential rent R, - R; is attributable purely to the
impact of transit., Thus, if we let Ty; = Ty =T, we
have

R; - Rj = (1/o)n[exp(BT,) + exp(BTj )1 - (B/) T, 29

Let us now take this one step further. Suppose that the
introduction of transit does not create any real advantage.
This would be the case if T,2 = T1, which would reduce
Equation 20 further to

R; - R; = (1/a)n2 B0

Since o < 0, Equation 30 implies that Ry = Ry

+ |(1/a)on 2| where |-| measures the rent increase in
zone j attributable to the presence of a new mode iden-
tical in transport cost to the existing mode. Note that,
although the two zones are indistinguishable in terms
of travel cost and all other characteristics, zone j still
has a higher rent than does zone i. Intuitively, this
seeming paradox is clarified as follows: Suppose that
initially R; = R, for these two zones. This would imply
that f;; = f;» = £, and thus Nfy; + Nfgz = 2Nf,,. In other
words, twice as many households choose zone j. Clearly
then, to properly reallocate this demand and assure
Nfg + Nfyz = Nfy, rents in zone j must be higher.

We must also note that, if x new travel modes with
equal transportation costs are introduced into zone j,
then Ry = Ry + |(1/a) on (x+1)].

Next, suppose that the utility function includes a
mode-specific dummy variable so that Uy; = aR; + BTy
and Uy = oRy + BTy but Upe = aRy + 8Ty2 + ¥2 where ¥»
measures the bias due to mode 2. From this we obtain
the equivalent of Equation 28,

R; - R; = (1/e)n{exp(BTy;) + exp(BTy, +v2)]1 - (B/a) Ty, 3D
When Ty =Ty =Ty, =T1 we get
R;-R; = (1/a)&n[1 +exp(y,)] 32)

Finally, if x new modes are introduced, each with equal
transport costs, the equivalent of Equation 32 is

R; - R; = (1/o)fnl1 + 3 explya)] 33)

n=2



12

Problem E: Before-and-After Differential
Rent Due to a Transportation

Improvement

We now return to model Equation 9 of problem C. Let
Uy be the utility before a transportation improvement
takes place and let Uy, be the utility after a transpor-
tation improvement. Assume that Uy = oRy + BTy and
Uia = 0Ry, + BTy, with Ty, < Tys, then what is the relation-
ship between Ry» and R ? Note that Equation 9 can be
written as

fip = 1/ 1 +E (S/Sp)exp(Uy 'Uib)] I= lased (34a)
j#i

and

f, = 1/1 +Z(Sj/Si)exp(Uja—Uia)] i=1...1 (34b)

i#i

Again, assume that Z S, = N, what is Rya - Ryy in zone i,

1
if this is the only zone affected by the transport improve-
ment, that is, T;, <Ty and Tya = Tyy for all j £i?
Note that

Niyy/Nfi, = 11 + 3 (8/S)exp(U; - Uia)l
i
|1+ (8i/Si)exp(U; -U“,)]=l (35)
i

where Uy = Uj. = Uy, for j #i. The above equality can
be maintained only if Uj. = Uy, By using the definition
of utility this requires that

Ria - Rip = (B/) (T - Tia) (36)

Thus, the rent increase must be such that the utility
level before and after the investment remains the same,
assuming that the utility level remains unchanged in all
other zones not affected by the transportation improve-
ment. For this to occur it is only necessary that the
rent of any one zone unaffected by the investment re-
main unchanged before and after the investment. The
above readily generalizes to the case of a transportation
improvement that affects more than one zone—if utility
remains unchanged before and after the improvement
Uia = Uy, for each i, then the market is cleared before and
after the improvement and Equation 36 holds for each
zone i.

Next, consider the possibility that a new travel mode
is introduced to every zone. In this case we are deal-
ing with a model such as that of problem D (see Equa-
tion 23). The market will clear before and after the
investment if

exp (Uisp) = exp (Ujgy) + exp(Usp,) 37

where 1 denotes automobile and 2 the new mode, say
transit. Assuming that automobile characteristics re-
main the same before and after the transit investment,
the three utility functions are Uy;s = @R + BT, Uya

= aRy, + BTy, and Ugza = 0Rye + BTi2. In this way,
Equation 36 becomes

Rip - Riy = (/) {1 + exp[B(Ti, - Ti)1} 38)

Since @ <0 this implies R,. > R;,. Note that as the
transit improvement worsens the rent increase vanishes
(recall B <0):

lim Ry, - Ry = (/)20 {l + exp{B(T;; - Typ)]} (39)

Tjp—oe

Problem F; Traffic Congestion

A common equilibration problem of a different nature is
that of capacity-constrained traffic flow, where the
travel times or generalized costs on a network's links
depend on the traffic-flow capacity of the link and the
volume (number of passengers) that use the link. Unlike
the destination- and housing-choice problems considered
in this paper, traffic-flow equilibration is highly net-
work sensitive, and problems can quickly become com-
plicated beyond the reach of analytical solutions. Still,
the basic nature of the problem can be illustrated for
the simplest of all networks: two highway routes that
connect an origin-destination pair used by a homo-
geneous population of drivers (N). In this case, let the
proportion of drivers that use route i be logistic. Then

2
f; = exp(at, + K; /Z exp(at; +K)  i=1,2 (40)
=1

where K; is an abbreviation of the utility due to other
(fixed) characteristics of the route i. Let the travel
time (t;) be given via a simple volume-delay function,
namely,

t =to; + AJ(NEG/CF i=1,2 41)
where
toy = the free-flow link travel time,
A; = a link-specific parameter,
C, = the link capacity,
Nf; = the volume that uses link i, and
g = a parameter (g > 0.

By abbreviating A;N®/C} as b, and substituting Equation
41 into Equation 40 we obtain

2
f; = [exp(aty; + oy £F + Ki)]/[z exp(at,; + ob;ff + KJ-)] i=1,2 (42)

=t

Either one of these two equations can be written as

(fy - Dexp(aty +ab, ff +Ky) + fiexp(aty, + ab,f5 +K,) =0 (43a)
or

n(f,y/f)) = oty - to) + a(b, £§ - by £F) + (K, - K;) (43b)

and should be solved for equilibrium-flow proportions
f1*, f2* by using an iterative procedure.

EXCESS CAPACITY

Since the assumption that aggregate supply equals ag-
gregate demand is somewhat unrealistic, we will ex-
amine the implications of relaxing it. In problems A
and B this is achieved by assuming Sx + Ss = N and in
problems C, D, and E we must assume §S1 = N. Thus,

some parking spaces or bus seats can remain unused
or some dwellings can remain unoccupied. Since the
residential location problem (C) is typical of the re-
maining problems, we will examine the implication of
Z5, = N.

Suppose that we introduce a new set of nonnegative
variables (vy, v, ..., v;)that measure the number of

vacant dwelling units in each zone. Then, we can write



Zl?Si—Zl?vi=N (44)
The problem can now be restated as
Nf;=8-v; i=1...1 (45)
and more precisely as
NS;exp (aR; +8T; + K;) = (8; - v;) ? Siexp(aR; + fT; + K;)

i=1...1. _ (46)

Equations 44 and 46 are I + 1 equations in the 2I un-
knowns, which are the rents and the vacancies. The
sytem is underdetermined: Given the vacancy levels
for all but any one of the zones, Equations 44 and 46
become I + 1 equations, with the rents and the remain-
ing vacancy as the unknowns. If we fix vacancies as
Vi, ..., v, 80 that these satisfy Equation 44 we can state

Nf;/Nf; = Siexp(U;)/S;exp(U;)
=(8; -V)/(S; - %) 47

From which we note that
exp(U; - Uj) = §;(S; -V7)/Si(§; - ¥;) (48)
and

R; - R; = (1/a)n[S8;(S; - ;)/Si(8; - %)1 + (B/a)(T; - T;)
+ (/o) (K - K;) 49

which reduces to Equation 14 if v, = v, = 0.

Since a unique set of vacancies cannot be determined
without specifying additional relationships, the effect of
vacancies is to introduce a new source of nonuniqueness
in the determination of market prices and to increase
the uncertainty in the prediction of these prices. It has
been shown in Anas (8) that one way that market prices
can be determined is by specifying certain additional
conditions of competitive-pricing behavior, such as
profit maximization, and deriving an equilibrium set
of market-clearing prices.

INTERACTION DUE TO SEVERAL
CONSUMER TYPES

In each of the problems the entire population of con-
sumers (travelers or households) were assumed to

have the same utility function and choice behavior.

This is a strong assumption and may not always be
appropriate in practice. It is, therefore, fruitful to
examine several consumer types, each with a different
utility function and choice behavior. We do this for prob-
lem C. Suppose that the population of households is
segmented into h = 1. .. H segments according to certain
socioeconomic criteria and the work places of the house-
hold heads. Then, let the behavior of each segment be
logistic according to

ﬂ'=siexp(U{*)/zs,-exp(U}') sth=1,h=1...H (50)
i i

with the utility function given as U; = anRy + ATy + Kt

where
R, = the rent of location (zone) i,
T? = the cost of commuting to zone i from the work-
place of a type h household, and
K!' = the part of the utility function due to other

characteristics of zone i.
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Let Ny represent the number of households of type h
and impose TNy = ZS;. Now we must solve
B !

?Nht?(R,,R2,...,R1)=Si 121 .agsl (63))]

by finding Ry, Rs, ..., R;. This is a system of I simul-
taneous, nonlinear equalities in I unknowns but cannot
be solved in closed form. To see this, we may follow a
procedure similar to that of problem C. Doing so for
the case h = 1,2
Si/8; =(N;f} + N, f2)/(Nf} + N,f})
= {{N1 G, Siexp (U} ) + N, G, S;exp(UD)]1/G; G, )

+ {IN1 G2 8jexp (U]) + N2 G, S;exp(UP)1/G; Gy} (52)
where
Gy =T Sexp(U})  h=1,2 (53)

From Equation 52 we get,

" N; G [exp(U}) - exp(UD)] = N, Gy [exp(U?) - exp(Uf)] (54)

Equation 54 shows that we cannot establish a simple
relation for differential rent (R, - R;). It is also seen
that the IIA property no longer holds. The competition
of the two household types for the housing supply in all
zones establishes an interactive effect and the relative
rents of i and j depend on characteristics of all the
zones. A unique solution need not exist. It is true,

in general, that many rent vectors will satisfy the simul-
taneous equations (Equation 51). Solutions can be ob-
tained via special numerical techniques. One such ap-
plication will be found in Anas (§), where problem E is
solved for a 60-zone, five-household-segment spatial
system for the case of a transit investment and excess
capacity in housing.

CONCLUSIONS

The problems solved here and the more complex prob-
lems hinted at in the preceding part of the paper are a
sample of a large number of supply and demand equili-
bration issues that form the basis of policy evaluation
and planning analysis in transportation and related
areas in urban planning. To date, most of the work
dealing with logit models has confined itself to param-
eter estimation and crude forecasting. These forecast-
ing exercises suffer from a serious weakness to the
extent that the relevant equilibration issues are ignored,
and thus the forecasts obtained are ultimately incon-
sistent. This paper has shown that these inconsisten-
cies are readily rectifiable. Because of the complexity
of problems that can be approached in this way, our
objective has been to select simple, yet typical, prob-
lems of policy interest and to demonstrate the neces-
sary manipulations and results for these problems.
More complex problems can be solved by developing
appropriate numerical simulation methods (3) or by
specifying the nature of competitive pricing7§). My
other work has shown that even for these problems,
which involve several consumer groups and excess
supply, the market-clearing distribution of prices is
well behaved, even though it may not be possible to
express it analytically.
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Validation and Application of an
Equilibrium-Based Two-Mode
Urban Transportation Planning

Method (EMME)

M. Florian, R. Chapleau, S. Nguyen, C. Achim, L. James-Lefebvre,
S. Galarneau, J. Lefebvre, and C. Fisk, Centre de Recherche sur

les Transports, University of Montreal

The purpose of this paper is to report on the validation and application
of the two-mode urban transportation planning technique called EMME.
This method may be characterized as an integrated two-mode traffic
equilibrium method. Roughly speaking, this method combines a zonal
aggregate-demand model with an equilibrium-type road assignment and
a transit-assignment method. We describe the validation and application
of the model by using data from the city of Winnipeg, Manitoba, Canada.

The purpose of this paper is to report on the validation
and application of the two-mode urban transportation
planning technique équilibre multimodal-multimodal
equilibrium (EMME). This method may be characterized
as an integrated two-mode traffic equilibrium method.
It was suggested by Florian (1). Roughly speaking, this
method combines a zonal aggregate-demand model (which
may be a direct-demand model or an origin-destination
table coupled with a suitable modal-split function) with
an equilibrium-type road assignment and a transit-
assignment method. The method has been described
previously (2) and some of its theoretical properties
have been studied by Fisk and Nguyen (8), The model
was validated by using data from the city of Winnipeg,
Manitoba, Canada. The equilibrium-type route-choice
model for travel by private automobiles in congested
urban areas was validated by Florian and Nguyen (4) in
the Winnipeg road network. The transit-assignment
model is essentially a shortest-route choice coupled with
the diversion mechanism among sections served by
common lines, which was devised by Chriqui and
Robillard (5).

For the purpose of transportation planning, the city

of Winnipeg is subdivided into 147 zones. The road net-
work has 1040 nodes and 2836 one-way lines; observed
link flows and link times were available for most of the
links. The transit network has 56 lines, 1755 line seg-
ments, 500 egress-access links, and 800 nodes;' 575 of
the road network nodes are used in the coding of the
transit network as well.

In the summer of 1976 the city of Winnipeg performed
a speed-delay study, which consisted of measuring link
volumes and link automobile travel times for 80-90 per-
cent of the street system. In addition, bus travel times
were measured for 446 transit line sections. These data
served to recalibrate the volume-delay curves that were
used in the road assignment and to calibrate the bus-
automobile travel-time relationship required by EMME.

Since the city of Winnipeg had not previously used a
transit-assignment model, the transit network was coded
according to the EMME specifications, described by
Achim and Chapleau (6), that permit the interface be-
tween the road and transit networks.

During the summer of 1976, the city of Winnipeg also
performed an origin-destination survey of trips taken
from home to work. A 17 percent sample of households
was sampled and a separate survey of 23 percent of stu-
dent trips was performed at about the same time. Since
all of the analysis is done for the 7:30-8:30 a.m. peak
hour, one of the first tasks considered was to define the
departure codes, that is, the starting time of trips that
will be using the road and transit networks during the
peak hour. The departure codes were determined by
the city of Winnipeg staff and were specified by origin,



by using a subdivision of origins into 36 super zones.

By using the departure codes, the corresponding trips
are extracted from the survey data and multiplied by the
appropriate expansion factors to obtain an estimate of
the total person work trips taken in the peak hour by each
mode. Then the total automobile work-trip matrix is
scaled by appropriate automobile occupancy factors in
order to obtain the total automobile work-trip matrix.

This matrix was then assigned to the road network
and compared with the observed link volumes. Since
only the work trips are sampled during the origin-
destination survey, it was necessary to develop a set
of adjustment factors that multiply the number of trips
in the total automobile work-trip matrix in order to re-
flect automobile trips that are taken for purposes other
than work and a certain amount of truck traffic. These
factors are specified by origin to subdivide origins into
10 super zones. The determination of the most appro-
priate factor is a trial-and-error procedure. Where a
factor is tried, the resulting assignments are compared
to observed link flows and then a new factor is deter-
mined, which, it is hoped, is more appropriate. Five
factors were tried until satisfactory results were ob-
tained. In addition, trips to the University of Manitoba
required special departure codes, which were specified
for the subdivision of origins into 10 super zones, since
this zone is relatively more distant from most origins.
In the EMME computer system, the factors are con-
verted into a vehicle-adjustment trip matrix, which is
added to the total automobile work-trip matrix for the
purpose of the assignment.

Once the departure codes, and hence the fixed origin-
destination matrices, were determined, the modal-split
function was calibrated. Due to the large size of the
sample, it was possible to calibrate a zonal-aggregate
logit modal-split function. We were then provided by
the city of Winnipeg with a road-improvement scenario
and a transit-improvement scenario. We first analyzed
the base-year calibration by using the bimodal model and
then proceeded to analyze the impact of the scenarios.

THE BUS-AUTOMOBILE TRAVEL-
TIME FUNCTION

The purpose of this task was to develop a model that re-
lates the travel time of a transit vehicle on a road link
ta the corresponding travel time for private automobiles.
The model is used to take into account the change of
transit travel times as a result of a change in the con-
gestion level of a road link.

The data needed to develop this model are road link
lengths, observed automobile travel times on those links,
and the corresponding bus travel times. The road link
lengths and automobile times were obtained from the
road network data. The city of Winnipeg provided us
with observed bus travel times for line sections (a line
section is defined as the sequence of the corresponding
road links). (The model was designed for U.S. custom-
ary units only; therefore, values are not given in SI
units.)

We first created a data file that, for each line sec-
tion, contains the following information:

Starting node,
Ending node,
Direction (inbound or outbound),
Line number,
Observed bus time,
. Observed automobile time (for complete sequence
of links),
7. Minutes per mile for the bus on the section,
8. Minutes per mile for automobiles on the section,
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and
9. Number of road links in the section.

The file contains observations for 470 line sections. On

25 segments, the observed transit time was smaller than

the observed automobile time. Since this problem seems

to be related to the accuracy of the data, these observa-

tions were not considered in the calibration of the model.
We first introduce some notation:

Let
TA = automobile time on the line section (min),
TB = bus time on the line section (min),
TMA = automobile time per mile on the line section
(min/mile), and
TMB = bus time per mile on the line section (min/
mile).

First, we plotted TB as a function of TA. Figure 1
shows the resulting scatter diagram; a linear function
was fitted, resulting in an R? of 0.87. However, some
contemplation of this relationship reveals that, over
long sections, both the bus and the automobile times are
relatively long, and, of course, on short sections, both
times are relatively small (that is, they are both cor-
related to link length). Evidently, such a model would
not capture any effect of congestion.

We proceeded then to analyze the inverse of speed
(time per mile) (which is used in the formulation
of volume-delay curves). A simple linear model of TMB
versus TMA resulted in a poor fit of R* = 0.2. A linear
model of TMB versus TMA and TA increased the R® to
0.49, which also was not satisfactory. In both of the
above cases, we tried different models for the inbound
and outbound direction but the fits, reflected in the R?
values, were not improved.

A plot of (TMB/TMA) versus TMA showed that a non-
linear model could be more appropriate (Figure 2). An
exponential model of the form

2u[(TMB/TMA) - 11 =a, + 3, TMA (1)

was estimated by linear regression. Again, with an R® =
0.09, the model was rejected. We then attempted to use
a polynomial model of the form

(TMB/TMA) - 1 =a, (TMA) /2 + a, (TMA)™ + a3 (TMA)™/2
+a,(TMA)? )

which was estimated with a stepwise linear regression.
The on11y term that entered in the regression was a,
(TMA)~% and it resulted in an R? of 0,62, which, consider-
ing the accuracy of the data, was the first satisfactory
result obtained. The analytical form of this model (M1)
is

(TMB/TMA) - 1 = 1.97V1/TMA (3a)
or
TMB = TMA + 1.97 VTMA (3b)

As an alternative, we considered a linear model of
the form TMB = m(tod + TMA, where tois the inverse of
the free-flow speed of the road link. Values of t, were ob-
tained from the road network data, A linear regression
gave an R? of 0.62; the model (M2) is as follows:

TMB = TMA + 1.43t, @

where 1.43 tois a constant penalty in minutes per mile
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for transit vehicles, which is related in some way to the
link type.

The next step was to make an evaluation of the pre-
dictive ability of models M1 and M2. Since we are
mainly interested in predicting good transit impedances
(origin to destination path times), we decided to com-

T+
+ o+

H
4

pare for each line and each direction in the data file the

sum of the predicted travel times on each section against

the corresponding observed times. The results were

good for most of the lines (within 10 percent) except for

express services and for some high-speed regular lines.
It became evident that a natural way to improve the
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models was to stratify the data according to service type,
The three types considered were

1. Feeder—0 observations in data file,
2. Regular—426 observations, and
3. Express—44 observations.

Models of the same form as M1 and M2 were estimated
for the express service. The R® values were close to
0.5 and the models were not significant because of the
rather small number of observations available. In the
case of regular service, the recalibration of models
M1 and M2 resulted in the relations:

TMB = TMA + 2.1VTMA i (5a)
TMB = TMA + 1.49t, (5b)

The R’ values improved slightly (0.64), but overall
the models did not change significantly. We then sub-
divided the regular service into two categories by con-
sidering the average observed speed of each line. All
the lines that ran at less than 10 mph were classified as
regular and the others as fast regular.

For the fast-regular lines, the recalibration of model
M1 results in

TMB=TMA +2.15 R?=0.84 (6)

and the recalibration of model M2 results in

TMS=TMA +0.9t, R?=0.84 (@]

For the regular lines, model M1 becomes
TMB = TMA + 9.14/ VTMA! R? =0.78 (8)
and model M2 becomes

TMB =TMA +2.12t, R?=0.73 9)
This time the comparison, for each line and direction,
of the sum of observed and predicted times on each sec-
tion showed that TMB = TMA + 2.15 is a good model for
fast-regular lines. In the case of regular lines, both
models had to be rejected. Our next step in the analysis
of the regular lines was to go back to the previous form
of the model, that is, to estimate a function of the form

TMB = TMA + aVTMA (10)

that had proved to be satisfactory for regular lines, ex-
cept for the fast ones. The estimation resulted in an

« = 3.21 and an R? = 0.73. Unfortunately, the compari-
son of the sum of line-section times showed that the
previous model (& = 2.1, R® = 0.64), which had been es-
timated on all regular-lines data (fast regular and regu-
lar), gave better results than did the new one, which had
been estimated by using data for regular lines (< 10 mph)
only,

The above analysis suggested that it may be advan-
tageous to define fast-regular lines by using a higher
speed value, But further experiments indicated that the
results could not be improved in this way.

In consideration of the above analysis and the fact that
we did not have sufficient data for feeder and express
services, we finally selected and implemented the fol-
lowing bus travel-time relationships. On transit-only
links, the user-defined travel times are used. On tran-
sit links that correspond to road links,four cases are
considered:
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1. For a feeder service (line type 3) the user-
defined line speed is used on all links, independent of
automobile speed;

2. For an express service (line type 1) the bus
speed is the same as automobile speed (TMB = TMA);

3. TFor a fast-regular service (line type 2) we have
TMB = TMA + 2.15 (regular lines with an average speed
of 10 mph or more were considered as fast lines); and

4, For a regular service (undefined line type) we
have TMB = TMA + 2.1 ¥ TMA where TMB = minutes
by mile for bus and TMA = minutes by mile for auto-
mobile,

The relationships were applied to predict the transit
travel time on each of the 1755 transit links of the coded
network. On the basis of those predicted times, transit
paths between selected origin-destination pairs were
calculated. An analysis of the transit times and paths
suggested that we should change the classification of
some of the lines. After a few iterations of this pro-
cedure, we made final classifications for all of the lines.

An important fringe benefit of having included a bus
time model in EMME is that the user does not have to
define a travel time for each of the transit links; thus
the coding of the network is made much easier.

RECALIBRATION OF THE VOLUME-
DELAY CURVES

The volume-delay curves used by the city of Winnipeg
were developed in the early 1960s by Traffic Research
Corporation and had the functional form

Sa(va) = 4, (8 + [ (va/Re) - ¥] + {0 [(va/) - ¥12 + B} %) (11

We modified this functional form by replacing it with
the simpler BPR formula:

Sa(va) = dato [1 +a(va/c, )] (12)
where

d, = the link length,

v, = the link volume,

1, =the number of lanes of the link, and
¢, I=the practical capacity of the link.

The other parameters are calibrated from the observed
data. The initial transformation was done by Branston
(7). He estimated a practical capacity for each of the
volume-delay curves and then calibrated the constants
o, B of the BPR formula by using the predicted times of
the Traffic Research Corporation functions,

We then recalibrated the BPR curves obtained in
this way by using the 1976 data and the following pro-
cedure, For each volume-delay curve, the observed
data were aggregated by using a subdivision of the link
volumes (vﬁ into intervals, and mean values were com-
puted for each interval. The curves and the resulting
mean values of the travel times were plotted and ana-
lyzed; as a result, new free-flow speeds were deter-
mined and then the curves were replotted. This pro-
cedure was repeated three times, resulting in a new set
of o, 8, and to. Table 1 shows the values that were ac-
tually used.

It was evident from the plots used to determine the
free-flow speed that certain links, which exhibited ob-
served times below and to the right of the curves, would
be better predicted by delay curves that represent
higher-capacity links. In order to assist the city of
Winnipeg in this reclassification of links to different
curves, a report was produced for all links for which
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an observed flow was available. This report gives the
time predicted by the currently assigned curve and also
other curves that would predict the travel time better
and still respect the speed limit., This report was used
to reclassify links on a route basis. Links that had
large differences between predicted and observed times
were plotted on a map in order to determine the links of
an avenue or street that had to be reclassified. In some
cases the number of lanes was corrected as well. This
analysis also resulted in the correction of some ob-
served travel times and volumes. In total, 159 links
were reclassified, the number of lanes was changed for
23 links, the observed time was updated for 192 links,
and the observed volume was updated for 21 links. Fig-
ure 3 shows plots of the origin-to-destination travel
times along shortest paths computed by using the volume-
delay curves versus the observed times.

CALIBRATION AND VALIDATION OF
THE ROAD-NETWORK ASSIGNMENT

The calibration of the road network was achieved by
comparing the observed link volumes with the link vol-
umes predicted by the traffic-assignment model. The
comparison is performed by using specially written

Table 1. Volume-delay functions.

Speed Free-Flow
Limit Times Minutes

CACO (mph) o -] {to) per Mile

1 0-30 0.7312 3.6596 15.0 4,00

2 0-30 0.6218 3.5038 17.0 3.53

3 0-30 0.8774 4.4613 20.0 3.00

4 0-30 0.6846 5.1644 23.0 2.61

5 0-30 1.1465 4,4239 25.0 2.40

6 31-40 0.6190 3.6544 30.0 2.00

7 31-40 0,6662 4.9432 32.4 1.85

8 31-40 0.6222 5.1409 32.4 1,85

9 31-40 1.0300 5.5226 35.3 1.70
10 41-50 0.6609 5.0906 41.4 1.45
14 41-50 0.5423 5.7894 41.4 1.45
15 41-50 1.0091 6.5856 41.4 1.45
15 +50 0.8776 4.9287 55.0 1.09
16 +50 0.7699 5.3443 56.0 1.09
18 +50 1.1491 6.8677 55.0 1.09
Figure 3. TRC versus BPR curves.
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programs and by manually comparing screen-line totals
for the observed and predicted flows. Discrepancies be-
tween observed and predicted values may be caused by
the errors introduced in the total automobile origin-
destination matrix or by improper coding of the road
network. Since the 1976 road network differs little from
the 1971 network, which was carefully calibrated, the
corrections necessary to the coding of the road network
were all found during the recalibration of the volume-
delay curves and most of the adjustments made involved
the total automobile origin-destination matrix.

This matrix is calculated from the total person work-
trip matrix by using the observed modal-split and
automobile-occupancy matrices and a set of adjust-
ment factors that serve to add other-purpose trips and
truck trips; that is

gpa = (8pq * Tpa/Vpq) * fpq 13)
where

(p,q) = an origin-destination pair of zones,
g,, = the total person work trips between q and p,
r,, = the proportion of trips by automobile,
vpq = the automobile occupancy, and
f,, = the factor for other trips and truck trips.

The factors f,, are given as a matrix of values for 10
groups of zones (super zones). The essence of the cali-
bration procedure was a trial-and-error process that
was aimed at finding the most appropriate factors based
on the comparison of observed and predicted link vol-
umes, While this was carried out, 19 errors in the ob-
served link volumes were detected and corrections were
made.

All the factors in the calibration procedure were de-
termined by the staff of the city of Winnipeg by using
screen-line counts, The screen lines chosen divide the
city into three quadrants by using natural geographic
subdivisions. A specially written program selects the
links that cross each of these lines and provides the ob-
served and predicted volumes, which are then totaled
for each screen line,

First, an assignment was produced by using only the

®
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Table 2. Parameters assigned for the analysis.

Assignment WALK WAIT WFAC WPEN WMIN WMAX
First stage
3.0 3.0 0.5 0.0 0.0 10.0
2 0.0 1.0 0.5 0.0 0.0 10.0
3 0.5 2.0 0.5 4,0 0.0 10.0
Commonline
section
4 3.0 3.0 0.5 0.0 0.0 10.0
5 0.0 1.0 0.5 0.0 0.0 10.0
6 0.5 2,0 0.5 4.0 0.0 10,0
1 0.5 3.0 0.5 4,0 0.0 10.0

automobile work-trip matrix, which is obtained by set-
ting f,, = 1. By relating super-zone pairs with screen-
line crossings it is possible to adjust the various factors
to increase or decrease the interchanges across the
screen lines. The correspondence is as follows:

Quadrant Super Zones

1 1,23

2 4,5

3 Rest + downtown (0)

Various other considerations were taken into account

in determining the factors (f,,), such as the low produc-
tion of truck trips by residential areas and the high pro-
duction of truck trips by industrial zones.

TRANSIT NETWORK VALIDATION
AND CALIBRATION

This part of the project required considerable effort,
since prior to this study the city of Winnipeg did not have
a transit network model and the work included the defini-
tion of the network, its coding, validation, and calibra-
tion.

The purpose of the validation is to make sure that the
transit system is described properly. The coded net~
work must represent adequately all possible passenger
movements and transit vehicle movements. The valida-
tion of the network consists, then, of ensuring that the
coding rules have been followed correctly and that the
representation of the two types of movements is satis-
factory. The tools used in validation are

1. EMME data bank programs, which perform the
syntactic and data consistency checks;

2., Network generation programs, which ensure that
the rigorous restrictions imposed on the input data in
order to realize the interface with the road network and
to determine transit travel times are satisfied;

3. Graphical displays of the network;

4, Manual checks of the data; and

5. Analysis of the complete printout of the transit
assignment.

This task was carried out in cooperation with the staff
of the city of Winnipeg.

The calibration deals with the other aspect of the
transit system, that is, the behavior of the transit pas-
sengers in the selection of paths on the network. Given
the shortest-path behavior hypothesis, it is necessary to
estimate the value of certain parameters of the transit
path algorithm in order for it to produce satisfactory
paths between the various origin-destination pairs.

The parameters to be estimated are

1. WFAC-—a regularity factor relating the waiting
time to the headway of the line to be boarded,
2. WMIN—the minimum waiting time,

3. WMAX-—the maximum waiting time,

4. WAIT—the weight of waiting time used in the cal-
culation of the impedance of a path in generalized time
units,

5. WPEN-—a constant penalty added to the impedance
every time the passenger has to wait for the bus, and

6. WALK—the weight of walking time (access-egress)
used in the calculation of the impedance of a path.

A given path that contains n line sections has an im-
pedance, in generalized time units, that is given by the
expression:

n
IMP = WALK « (access + egress time) + WAIT « Z Wy
0=1
+2T9 +n « WPEN (14)

R=1

where

W, = the waiting time of the ¢ th line defined as

W min [max (WMIN, WFAC * HDW,), WMAX],
HDW, = the headway of the 4th line and transfer time

and is considered as being included in waiting
time, and

T, =the in-vehicle time spent on the 4 th line,
which is assumed to have a wait of 1.0 in the
impedance calculations.

For each origin-destination pair the algorithm selects
the path with minimum impedance from origin O to des-
tination D. The best way to calibrate the transit model
would be to compare the predicted paths to the actual
paths obtained from the origin-destination survey. Un-
fortunately, in the Winnipeg survey there was no ques-
tion about the path used by transit riders. The method
that we used consisted of analyzing the predictions of a
transit assignment by comparing it with the observed
volumes on the segments. Analyses were also made on
level-of-service statistics (i.e., mean total trip time,
mean number of transfers, and distribution of total trip
time) and on predicted line volumes. Given the all-or-
nothing aspect of the assignment, only large volumes
may be analyzed., The following volumes were analyzed:

1, The volume at the maximum load point of each
line in both directions,

2. The location of the maximum load point,

3. The volume profiles on lines, and

4. Screen-line volumes [entering and leaving the
central business district (CBD), bridges, and other high-
volume links 3.

In the first stage of the analysis, three assignments
(assignments 1-3 in Table 2) were performed by use of
the parameters given.

The analysis made by the staff of the city of Winnipeg
showed that assignment 1 was the best one, but the split
of volumes between competing lines was not satisfactory.
We then introduced the ""common line section' algorithm
in the model. With this algorithm the passengers are
diverted over common bus lines proportionally to the
frequency of each line (i.e., passengers are assumed to
board the first line that arrives at the bus stop). We ran
four new simulations (assignments 4-7 in Table 2).

Assignment 4, which is similar to number 1, proved
to be the best one and the spread of volumes had im-
proved significantly.
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CALIBRATION OF THE MODAL-SPLIT
FUNCTION

The basic data that were used for the calibration of the
modal-split function are the results of the' origin-
destination survey that was carried out by the city of
Winnipeg in the spring and summer of 1976. The sur-
vey was carried out in large part by home interviews of
a sample of 20 percent of households. The actual sample
size obtained was roughly 17 percent, after refusals and
rejections have been taken into account. In addition, a
survey questionnaire, which was to be returned by mail,
was distributed to the students of the three Winnipeg
universities; the effective sample of student trips was
approximately 23 percent. The total sample, consisting
of the individual detailed data, amounted to 52 424 ques-
tionnaires and these data were transmitted to us ona
magnetic tape by the city of Winnipeg. Then, the de-
parture codes, described earlier, were applied in
order to separate the trips that occurred during the
7:30-8:30 a.m. peak. There were 17 761 individual
records in the peak-hour subsample.

The number of trips that occurred during the peak
hour was expanded by the proportion of the sample in
each zone, which was calculated by the city of Winnipeg,
in order to obtain the following origin-destination ma-
trices:

Automobile drivers and passengers—1, automobile
drivers—1’

Transit passengers—2

Total trips—3 = (1 + 2)

Modal split—4 = (1/3)

Automobile occupancy—5 = (1/1°)

(The automobile drivers and passengers origin-
destination matrix shall be referred to as the automobile
origin-destination matrix.) The automobile origin-
destination matrix was scaled by the appropriate factor
to obtain the total automobile origin-destination matrix
and this last was assigned to the road network by using
the equilibrium traffic assignment of EMME. The re-
sulting origin-to-destination travel times constitute the
origin-destination matrix of

Road travel times—6
and by tracing a set of shortest paths on the links that
carry flow we obtain the origin-destination matrix of

Distance by road—"7

Next, the transit origin-destination matrix was used to
calibrate the transit assignment. Other than refinements
of the transit network representation, this calibration
determines the coefficients of generalized time (or cost)
in the expression

Transit impedance = a(Access time + egress time
+ wait time) + (In-vehicle time) (15)

As described earlier, the values for o and g8, determined
in cooperation with the city of Winnipeg, are 3 and 1, re-
spectively., Thus we obtained the origin-destination ma-
trix of

Transit impedance—38

and by tracing the shortest paths used we determined
the origin-destination matrix of

Number of transit transfers—9

Since our approach is to calibrate a zonal-aggregate
modal-split function, we extracted from the survey data
(a) the average automobile ownership per household per
zone, (b) the proportion of adults who travel at the peak
hour, and (c) the proportion of students who travel at the
peak hour for each origin-destination pair.

The other socioeconomic variables were obtained by
the city of Winnipeg from various sources and trans-
mitted to us. The Statistics Canada 1976 Census pro-
vided the average income per household per zone and
the origin-destination survey estimated the number of
jobs per zone. The parking costs per month per zone
and the number of parking spaces per job per zone were
evaluated by using 1971 data.

Thus, in all, a file was constructed that consisted of
the dependent variable, the modal split, and the inde-
pendent explanatory variables outlined above. This file
contained the records for all origin-destination pairs
that had more than 60 trips by both modes in the ex-
panded matrix (3) of trips by both modes. The main
reason for adopting this procedure is that the modal
split for origin-destination pairs with smaller demand
would have far more variability due to the relatively
small number of trips in the sample,

The functional form that we chose for the calibration
is that of the logistic function. Although this form
achieved recent fame in its use as a disaggregate
probabilistic-choice function, we use it with aggregate
data due to its ease of manipulation and its property of
predicting choice values with a smooth ogive-type curve.
The form that we used is

Pau = 1/1 +explko + 2 kix) (16)
where

Pa = the proportion of trips that occur by
automobile,
ko = a constant, and
ky, i =1,...,m =the coefficients associated with the
x,, 1 =1,...,n explanatory variables.

A simple algebraic manipulation results in the form
on (1 - Pp/Pus) = Ko+ Tk, X,, which is used for calibrating
ko, ky, i =1,...,n by simple linear regression. This
method of estimation is often referred to as Berkson-
Theil estimation to acknowledge their early work (8,9)
in aggregate logistic-function calibration. S—

Another functional form that we tried is the so-called
"dogit" proposed recently by Gaudry (10), which adds to
the logit form modal constant 8,,, 8., as follows:

Pau = (1/1+0au + 0:)[1/1 + exp(ko + Zkixi)] +6,, a7

However, in all of the trials that we performed, the
best values for 0,,, 6.. were always zero; that is, the
logistic function was satisfactory and neither of the two
modes considered had a fixed proportion (g,, or @,,) of
the modal split as an advantage.

The actual calibration test spanned a period of eight
months, during which several hundred regressions were
run by also using transformations of the explanatory
variables. The best modal-split model for all the con-
sidered origin-destination pairs is given in Table 3.

We were not entirely satisfied with this model because
the best fit obtained with a transformation of variables
was not much better, as can be seen in Table 4.

We then subdivided the origins into subgroups by using
a criterion related to the error introduced by the modal-
split function. We reasoned that errors on individual
origin-destination pairs were unavoidable; however, the
model should not distort the origin-destination matrix.



That is, there should not be too much bias introduced

on demand totals by origins and destinations. Thus, we
subdivided the origins into subgroups according to the
error introduced by the model on origin totals; that is,
origins that had negative deviations were grouped to-
gether and origins that had positive errors and origins
that had acceptable error formed a second and third sub-
grouping. Finally, we obtained four modal-split models
as shown in Table 5.

BASE-YEAR CALIBRATION—BIMODAL
MODEL

The execution of a bimodal assignment in EMME re-
quires the simultaneous use of the vehicle assignment,
the transit assignment, and the modal-split function.
Each is calibrated independently and then used jointly
in the computations. Since each introduces a certain
error by its calibration, there will be some differences
between the observed values and the output of the bi-
modal computations for the base year. Fortunately,
these differences are not large and are well within the
variances that are acceptable in calibration of trans-
portation models,

The staff of the city of Winnipeg asked that we apply
the modal-split function to all of the origin-destination

Table 3. Model 1 parameter values.

Parameter 95 Percent Confidence
Variable Value Interval
Constant (ko) 2.563 1.758 to  3.369
Transit impedance -0.0122 -0,220 to -0.002 42
Automobile time 0.0220 0.001 92 to 0.0422
Proportion men -3.279 -4.117 to -2.441
Parking cost 0.0745 0.0532 to  0.0957
Automobile availability -1.904 -2.726 to -1.082
R 0.60
R 0.77
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pairs, even though we had calibrated the model by using
only origin-destination pairs that had more than 60 trips
in the expanded total trip matrix, This became neces-
sary because only about 28 percent of the total trips
were represented by that sample, Thus we applied, to
all origins that were not represented in the calibration
data, the initial modal-split model (model 1). For all
other origins, we applied the corresponding modal-split
models to all of the relevant destinations. The results
were surprisingly good. Only 307 trips {(or 0.5 percent
of the total number of trips) are the difference between
the observed total number of trips by automobile and the
differences that result on trip ends (that is, origin and
destination totals) are mostly of the order of up to 8 per-
cent. The predicted origin-destination matrix is plotted
versus the observed origin-destination matrix in Fig-
ure 4.

We judged these demand differences acceptable in
view of the general consideration that the true demand
varies daily and differences of the order of 10 percent
between various days of the week are accepted to be
commonplace, Further, these differences were not suf-
ficiently high to materially change the orders of magni-
tude of the link flows on the important arteries.

The computation times on the CDC-Cyber-176 of the
University of Montreal for the base year bimodal run
are as follows:

Computation Step Time (s)

Generate transit network 3.66
Calculate bus frequency 1.23

Calculate transit impedance 1110.55
Initialize road traffic demand 3.44
Perform road traffic assignment 2509.44
Modify transit link times 67.61

Calculate fixed transit demand 1.77

Calculate demand function (transit) 0.00
Perform transit assignment 423.91
Modify transit capacity 0.00

The costs are given below,

Function Cost
Table 4. Model 2 parameter values. e Cost 18]
Central processor 189.20
Parameter 95 Percent Confidence Input-output 22.80
Variable Value Interval Fast memory 560.40
Constant (ko) 16.566 10.000 to -23.131 Total 772.40
(Transit impedance)* -0.000 758 -0.000 127 to” -0.000 242
(Automabile time 0.000 242 -0.000 180 to  0.000 665
(Proportion men)’ -2.256 654  -3.478 to -2.234 CONCLUSION
Parking cost 0.363 40 0.276 to  0.444
2,“"°°mﬂ’ e -2.448  to -1.058 There are several ways in which EMME may be used to
R 0.80 simulate the impact of contemplated improvement sce-
narios. One may use the single-mode assignment mod-
Table 5. Model 3 parameter values.
Model 3a Model 3b Model 3¢ Model 3d
95 Percent Confi- 95 Percent Confi- 95 Percent Confi- 95 Percent Confi-
Variable Value dence Interval Value dence Interval Value dence Interval Value dence Interval
Constant 2.352 1.004 to 5.708 1.516 0.297 to 2.735 3.071 -0.0140 to 6.156 2.935 1.860 to 4.010
Transit
impedance -0.0133 -0.0532 to 0.0265 -0.0101 -0.022'1 to 0.00178 -0.0315 -0.0513 to -0.0118 -0.0139 -0.0408 to -0.131
Automobile
time 0.0334 -0.0503 to 0.117 0.0253 0.000 186 to 0.050 4 0.0733 0.0343 to 0.112 0.0323 -0.0302 to 0.0949
Proportion
men -2.799 -5.646 to 0.0491 -3.719 -4.827 « to -2.611 -3.101 -5.043 to -1.159 -2.499 -4.020 to -0.978
Parking cost 0.0959 0.0225 to 0.169 0.0968 0.069 4 to - 0.124 0.471 0.004 71 to 0.0895 0.0332 -0.0124 to 0.0787
Automobile
availability -3.023 -6.359 to 0.312 -1.232 -2.394 to -0.069 8 -1,502 -4.686 to 1.682 -1.844 -3.139 to -0.548
% 0.72 0.67 0.78 0.64
R 0.85 0.82 0.88 0.80
Number of
origin-
destination
pairs 26 135 36 45
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Figure 4. Predicted automobile demand by origin for bimodal run.
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ules and thus simulate the impact of the scenario without
changing the modal shares of the demand. This may be
appropriate for some situations where only marginal
improvements are made and the only interest is to an-
ticipate the changes in route choice that result due to
the modifications. However, most current transporta-
tion planning methods have this capability. The other
way to use EMME is to simulate the impact of each sce-
nario with a full bimodal run, which would predict the
anticipated changes in modal share of demand as well.
This capability is so far unique to EMME.

The main conclusion that we draw from this project
is that the use of sophisticated models, such as EMME,
is feasible and the simulation of scenarios results in
refined and fully detailed evaluations, which would not be
possible otherwise. The main obstacles are the quality
of the available data and the calibration of the demand
model. Fortunately, we had access to very good data
and we succeeded to calibrate a satisfactory modal-split
model.

The costs of building up the necessary data base and
calibrating the model are relatively high; however, the
use of the model is not expensive. The figure of $800
for each bimodal simulation is reasonable, when one
considers that the analyst's time to set up a scenario
and analyze the EMME output is one to two days.
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Confidence Intervals for Choice
Probabilities of the Multinomial

Logit Model

Joel Horowitz, U.S. Environmental Protection Agency

This paper describes three methods for developing confidence intervals
for the choice probabilities in multinomial logit models. The confidence
intervals reflect the effects of sampling errors in the parameters of the
models. The first method is based on the asymptotic sampling distribu-
tion of the choice probabilities and leads to a joint confidence region for
these probabilities. This confidence region is not rectangular and is use-
ful mainly for testing hypotheses about the values of the choice proba-
bilities. The second method is based on an asymptotic linear approxima-
tion of the relation between errors in models’ parameters and errors in
choice probabilities. The method yields confidence intervals for individ-
ual choice probabilities as well as rectangular joint confidence regions for
all of the choice probabilities. However, the linear approximation on
which the method is based can yield erroneous results, thus limiting the
applicability of the method. A procedure for setting an upper bound on
the error caused by the linear approximation is described. The third
method is based on nonlinear programming. This method also leads to
rectangular joint confidence regions for the choice probabilities. The
nonlinear programming method is exact and, therefore, more generally
applicable than the linear approximation method. However, when the
linear approximation is accurate, it tends to produce narrower confidence
intervals than does the nonlinear programming method, except in cases
where the number of alternatives in the choice set is either two or very
large. Several numerical examples are given in which the nonlinear pro-
gramming method is illustrated and compared with the linear
approximation method.

The multinomial logit formulation of urban travel-demand
models has a variety of theoretical and computational
advantages over other demand-model formulations and

is receiving widespread use both for research purposes
and as a practical demand-forecasting tool (l—g). How-
ever, travel-demand forecasts derived from logit
models, like forecasts derived from other types of
econometric models, are subject to errors that arise
from several sources, including sampling errors in the
estimated values of parameters of the models, errors

in the values of explanatory variables, and errors in the
functional specifications of the models. Knowledge of
the magnitudes of forecasting errors can be important in
practice, particularly if either the errors themselves

or the costs of making erroneous decisions are large.
This paper deals with the problem of estimating the mag-
nitudes of forecasting errors that result from sampling
errors in the estimated values of the parameters of logit
models. Specifically, the paper describes techniques

for developing confidence intervals for choice probabili-
ties and functions of choice probabilities (e.g., aggre-
gate market shares, changes in choice probabilities
caused by changes in independent variables) derived from

logit models, conditional on correct functional specifica-
tion of the models and use of correct values of the ex-
planatory variables.

A model's forecasting error can be characterized in
a variety of ways, including average forecasting error
and root-mean-square forecasting error, in addition to
confidence intervals for the forecast. Among the vari-
ous error characterizations, only the confidence inter-
val provides a range in which the true value of the fore-
cast quantity is likely to lie. Methods for developing
confidence intervals for the forecasts of linear econo-
metric models are well known (4). However, these
methods are not applicable to logit models, which are
nonlinear in parameters. Koppelman (5, 6) has analyzed
the forecasting errors of logit models and has described
the ways in which various sources of error contribute to
total error in forecasts in choice probabilities. Koppel-
man's error measures do not include confidence inter-
vals for the choice probabilities although, as will be
shown later in this paper, one of his error measures can
be used to derive approximate confidence intervals.

Three methods for estimating confidence intervals
for the choice probabilities of logit models are described
in this paper. All of the methods lead to asymptotic con-
fidence intervals in that they are based on the large-
sample properties of the estimated parameters of the
models. The first method is based on the exact asymp-
totic sampling distribution of the choice probabilities
and leads to a joint confidence region for these prob-
abilities. This region is useful mainly for testing hy-
potheses about the values of the choice probabilities.
The region is not rectangular and, therefore, is diffi-
cult to use in practical forecasting. Moreover, the
methods used to derive the confidence region cannot be
readily extended to functions of the choice probabilities.

The second method is based on an asymptotic linear
approximation of the relation between sampling errors
in models' parameters and sampling errors in choice
probabilities. The linear approximation method yields
confidence intervals for individual choice probabilities
as well as rectangular joint confidence regions for all of
the choice probabilities. The method can easily be ex-
tended to functions of the choice probabilities. However,
the linear approximation on which the method is based
can yield erroneous results, thus limiting the method's
applicability. A procedure for placing an upper bound
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on the error caused by the linear approximation is
described,

The third method is based on nonlinear programming.
This method yields rectangular joint confidence regions
for the choice probabilities and can be extended to func-
tions of the choice probabilities. The method does not
require approximation of the relations between sampling
errors in models' parameters and sampling errors in
choice probabilities and, therefore, is more generally
applicable than is the linear approximation method.
Several numerical examples are given in which the
nonlinear programming method is illustrated and com-
pared with the linear approximation method.

PROPERTIES OF THE LOGIT MODEL

In the multinomial logit model, the probability that in-
dividual n selects alternative i from a set of J, available
alternatives is given by

in =exp(vi")/2 exp(Vjn) €3]

=

where Py, is the probability that alternative i is chosen
by individual n, and Vy, (j=1, ..., J,) is the systematic
component of the utility of alternative j to individual n.
For each alternative i, V,, is assumed to be a linear
function of appropriate explanatory variables. Thus

Vin = Ximn Om (2)

M=

3
o

where

M = the number of explanatory variables,
X,an = the value of the m th explanatory variable for
alternative i and individual n, and
&, = the coefficient of explanatory variable m.

The values of the coefficients (or parameters) ¢, ordi-
narily are not known a priori and are estimated from
observations of individuals' choices by using the method
of maximum likelihood. Details of the estimation pro-
cedure and the statistical properties of the estimated
coefficients are described by McFadden (7).

Denote the estimated coefficients by {a,; m=1,
..+, M}, For each alternative i and individual n define

2 M
Vin = 2 Xi.mn adm (3)

V.. is the estimated systematic utility function for alter-
native i and individual n. V,, is a random variable b
virtue of its dependence on the random variables Iaj.
Define

X - ]n n
P =exp(Vin) [ D exp(Vi)  (i=1,...,J;n=1,...,N) )

=t

i)m estimates the probability that individual n makes
choice i and is the forecast of the choice probability that
is used in applications of the logit model. Accordingly,
the subsequent sections of this paper,are concerned with
the development of ranges about the P,; that are likely
to contain the true choice probabilities P,,.

Assume that the coefficients {a,} have been estimated
by the method of maximum likelihood by using a data
set that consists of observations of N individuals'
choices. Then for large N, the estimated coefficients
{a,} are asymptotically jointly normally distributed with

mean values {q,} and covariance matrix A™', where

N n
A== D7 Kjen = Xorn) Kisn - Xosa) Pin

(s =1 c0u5:M) (%)
n=1 j=1
and
In
X-rn =Z ij Pjn i (6)
=1
In addition, the quadratic form
M M
Q@, )= X (a; - o) Ay (a; - o) Q)

i=1 j=1

tends asymptotically to the chi-square distribution with
M degrees of freedom.

Let one of the J, alternatives available to individual
n be considered a numeraire, and denote this alterna-
tive by t. Then the random variables (V,, - Vy,; i=1;

., J,; i#t} are linear combinations of the asymptoti~
cally normally distributed random variables {a,} and
are themselves asymptotically jointly normally distrib-

uted with mean values {V,, - Vi, i=1, ..., Jy;i#t}and
covariance matrix C,”!, where

M M
€= Y (A Kien = Keen) Kijon = Xisn) (8)

=1 s=1

and (i, j=1, ..., J,;i, j #t). In addition the quadratic
form

Jn I

RV, Vo) = 20 3 (€Cadis [(Via = Vi) = (Via = Vin)]
i=1 j=1
ijft

b [(\-/jn - vtn) = (Vjn - Vin)] ()]

is asymptotically distributed as chi-square with J, -1
degrees of freedom.

In practical applications of logit models, the prob-
abilities P,, and, therefore, the matrix A in Equation 5
are not known due to their dependence on the unknown
coefficients {a,}. Therefore, P,, is approximated by
P,, in Equation 5. This approximation is used without
further comment in the rest of this paper.

In the following discussion the subscript n, which
denotes the individual, will not be used unless needed
to prevent confusion. The choice probabilities will be
understood to apply to an individual, The explanatory
variables X,, will be assumed to have known, fixed
values. All uncertainty in the choice probabilities will
be due to their dependence on the unknown coefficients

{og

Confidence Intervals for Choice
Probabilities in Binary Logit
Models

If there are only two alternatives in the choice set (J=2),
thenC™ isa scalar. Therefore, if Z.. isthe 100 (1 - <)
percentile of the standard normal distribution, a
100(1-¢) percent confidence interval for Vi - V: is

(V- V2) = ZepyCH <V, -V, <(V, - Vo) + 2, C¥ (10)

Denote the left- and right-hand expressions of inequali-
ties by b and B, respectively. Then, the expressions for
the 100 (1-¢) confidence intervals for P, and P, in the
binary logit model are

1/[1 +exp(-b)] <P; < 1/[1 + exp(-B)] a1



and
1/[1 + exp(B)] < P, < 1/[1 + exp(b)] (12)

These simple expressions for confidence intervals exist
only for binary choice models.

Joint Confidence Regions for the
Choice Probabilities Based on
Asymptotic Sampling Distribution

Equation 4 for the estimated choice probabilities can be
rewritten as

P, = exp(V; -\’f,)/[l + 3 exp(V, -\'/‘)] i# 1) (13)
JFt
P=1-2P a4
ift

where t denotes the numeraire alternative. Equation 13
defines a transformation from the random variables
(¢, - ¥.; j#) to the random variables (P,; i#t]. This
transformatlon has a nonsingular Jacobian matrix. Ac-
cordingly, the joint probability -density function of the
random variables {P,; i#t}, conditional on P,, can be
derived by using standard procedures (8). The result is

. . I o
f({P;  ift}IP) = @m0z |C|% (H Pj)

=1
xexp{-(4) T ¥ C;llog(P/P,) - 1og (Bi/P)]
 [log(By/P) - log(B;/Py)]} (15)

where | C | denotes the determinant of the matrix C and
the quantity on the left-hand side denotes the joint
probability-density function of {P,; i#t}, conditional on

¢ a
The conditioning of density function 15 on P, can
be removed by noting from Equation 14 that P, is com-
pletely determined by (P,; i#t}. Thus, the ]Omt
probability -density function of all of the P1 (i=1, ..., J)
is

i R DR S

J o N =
5(1 -y P,)f({Pi,i#t} [Py) 16)

where 6 is the Dirac delta function. Equation 16 con-
stitutes a multivariate generalization of the univariate

Ss distribution (9). The univariate distribution has been
applied in a transportation context by Westin ( 10), who
used the distribution to develop aggregate forecasts from
a binary logit model,

The distribution in Equation 16 is highly intractable.
To develop a confidence region for P, it is more con-
venient to work with the distribution of the logarithms of
the choice probabilities than with the distribution of the
probabilities themselves. Specifically, Equation 4 im~
plies that

1og(Pi/Py) - log(P;/P) = (V; - V) - (V; - V) an

Equations 9 and 17 together imply that the random vari-

able R* defined by

] J

R*(R,B)= Y, ) Cyllog(Pi/P,) - Iog(P/P,)]
1

=1 =
iitt !

x [1og(P;/P,) - 1og(P;/P,)] (18)
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has the chi-square distribution with J-1 degrees of free-
dom, Let % (¢, K) denote the 100 (1 - €) percentile of
the chi-square distribution with K degrees of freedom.
Then, the inequality

R*(P, P) <x*(e,J - 1) (19)

together with Equation 14 define a ]omt 100 (1 - ¢) per-
cent confidence region for {P,; i=1, ..., J}. Specifi-
cally, given estimated values of [Pi, 1- J}, the
confidence region consists of the set of all Pi (i=1,
..., M) such that Equation 14 and inequality 19 are
satisfied.

The confidence region defined by Equation 14 and in-
equality 19 is not rectangular and, therefore, is difficult
to use in practical forecasting. In particular, the con-
fidence region does not directly yield constants b, and B,
(i=1, ..., J) such that b, <P, <B, with a specified level
of confidence. However, the confidence region can be
used to test hypotheses about the values of the P,. Let
the null hypothesis be P; = P1*, P, = P.*, ..., P,= P ¥,
and assume that T P,*=1. Substitute P,* for P, in Equa-
tion 18 and compute R*. Then, the null hypothesis is
rejected at the ¢ significance level if R* fails to satisfy
inequality 19.

The method used to develop inequality 19 for individ-
ual choice probabilities cannot be extended to functions
of the choice probabilities, such as aggregate market
shares and changes in choice probabilities caused by
changes in explanatory variables. The number of utility
components V; - V; in such functions exceeds the number
of dependent variables (e.g., aggregate shares, changes
in choice probabilities) defined by the functions. There-
fore, equations such as Equation 17, which define one-
to-one mappings between the utility components and the
dependent variables, do not exist, and chi-square dis-
tributed quadratic forms analogous to R* cannot be de-
veloped. Moreover, the sampling distributions of ag-
gregate shares and changes in choice probabilities con-
tain intractable integrals that prevent these distributions
from being used to form confidence regions,

Confidence Regions Based on a
Linear Approximation

Equation 4 for the estimated choice probablhtles can be
expanded in a Taylor series about V, vV, (§=1, , J)
to obtain

- J
P=P+ Y @QP/OV(V;-V)+4  (i=1,...,]) (20)
i=1

where A is a remainder term. As the size of the sample
used in estimating the V, approaches infinity, A con-
verges in probability to zero and P, converges in prob-
ability to (11):

- J o i
P, =P; + 3 (3P/aV))(V; - V)) @n

i=1

The random variables {V, - V,} are asymptotically
jointly normally distributed with mean values of zero
and covariance matrix D™!, where

M M
(D™= D) i Xiea (A™ g (22)
=1 s=1
and A is the matrix defined in Equation 5. Therefore,
P, is asymptotically normally distributed with mean
value P, and variance
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var(1;|) =

J
j=

)
Z @P/3V)@P/aV)(D ) (i=1,...,1) (23)

1 k=

It follows that an asymptotic 100(1-¢) percent confidence
interval for P, is

P - Zejy [var(P)] % < Py < By + Z,p, [var (P)]% 4)
/ /

where Z.;, is the 1-¢/2 percentile of the standard nor-
mal distribution. The numerical value of var (P,) can
be approximated by substituting V for V and P for P in
Equation 23. Equation 21, which is a well-known ap-
proximation in mathematical statistics, formed the basis
of Koppelman's analysis of errors in disaggregate
models (5, 6).

Equation 24 can also be used to develop rectangular
joint confidence regions for the P,. LetI, be a
100(1-¢/J) confidence region for P, as given by Equation
24. Then
Pr(P,ely, Pyel,, ..., Prelj) =1 -¢€ (25)
Thus {P,;i=1, ..., J}is contained in the J-dimensional
rectangular region P; €I, ..., P, € I,and has a con-
fidence level that equals or exceeds 100(1 - €) percent.

The confidence interval defined by inequalities 24 and
the joint confidence region defined by inequality 25 can
easily be generalized to apply to functions of choice prob-
abilities, including aggregate market shares and changes
in choice probabilities caused by changes in explanatory
variables. The generalization consists of substituting
the functions of interest in place of the choice probabili-
ties in Equations 21-24. The generalization of Equation
23 to aggregate market shares is given by Koppelman
(5,6).

" The advantages of the confidence regions defined by
inequalities 24 and 25 are substantial: The regions are
rectangular, generalizable to functions of the choice
probabilities, and computationally tractable. However,
because of the regions' reliance on the asymptotic ap-
proximation of Equation 21, the accuracy of the confi-
dence levels associated with the regions can vary greatly
and may be highly erroneous. This variation in accuracy
is illustrated in the following examples.

Consider the univariate, binomial logit model

P; = exp(aX;)/[exp(aX,) + exp(aXz)]  (i=1,2) (26)
where X, is the explanatory variable of the model evalu-
ated for alternative i and « is a constant. Let a be the
maximum likelihood estimator of &, and let the sampling
variance of a be ¢®°. Assume that X, =0, X, = 0.1, a = 3,
and ¢ = 1. Then from inequalities 24, a 95 percent con-
fidence interval for P, is 0.378 < P, < 0.474. The con-~
fidence level associated with this interval also can be
computed without using approximation 21 by noting that
0.378 < P, <0.474 is equivalent to 1.041 < a < 4,980,
Using the asymptotic normality of the estimaled coel-
ficient a, the confidence level associated with 1.041 <

& < 4,980 and, therefore, with 0.378 < P, < 0.474 can be
computed to be 95.12 percent. Thus, in this example,
inequalities 24 yield an accurate estimate of the confi-
dence level.

Now let X; = 1.0 while X;, a, and ¢ remain unchanged.
Then inequalities 24 yield -0.041 < P, <0.136 as a 95
percent confidence interval for P,. If the confidence
level associated with this interval is computed directly
from the asymptotic distribution of a without using the
approximation 21, a confidence level of 87.5 percent is
obtained. A true 95 percent confidence interval for P,
is 0 = P, £ 0.205. Thus, in this case inequalities 24
yield erroneous results.

Nonlinear Programming Approach to
Developing Confidence Regions

A method for deriving joint rectangular confidence re-
gions for multinomial logit-choice probabilities without
using approximation 21 is described in this section. De-
note the vectors of true coefficients (e, ..., 6y and
estimated coefficients (e, ..., o) by o and a, respec-
tively. Let Q(a, o) be the quadratic form defined in
Equation 7, and let »°(e, M) be the 100(1 - ¢) percentile
of the chi-square distribution with M degrees of freedom.
Recall that P, (i=1, ..., J) is a function of & Given

a and ¢, define by(¢) and B,(¢) for each i by the following
nonlinear programming problems:

b; (e) = min P; (o) i=1,...,0 @n
subject to Q(a, &) < x’(e, M)
B; (€) = max P; () i=1,...,D (28)

subject to Qa, o) < x* (¢, M). The maximizations and
minimizations are carried out over variations in a.
Then the inequalitics -
bi(e) <P, <Bij(e) (=1,...,]) (29)
define a rectangular joint confidence region for the P,
with confidence level equal to or greater than 100(1 - ¢)
percent (12).

Another rectangular joint confidence region for the
P, with the same confidence level can be computed by
considering P, to be a function of the utilities (Vi,

., V). LetR(V, V) be the quadratic form defined
in Equation 9. Then the solutions to the nonlinear pro-
gramming problems

bi(e)=min P(V) (@G=1,...,0 30)

subject to R(V, V) < x*(¢, J-1)

Bi(e)=max Py(V) (G=1,...,D 3D
subject to R(V, V) <x?(¢, J-1) define joint lower and
upper confidence limits for P, with confidence level
equal to or greater than 100(1-¢) percent. The maximi-
zations and minimizations are performed over variations
in V. The confidence limits thus defined are closer to-
gether than the 100(1-¢) confidence limits defined by
problems 27 and 28 when J-1 < M.

The confidence limits defined by problems 27 and 28
can easily be extended to functions of the choice prob-
abilities. The extension consists of using the relevant
functions of the choice probabilities as the objective
functions of problems 27 and 28. For example, if Py,
is the probability that individual n chooses alternative i,
the aggregate market share of alternative i in a popula-
tion of N individuals is

N
1'[-,=(1/N)z P #i=l55m00) (32)
n=1

T is a function of & through the P;.. Joint confidence
limits b, and B, for the 11, with confidence level equal to
at least 100(1-¢) percent are given by

b;(e) = min IT;(®) G=1,...,0 (33)
subject to Q(a, &) <x*(¢, M)
Bi(e)=max II@ (=1,....J) (34)



subject to Q(a, 6) =x*(e, M).

The joint rectangular confidence region that results
from the asymptotic linear approximation (inequalities
24 and 25) can be obtained by solving the nonlinear pro-

gramming problems

by (€)=min P/ (V) (i=1,...,]) (35)
subject to R(i/, V) <x*(¢/3, 1)
B (€)=max P{ (V) (i=1,...,]) (36)

subject to R(V, V) = x*(e/J, 1), where B *(V) is the ex-
pression obtained by exchanging P, with P, and V, with
V, in Equation 21, and b,* and B,*, respectively, are the
lower and upper confidence limits for P, obtained by the
linear approximation method. As the accuracy of the
asymptotic linear approximation increases, problems

35 and 36 approach equivalence with the problems

bi(e)=minP(V) (i=1,...,)) 37
subject to R(V, V) < x¥(¢/J, 1)
B (e)=maxP(V) (=1,...,]) (38)

subject to R(V, V) =y*(¢/J, 1). Problems 37 and 38
differ from problems 30 and 31 only in the right-hand
sides of their constraints. Comparison of problems 37
and 38 with problems 30 and 31 and problems 27 and 28
provides a means of determining whether the asymptotic
linear approximation or the nonlinear programming
method yields a smaller joint confidence region for the
choice probabilities when the linear approximation is
accurate. If J-1<M, the linear approximation yields nar-
rower confidence limits for each of the P, whenever
X2 (ef), ) <x*(, - 1) (39
If M<J-1, the linear approximation yields narrower
limits whenever
X (e/, 1) <x*(e, M) (40)
Conditions 39 and 40 will be satisfied at normal con-
fidence levels unless the number of coefficients M is very
small or the number of alternatives J is either two or
very large. For example, if M = 4 and ¢ = 0.05, condi-
tions 39 and 40 will be satisfied if 3 <J <24, HM=5
and ¢ = 0.05, the conditions will be satisfied if 3 <J <
61. Thus, when the asymptotic linear approximation is
accurate it will tend to produce smaller joint confidence
regions than will the nonlinear programming method un-
less the choice set either is large or contains only two
alternatives. Numerical illustrations of the differences
in the sizes of the linear approximation and nonlinear
programming confidence regions are given in a later
section.

A BOUND ON THE ERROR IN THE
CONFIDENCE LEVEL

The errors in the linear approximation confidence levels
of a binary choice model were previously computed ex-
actly. This exact computation is not possible for models
that have more than two alternatives in their choice sets.
In multinomial models, nonlinear programming can be
used to establish upper bounds on the errors in the con-
fidence levels obtained from inequalities 24.

Let P * be defined as in problems 35 and 36, and let
o* be the linear approximation estimate of the standard
deviation of P, obtained from Equation 23. Note that P *
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depends on the true coefficients & through V. For arbi-
trary positive K and k define the following sets:

S, (K) = {al | P} - P; | <K} (1)

$,(K)={al | P -P; | <K} (42)
S;(K)={al|P-P;|<K} (43)
S4(K, k) ={al | P} -P; | <K -k} (44)
Ss(K, k) ={al | P -P; | < K+k} (45)

The sets S, through S; all depend on the estimated

coefficients a and, therefore, are random events. Let
Pr(S,) be the probability of the event S, (j=1, ..., 5).
Note that

S, NS; CS;s (46)
and

Pr(S, N'S3) = Pr(S,;) +Pr(S;) -1 47y
Therefore,

Pr(S,) < Pr(Ss) + [1 - Pr(S3)] (48)
Also,

S, NS; CS, (49)
and

Pr(S4 N S3) > Pr(S,) + Pr(S;) - 1 (50)
Therefore,

Pr(S;) = Pr(Ss) - [1 - Pr(S;)] (51)
when probabilities 48 and 51 are combined,

Pr(Ss) - [1-Pr(S;)] < Pr(S,) < Pr(Ss) + [1 - Pr(S;)] (52)

P* - f’, is asymptotically normally distributed with
mean zero and standard deviation o*, by virtue of Equa-

tion 21. Let & denote the cumulative standard normal
distribution function. Then asymptotically
Pr(S4)=2® [(K-k)/o"] -1 (53)
Pr(S5)=2® [(K+k)/o"] -1 54
Pr(S,)=2® (K/o")-1 (55)
Inequality 52 and Equations 53-55 imply
2{@[(K-Kk)/o"] - ®(K/0*)} - [1 - Pr(S;3)] <Pr(S;) - Pr(S;)

< 2O[(K +k)/0"] - D(K/0")} + [1 - Pr(S;)] (56)

Given a confidence level 100(1-¢) percent, let K be
given by the solution to
Pr[S;(K)] =1-¢ 57
Note that in the linear approximation method for develop-
ing confidence intervals P, * and P, are considered to be
equal. Therefore, 100(1~¢) is the confidence level that
the linear approximation assigns to the interval | P, - P, |
< K, whereas 100 Pr[S:(K)] is the confidence level that
is obtained if the linear approximation is not used. Thus,
1007 Px(S:) - Pr(S,)] is the error in the confidence level
that is made by using the linear approximation, and in-
equalities 56 bound this error. Specifically, for any k
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| Pr(S;) - Pr(S;) | < max[F*(K, k), F*(K, k)] (58)
where

F*(K, k) = 2{®[(K + k)/o"] - ®(K/a"*)} + [1 - Pr(S3)] (59)
and

F (K, k) = -2{®@[(K-k)/o"] - ®(K/o")} + [1 - Pr(S3)] (60)

In practice it is usually difficult or impossible to
evaluate Pr(S;). Thus, inequality 58 is not directly use-
ful. However, it is possible to establish a computa-
tionally tractable lower bound on Pr(S;). Given a num-
ber 6 that satisfies 0<8<1, define k(6) by the following
nonlinear programming problem:

k(8) = max | P{ (&) - P; () | (61)

subject to Q(a, &) < x*(8, M), if M s J-1and R(V, V) =
(6, J-1) otherwise

PrI P -P | <k(8)] >1-8 (62)
and
Pr{S;[k(8)]}>1-8 (63)

Given K and 8, define GT(K, 8) and G (K, 8) by

G* (K, 8) =2 (®{[K +k(8)]/0"} - ®(K/0")) + & (64)

Table 1. Joint 95 percent confidence intervals for the choice
probabilities in a three-alternative mode choice model.

Linear Approxi- Nonlinear Programming

mation Method Method
Alternative P b B b B R
1 0.402 0.338 0.467 0.338 0.470 1.02
2 0.312 0.262 0.362 0.263 0.366 1.02
3 0.286 0.234 0.337 0.236 0.341 1.02

Note: P = estimated choice probability; b = lower confidence limit; B = upper confidence
limit; and R = width of nonlinear programming confidence interval divided by width
of linear approximation interval

Table 2. Joint 95 percent confidence intervals for the choice
probabilities in a 20-alternatives destination choice model.

Linear Approxi- Nonlinear Programming

mation Method Method
Alternative P b B b B R
1 0.022 0.017 0.027 0.017 0.028 1.10
2 0.029 0.023 0.035 0.023 0.037 1.10
3 0.017 0.011 0.022 0.012 0.023 1.11
4 0.035 0.027 0.043 0,028 0.044 1.10
5 0.024 0.013 0.035 0.015 0.039 1.13
6 0.034 0.029 0.039 0,029 0.040 1,09
7 0.056 0.039 0.073 0.040 0.078 111
8 0.036 0.030 0.042 0.030 0.043 1.10
9 0.025 0.020 0.031 0.020 0.032 1.10
10 0.04¢ 0.041 0.057 0.040 0.058 1.09
11 0.111 0.075 0.147 0.077 0.157 1.11
12 0.083 0.075 0.091 0.074 0.092 1.10
13 0.089 0,066 0.112 0.066 0.117 1.10
14 0.066 0.056 0.076 0.056 0.078 1.10
15 0.080 0,069 0.090 0.069 0.091 1.10
16 0.077 0.064 0.089 0.064 0.091 1.10
17 0.018 0,010 0.025 0.011 0.028 1.13
18 0.063 0.052 0.074 0.052 0.075 1.10
19 0,044 0.033 0.056 0.033 0.058 1.10
20 0.043 0.037 0.049 0.037 0.050 1.10

Note: P = estimated choice probability; b = lower confidence limit; B = upper confidence
limit; and R = width of nonlinear programming confidence interval divided by width
of linear approximation interval,

G (K, 8) =-2(2{[K-k(8)]/0"} - ®(K[0")) + & (65)
Then

G*(K, 8) > F*[K, k()] (66)
G (K, 8) > F'[K, k(5)] (67
and

I Pr(S;) - Pr(S) | < min {max[G* (K, 8), G"(K, §)1} (68)

Inequality 68 defines a computationally tractable upper
bound on the error in the confidence level obtained from
inequalities 24,

The degree to which the right-hand side of inequality
68 overestimates the error made by linear approxima-
tion 21 can be illustrated with the model of Equation 26.
It was shown that when X; =0, X; =0.1, a=3, ando =1
in Equation 26, the linear approximation assigns a con-
fidence limit of 95 percent to a particular confidence in-
terval for the coefficient &, whereas a confidence level
of 95.12 percent is obtained for the same interval when
the linear approximation is not used. In this case the
linear approximation makes an error of 0.12 percent in
the confidence level. When X; = 1.0 and the other param-
eters remain unchanged, the linear approximation as-
signs a confidence level of 95 percent to an interval
whose confidence level is found to be 87.5 percent when
the linear approximation is not used. In this case, the
linear approximation makes an error of 7.5 percent in
the confidence level. Inequality 68 gives an upper bound
on the error in the confidence level of 1.2 percent when
X, = 0.1 and 31 percent when X; = 1.0. Although inequal-~-
ity 68 considerably overestimates the error made by the
linear approximation in both cases, the error estimates
obtained from inequality 68 do distinguish between a case
in which the linear approximation is useful (e.g., X, =
0.1), and a case in which the linear approximation is not
useful (e.g., X, = 1.0).

Inequality 68 can be extended to functions of the choice
probabilities, such as aggregate market shares. The ex-
tension is accomplished by substituting the desired func-
tions in place of P,, P,, and P,* in equations and inequali-
ties 41-68 and by using the Q form of the constraint in
problem 61.

NUMERICAL EXAMPLES

To illustrate and compare the linear approximation and
nonlinear programming methods for deveioping confi-
dence regions, both methods were applied to two multi-
nomial logit models: a 3-alternative model of work-trip
mode choice (5) and a 20-alternative model of destina-
tion choice for nonwork trips (13). Typical values of
the explanatory variables were used in each case. The
nonlinear programming problems 27, 28, 31, 32, and
61 were solved by using the sequential unconstrained
minimization technique (14).

Joint 95 percent confidence limits for the choice prob-
abilities of the mode choice model are shown in Table 1.
The upper and lower confidence limits of the choice
probabilities are, respectively, approximately 17 per-
cent above and below these probabilities. The nonlinear
programming confidence intervals were obtained from
problems 30 and 31 and are approximately 2 percent
wider than the linear approximation intervals. Inequal-
ity 68 indicates that the errors in the confidence levels
of the linear approximation confidence intervals consid-
ered individually are less than 1.14 percent. Consider-
ing the looseness of the bound provided by inequality 68,
this suggests that the linear approximation achieves ac-
ceptable accuracy in this example.



Joint 95 percent confidence limits for the choice prob-
abilities of the destination choice model are shown in
Table 2. The upper and lower confidence limits of the
choice probabilities are, respectively, roughly 10 to 40
percent above and below these probabilities, depending
on the alternative. The nonlinear programming confi-
dence intervals are approximately 10 percent wider than
the linear approximation intervals. Inequality 68 indi-
cates that the errors in the confidence levels of the
linear approximation confidence intervals considered
individually are less than 0.8 percent, again suggesting
that the linear approximation is acceptably accurate.

CONCLUSIONS

This paper has described three methods for developing
confidence regions for the choice probabilities of the
multinomial logit model. One method involves a direct
application of the asymptotic sampling distribution of
the choice probabilities and yields joint confidence re-
gions for these probabilities. The confidence regions
are not rectangular and, therefore, are useful mainly
for testing hypotheses about the choice probabilities.

The other two methods are based, respectively, on a
linear approximation of the relation between errors in
the coefficients of a model and errors in the choice prob-
abilities, and on a nonlinear programming approach to
developing confidence intervals. Both of these methods
produce joint rectangular confidence regions for the
choice probabilities, and both can be applied to functions
of the choice probabilities, such as aggregate market
shares and changes in choice probabilities caused by
changes in explanatory variables. The linear
approximation method also can be used to develop confi-
dence intervals for individual choice probabilities.

The linear approximation method is computationally
simpler than the nonlinear programming method. More-
over, when the linear approximation on which the method
is based is accurate, the linear approximation method
produces a smaller confidence region for a given confi-
dence level than does the nonlinear programming method,
unless the choice set either is very large or contains
only two alternatives. However, the linear
approximation method has the disadvantage that it can
yield erroneous results.

A procedure for bounding the error made by the
linear approximation method has been described in this
paper. However, this procedure is based on nonlinear
programming, and the computational effort involved in
implementing it can equal or exceed the computational
effort involved in developing confidence regions by the
nonlinear programming method. If there are a priori
reasons for believing that the linear approximation
method will yield accurate results in a particular applica-
tion, then the computational simplicity of this method
makes it preferable to the nonlinear programming
method. However, if the accuracy of the linear
approximation method is questionable and resources for
implementing the bounding procedure are not available,
then the nonlinear programming method will yield more
reliable results than will the linear approximation
method.

The linear approximation and nonlinear programming
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methods for developing confidence regions can be applied
to other utility maximizing models with linear-in-
parameters utility functions (e.g., multinomial probit)
by substituting the choice probabilities of the desired
model in place of the logit probabilities used in this
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Discrete Multivariate Model of

Work-Trip Mode Choice

David Segal, Department of Economics, Oberlin College, Oberlin,
Ohio, and Department of City and Regional Planning, Harvard

University, Cambridge, Massachusetts

This paper applies discrete multivariate analysis to the specification and
estimation of factors that govern work-trip mode choice. Where large
data sets are available, this technique is found to have two important ad-
vantages over conditional logit analysis: Better model specification is
facilitated and parameters can typically be estimated at sharply lower
cost. The study focuses on the mode-choice behavior of 9880 Washing-
ton, D.C., area households that made work trips in 1968. Perhaps the
most striking result is that in-vehicle travel time seems to have a non-
linear impact on the mode-choice logit (log-odds of drive alone versus
bus), which has potentially important consequences for policy. For the
range in which bus is faster than automobile, changes in bus (or automo-
bile) in-vehicle travel time have the well-known results reported by other
studies. But for the interval within which driving is faster than bus, de-
creases in bus in-vehicle travel time that fall short of making the bus
mode absolutely faster than driving will, if our estimates are correct, fail
to increase ridership significantly.

This paper examines urban travel mode-choice behavior
by using a discrete multivariate technique. The purpose
of the exercise is twofold. First, the technique itself is
shown to have some advantages over conditional logit
analysis when large data sets are available (1-3). It
allows for more careful analysis of model specification
and for this reason it often provides better goodness of
fit. And the estimation algorithms on which it draws
are simpler and typically cheaper to use than those of
conditional logit analysis.

A second aim of the paper is substantive. Empirical
models of travel mode choice within cities have generally
assumed all of the explanatory variables to be linear in
their impact on the mode-choice logit (log-odds). Some
confirmation of this assumption is provided here; how-
ever, there are important exceptions. One is in-vehicle
travel time, which is found to be nonlinear in a major
respect: Although the log-odds of transit travel increase
as transit becomes faster than automobile, the converse
is found not to be true. The log-odds of driving do not
increase significantly over the range in which driving
in-vehicle travel time is less than travel time by bus,
This result may be significant for policy, suggesting that
efforts to improve transit speed that fall short of making
transit absolutely faster than driving may have a negli-
gible impact on ridership.

The paper considers the choice among three modes
(driving, bus, and automobile passenger) of a sample of
9880 households that reported work trips in the Wash-
ington, D.C., area in 1968. The data were collected in
a home-interview survey of some 25 000 households in
that area conducted by the Washington Metropolitan Area
Council of Governments. They have been used exten-
sively in published studies of the determinants of mode-
choice behavior, as well as in developmental studies of
the estimation of disaggregate travel demand by using
the conditional logit technique (4). The data set used
here was the home-interview survey, augmented by engi-
neering level-of-service data provided by R. H. Pratt
Associates. A file that merges the two data sets was
prepared by Cambridge Systematics, Inc. It is known
as the Second Auto Ownership Project Master File and
is used in the analysis of this paper. Although the data
for these studies and the one here have a common origin,

our approach and estimation technique are discrete
multivariate.

There is a basic equivalence between discrete multi-
variate analysis (DMA) and the logit model. DMA may
be likened to a logit model in which all of the variables
are categorical. The value taken by a given observation
on any particular variable is then represented by a
dummy that is equal to one if the value falls within a
prescribed level of the variable and zero otherwise.

An observation in the logit formulation is thus a vector
of ones and zeros; the frequencies with which that ob-
servation occurs in the data set may be viewed as a
weight. In the DMA formulation, a data set is aggre-
gated into a multidimensional array of counts. Each
dimension of the array is a variable, and each variable
in turn has a specified number of categories or levels.

Different algorithms are used to estimate parameters
by the two forms of analysis. The logit model has re-
lied on the Newton-Raphson estimating procedure, which
can be costly when large numbers of parameters must
be estimated from large data sets (5, p. 48; 6, p. 122).
Because the algorithm requires that a matrlx “of second-
order partial differentials be inverted at every iteration
in the estimation procedure, and because the number of
computations needed to invert grows as the square of
the number of parameters to be estimated, analysts who
use conditional logit analysis have a cost incentive to
economize on parameters. Therefore, analysts have
tended to limit the number of parameters to be estimated
and Lo draw samples from large data sets. Many of the
studies that use the Washington data have been based on
10 percent samples.

An economy of parameters, however, usually makes
sense only if there is an economy of data. For the Wash-
ington data set this is clearly not the case. DMA uses
all of the data, as noted earlier, in the form of cross-
classified tabulations of counts. Some information may
be lost in the categorization procedure; however, Aigner,
Goldberger, and Kalton (7) have shown that, (a) for cer-
tain underlying specifications in which an explanatory
variable is uniformly, normally, or exponentially dis-
tributed and (b) where four or five categories are devel-
oped for such a variable, only 10 percent of the informa-
tion in the data set is lost (contrasted with as much as
90 percent or more in some of the studies sampling from
the Washington data).

Not only can the underlying structure of a model be
more readily revealed by DMA, it can be done at rela-
tively low cost. Models that have as many as 100 or
more parameters and tens of thousands of observations
can currently be estimated at a marginal cost of as low
as $0.75 at any large computing center by using one of
the cyclic ascent algorithms. As suggested earlier, the
Newton-Raphson technique can also be applied to such
models at a somewhat greater expense if the data are
first cross-classified and if the cell frequencies are then
employed as weights by using a choice-based sampling
approach that views the cells themselves as dummy vari-
ables [see Manski and Lerman (8)]. To be sure, the
cost advantages of DMA are obscured in 51tuat1ons in
which data collection is expensive. It is ideally suited



for analysis of some forms of census data.

The balance of this paper considers the model em-
ployed here to estimate mode-choice logit coefficients,
the data set, estimation procedure, and results.

THE MODEL

Let us begin with the question of mode-choice probabili-
ties between automobile and bus. Later the choice set
is broadened to include traveling as an automobile pas-
senger.

Let P, = probability (mode = drive) be proportional to
F(X.8) where F(X,B) is a function that describes how the
probability of driving is related to a set of explanatory
variables (X)) that includes both automobile level-of-
service and socioeconomic variables. With binary mode
choice, the probability of going to work by bus is Py =
probability (mode = bus) = F(Xz8) = 1-F(X,8). Any one
of several functional forms can be used to relate the
probability measures to X8 or X,8; however, we follow
the work cited earlier and employ the logistic distribu-
tion. We thus define

Pp = exp(X; B/ [exp(X, ) + exp (X, 5)] )

Multiplying both the numerator and denominator by exp
(-X.P) gives

Pp = 1/{1 +exp[-(X, - X;)B]} (1a)

Let X = X; - X, be the differences in the mode char-
acteristics for driving and taking the bus that affect the
choice probabilities. Clearly the socioeconomic vari-
able levels, which for a given household are invariant
with mode choice, will cancel out if included in both X;
and X;. One of the ways that conditional logit estimating
procedure gets around this potential difficulty is by in-
cluding such variables in only one of the level-of-service
attribute vectors, say X,. This parallels the procedure
followed here in which the socioeconomic variables enter
the analysis only after the differences for the level-of-
service attributes have been computed. That is, X in
Equation 3 has as its component elements (a) level-of-
service differences between a pair of modes and (b)
socioeconomic levels.

The probability measure ranges from zero to one as
XB goes from -= to +=. If, as we assume, Equation 1
represents the probability of driving, then the prob-
ability of taking the bus to work becomes

Py =(1 - Pp) = exp(-XB)/[1 + exp(-XB)] = 1/[1 + exp(XP)] 2)
Rearranging Equations 1 and 2 gives

L =log(Pp/Pp) = log Pp - log (1 - Pp)
=-log [1 +exp(-XB)] - {logiexp(-XB)] - log 1 + exp(-Xp)1}
=XB 3

where L is the logit or log of the ratio P,/Ps, which re-
ports the odds of driving relative to taking the bus and
where, as noted earlier, X = X, - X.. The properties
of the logistic function and its advantages in studying the
determinants of disaggregate travel demand have been
widely reported (9, 10). In the literature the logit is
shown to depend on the mean utility of a given alterna-
tive. It is assumed that individual utility deviations from
mean utility in a homogeneous market segment are sta-
tistically independent for different alternatives. The
logit is thus governed by a stochastic utility function,
which in Equation 3 is represenfed without the error
term. A function whose arguments are linearly additive
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is usually specified, as in Equation 3; X represents the
utility of a set of differences between the mode char-
acteristics of automobile and those of bus as it is eval-
uated by a household of a given socioeconomic stratum,
and B is a vector of weights that must be estimated.

The conditional logit model assumes the independence
of irrelevant alternatives (IIA). This means that, if a
third mode is introduced into the analysis (for example,
automobile passenger with utility function arguments Xs)
the log-odds of driving versus being a passenger in an
automobile are reported by (X, - X3)8. The parameters
in the vector § are unaffected by the introduction of a
new model,

The conditional logit model has been widely used to
estimate the coefficients of Equation 3; however, the
discrete multivariate model has not. It should not be
surprising, therefore, that relatively little attention has
been given to nonlinearities in, and interaction among,
the explanatory variables in empirical mode~-choice
analysis.

DATA AND ESTIMATION
TECHNIQUE

Often the data that are available to the analyst are al-
ready categorized, as in the case of census data or, in
this study, the mode-choice and income data. The data
that are reported as continuous, such as travel cost and
time, must be grouped., The data are fashioned as a
multiway table of counts or frequencies. Such a table
may often have as many as five or six dimensions, one
for each variable. The category levels of each of the
variables become the rows (or columns) of faces of the
table. The multiway table that is thus formed is the
basic input in discrete multivariate analysis.

The estimation procedure is a straightforward gen-
eralization of analysis of variance (ANOVA) techniques
and involves finding a set of cell frequencies that fits
a specified set of marginal configurations (2, chapter 3).
Specification of a particular set of configurations to be
fit is equivalent to specification of a model—which inter-
actions, if any, matter. The set of possible models is
hierarchical, meaning that to specify an interaction ef-
fect of a given order among a group of variables is to
specify, simultaneously, all lower-order interaction
effects. For a given model, maximum likelihood esti-
mates (of the original cell frequencies) are obtained by
taking an initial set of frequencies (often ones) and iter-
ating them through a sequence of cycles that brings con-
figurations of them successfully closer to the configura-
tion totals specified by the model. The Deming-Stephan
iterative proportional fitting algorithm is used here to
obtain maximum likelihood estimates (MLES) in this
fashion (2, p. 84).

Once MLEs have been estimated, along with the ap-
propriate goodness-of-fit statistic, it is possible to esti-
mate the logit coefficients (8). Their interpretation is
as follows: Each of the elements of x is a dummy vari-
able that equals one if the observation falls within the
level of the variable in question and zero otherwise. For
any given variable, the g coefficients, which hereafter
are termed w coefficients following the notation of the
discrete multivariate literature, sum to zero:

Wi = ?Wzm =Zwsy =0 (4a)

?Wu(ii) = ?Wu(i,’) = ?ww(ik) = %Wla(ik)

= Zj?Wza(jk) = ?sza(jk) =0 (4b)

zi:w123(ijk) = ?lea(uk) = %Wna(ijk) =0 (4¢)
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Table 1. Logit parameter estimates for model number

% Variable
16, driving versus bus, =

Level
Number Name Number Description
1 Modc cheice 1 Drive
2 Bus passenger
2 In-vehicle 1 Driving time exceeds bus time by 0-60 min (26.3 min
travel time average)
2 Bus time exceeds driving time by 0-15 min (7.16 min
average)
3 Bus time exceeds driving time by more than 15 min
(29.6 min average)
3 Qut-of-vehicle 1 Driving relatively slower—range from 20 min
travel time (or more) slower to 5 in fasler (average of
2.05 min slower)
2 Driving faster by 5-20 mio (11.9 min average)
3 Driving faster by more than 20 min (32.9 min
average)
4 Travel cost 1 Bug cheaper by $0.50-$5.00 ($1,20 average)
2 Bus cheaper by $0.0-$0.50 ($0.23 average)
3 Automobile cheaper ($0.24 average)
8 Household 1 $0-$6000
income 2 $6000- $15 000
3 $15 000 or more

The w-terms (or their u-term counterparts in log-linear
models) are often omitted in analyses outside economics,
where the greater interest lies mainly in issues of model
specification per se and goodness of fit. Their virtue

is that they are analogous to, and can be compared di-
rectly with, 8 coefficients of the conditional logit model.
They report the partial effects on the logit of a particular
level of a given variable, all other things being equal.

The models tested in this paper are based on five-way
tables whose dimensions report one response variable
(mode choice) and four explanatory variables (in-vehicle
travel time, out-of-vehicle travel time, out-of-pocket
travel cost, and household income), The first three
explanatory variables are level-of-service variables;
the fourth is a socioeconomic variable. In addition, the
data were stratified by the number of automobiles avail-
able per worker in the household: zero, one, or two or
more, The results presented in the next section are for
the middle category of automobile availability, which is
by far the best represented in the sample. (In subse-
quent analyses, the automobile-availability variable will
be included both as an explanatory variable and as a re-
sponse variable, determined simultaneously with mode
choice. Here the effort was directed at keeping the analy-
ses relatively simple. The logit coefficients reported in
Table 1 are thus conditioned on the availability of one
automobile per worker in mode-choosing households.)

In the analysis we set conditions on the values of the
explanatory variables. This stems from the fact that we
are nol interested in the factors that govern the margin
totals for these variables (or interactions among them)
or in the totals. Rather, we are concerned with the fac-
tors that govern mode choice. (As we shall see in Table
1 and the accompanying text, this means that we must
fit all models under consideration to the margins that
reflect full interaction among the explanatory variables.
Doing this effectively adjusts for the effects of variation
in frequencies across the categories of margin totals
for the explanatory variables.)

For the binary-choice model of Equation 3 each of the
four explanatory variables is assigned three levels. A
complete description of the levels for each of the vari-
ables is provided in Table 2. The five-way table that
emerges is dimensioned 2x3x3x3x3 and thus has 162
cells. The table described here is complete. Had the
automobile-availability variable been included as an ex-
planatory, level~of-service variable, the resulting table
would have been incomplete because of the logical im-
possibility of a household owning no automobiles and
opting for the drive mode. (A table of similar dimen-
sions is fit for the drive-or-passenger choice. The two

tables have a combination of 243 cell frequencies.)

As a rule, the category limits for the different explan-
atory variables were set in such a way as to distribute
frequencies more or less evenly across categories. The
data that were used to establish category limits were,
for the level-of-service variables, the differences be-
tween the automobile (drive alone) and bus characteris-
ties, as reported in the Washington survey (4). Only
work trips were included in the analysis. With the ex-
ception of the automobile-passenger data, all level-of-
service data were taken exactly as they appeared in the
data file. In-vehicle travel time was adjusted for car-
pool passengers by adding 10 min to the drive-alone
time. Travel costs for passengers were adjusted down-
ward on a pro rata basis under the assumption that car-
pools carry an average of 2.5 occupants.

THE RESULTS
Model Selection

A model is selected by evaluating alternative combina-
tions of interactions between the response variable (des-
ignated as 1 in Table 3) and combinations of the explana-
tory variables, denoted as 2, 3, 4, and 5. Theory sug-
gests which variables belong in the model, and a set of
goodness-of-fit statistics for alternative models is used
to designate an appropriate specification for the
variables.

The number of possible models that fit the 2345
margins and that include combinations of these variables
interacted with the mode-choice variable is well over
100. A subset of 20 such models is shown in Table 3.
(The analyses reported in Tables 2 and 3 involve just
such a dichotomous mode choice—between driving to work
and taking the bus, There are 8513 observations on these
two modes, of which 948 are bus riders and 7565 drive
to work alone.)

In the selection of a model there are three, roughly
equivalent, ways to proceed. A first method of approach
involves beginning with just the independent effects of
the explanatory variables, interacted with the response
variable. The decision rule that is followed involves the
inclusion of higher-order interactions if and only if the
expenditure of degrees of freedom can be justified
through improved goodness of fit. When such a gain is
no longer possible or when undue complexity would be
introduced into a model by specifying further interaction,
the procedure is brought to a stop. The model that can-
not be improved on without violating the decision rule is
chosen as best.



Table 2. Partial effects on logit (log-odds of driving when bus is the
alternative).

Automobile
Household Bus Slightly Much
Variable Income ($000s) Faster Faster Faster
In-vehicle travel time 0-6 -0.348 0.114 0.234
6-15 -0.554 0.704 -0.150
15+ -0.490 0.153 0.337
QOut-of-vehicle travel
time 0-6 0.056 -0.384 0.328
6-15 -1.014 -0.308 1.320
15+ -0.833 -0.298 1.131
Cost 0-6 -0.599 -0.190 0.789
6-15 -0.780 0.202 0.578
15+ -0.780 0.214 0.566
Table 3. Choice of a model.
Model
Number Model dt G* p°
1 2345 12 13 14 4 129.32 -
2 2345 12 13 14 15 2 129.23 -
3 2345 134 12 70 121.92 -
4 2345 124 13 70 115.04 0.001
5 2345 123 14 70 107.72 0.003
6 2345 123 14 15 68 107.56 0.002
7 2345 125 145 66 364.68 -
8 2345 125 135 66 276.84 -
9 2345 135 145 66 232.16 -
10 2345 123 124 134 62 86.06 0.023
11 2345 125 135 145 60 89.63 0.008
12 2345 1235 54 252.16 -
13 2345 1245 54 340.87 -
14 2345 1345 125 48 74,88 0.008
15 2345 1245 135 48 63.96 0.064
16 2345 1235 145 48 62.46 0.078
17 2345 1234 125 135 145 40 37.91 0.500+
18 2345 1345 1245 36 49,23 0.070
19 2345 1234 1245 36 46.29 0.117
20 2345 1235 1245 36 42.21 0.22
Note: 1= Mode choice, 2 = In-vehicle travel time, 3 = Out-of-vehicle travel time, 4 = Cost,

and 5 = Income.
“G? is a goodness-of-fit statistic, defined as G? = 2Z (Observed) log(Observed/E xpected)
®The probability measure {p} has the following interpretation, If a given model is correct as
specified, then there is a probability that the x? statistic associated with it (G?) is as large
as it is simply by chance,

A second approach involves fitting the fully saturated
model (12345) and ranking the standardized values of the
estimates for its w-term parameters. The procedure
then calls for specification of a model that excludes all
interactions whose corresponding standardized w-terms
fail to meet some specified level of significance (3,

p. 73).

A third manner of model selection involves ranking
the models in descending order of their degrees of free~
dom from the independence model to the fully saturated.
The selection rule is as follows—choose the least com-
plicated model (fewest number of interactions) that satis-
fies some preestablished significance criterion, for ex-
ample, that there is no less than 1 chance in 20 that the
chi-square statistic associated with the model is as large
as it is simply by chance.

When this last technique and its selection criteria are
applied to the models of Table 3 the chosen model is
number 16—2345 1235 145. This model specifies that
all of the level-of-service variables should be interacted
with income and that, in addition, the two travel-time
variables should be interacted with one another (and
jointly with income).

With the selected model in hand, the inclusion of the
various terms and interactions can easily be defended.
For example, that the two kinds of travel time should
be included in the model interactively can be inferred by
comparing model 11 with the chosen one, model 16. In-
clusion of variables 2 and 3 as part of the larger inter-
action comes at a cost of 12 degrees of freedom (60 less
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48). G?, however, decreases by 27.17. From a table

of chi-square statistics we learn that, under the assump-
tion that variables 2 and 3 should enter the model as in
number 11 (the null hypothesis), there is less than a 1 per-
cent probability that a difference as great as 27.17 would
arise simply by chance. The null hypothesis is there-
fore rejected. Similar reasoning and computations may
be used to test other aspects of the specification of model
number 16,

That cost belongs in the model, interacted with in-
come, can be defended by comparing model numbers 12
and 16. The difference between them is 6 degrees of
freedom and a G* value of 189.70. A chi-square value
this high would occur, if model 12 were correct, with a
probability of only 0.000 001. It is interesting to note
that the statistical grounds for the inclusion of cost as
an explanatory variable are even stronger in the discrete
multivariate model here than in some comparable con-
ditional logit specifications where its t-value is 4.5 (6,
pp. 158-163) or often a lot lower (11). -

Empirical Results

Table 2 sums the parameters for each of the level-of-
service variables and its interactions with income:
[wag + WasGm) 1, [wa(k) + Wiskmy), and [W4(1) + W45(1m)3-

Figures 1 and 2 plot the information of Table 2
graphically with the y-axis coordinates representing
partial effects on the logit and the x-axis coordinates
showing mean values for the level-of-service frequencies
for each income class. The slopes of the two segments
of each function can thus be interpreted as arc elastici-
ties, The graphs of the functions also reveal the extent
of any nonlinearities that might exist in the variables as
well as the impact on the logit of income when it is in-
teracted with the explanatory variables.

Specific results are described below.

Nonlinearities in Variables

In contrast with the literature that uses the conditional
logit model and reports coefficients that are invariant
with levels of the explanatory variables, the model here
found some significant nonlinearities. The coefficient
for the cost variable increases (as one might expect)
over the range in which cost advantages favor automobile
use, Although the out-of-vehicle travel time variable

is approximately linear for low- and high-income house-
holds, there is a possible nonlinearity in this variable
for the middle-income group. (This is unclear, however,
as the coefficients for Wssiamy have low standardized
values.)

The most striking nonlinearity appears in the in-
vehicle travel time variable. For each of the income
categories, as well as for all income groups taken to-
gether, the effect of this variable flattens out over the
range in which the automobile is faster than the bus.
From a policy standpoint this would suggest that in-
creases in bus in-vehicle travel time that fall short of
rendering the bus absolutely faster than the drive mode
may have a negligible impact on transit ridership. Fur-
ther analysis, opening up four or five categories for the
in-vehicle travel time variable, appears to be in order.

Interactions

The interaction between the cost and income variables
has the expected result (as depicted in Figure 2), at
least in the upper ranges (automobile cheaper) of the
cost variable., The cost savings of automobile use cause
lower-income households to favor the automobile more
readily than do higher-income households.
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The interaction between the in-vehicle travel time and
out-of-vehicle travel time variables is also reported as
significant, according to Table 3.

Onerousness of Out-of-Vehicle Travel
Time Versus In-Vehicle Travel Time

Results reported in the literature regarding the relative

onerousness of out-of-vehicle travel time and in-vehicle
travel time are generally confirmed here. The slopes of

Figure 1. Differential effects of travel time on logit by income class.
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changes in bus-travel time as they are to changes in
access time.

Effects of Income

Increases in household income have the predicted effect
on the log-odds of driving. High-income households
favor the drive mode relative to low-income households,
when one automobile is available per worker. As re-
gards higher-order effects, when income is interacted
with the level-of-service variables, the major distinc-
tion that emerges is between the bottom- and top-income
categories: The middle-income category usually proves
not to add significantly to goodness of fit.

Automobile-Passenger Mode and ITA
Assumption

The theory of the conditional logit model as well as the
model employed here assumes that the introduction of

a third mode (for example, the shared-ride option for a
commuter) will not affect the parameters of the model.
If the attributes of such a mode are designated X3, then
according to theory the substitution of X; for X, in Equa-
tions 1 and 1a should leave the 8- or w-terms unaffected.

The best way to test for the validity of the IIA assump-
tion here would be to perform a test analogous to a Chow
test. This would involve the entire set of 9880 observa-
tions, collapsed across all alternatives. A dummy vari-
able would be introduced (call it variable 6) that would
take a value of zero if the drive-bus option is described
by a particular observation and one if the drive-
passenger option is relevant. At issue in the test would
be whether this new variable has any two-way interaction
with variable 1 and one of the remaining variables. If
such interactions emerge as significant then we would
reject the hypothesis of IIA, that is, that the w coeffi-
cients are the same for the two pairs of alternatives.

An alternative to such a test, which is vastly cruder,
involves simply comparing the parameters of the drive
or bus alternative with those of the drive or shared-ride
alternative. We performed such a test. Because the
G® statistic for the latter data set was excessively high
when the model of Table 2 was used, we employed for
both data sets the least complicated higher-order model
(a) that passed the standard significance test and (b) of
which the model of Table 2 is a proper subset. This was
the model: 2345 1235 1245 1345. The probability sta-
tistic exceeded 0.4 for each of the two data sets to which
this model was fitted.

Of concern was the issue of how the difference be-
tween the coefficients for the two data sets compared
with the sum of the standard deviations. As the ratio of
the coefficient differences to the sum of the standard
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deviations exceeded 2.0 for only 9 percent of the 148
parameters that were estimated, one might be tempted,
by using such a test, to reject the hypothesis that the
coefficients for the two alternatives are different—that
ITA is not a valid assumption.
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Small-Area Trip-Distribution Model

David L. Kurth* North Central Texas Council of Governments, Arlington, Texas
Morton Schneider, John Hamburg and Associates, Inc., Rockville, Maryland

Yehuda Gur#*, Urban Systems, Inc., Chicago

A model for predicting trip tables for small areas based on the access and
land development travel function is described along with the results of an
initial test of the model. The model provides trip tables required for sub-

regional analyses without the need for windowing into a regional data set.
The model requires minimum-path friction skim trees and trip-end data
for the small area as input. Trip-end data can be derived from ground
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counts on links that enter the small area or from the results of an assign-
ment of a regional trip table. Test results from a small area in Hudson
County, New Jersey, suggest the validity of the model. The need for
further refinemeits to the model is discussed in the papei.

In recent years, emphasis has been placed on short-
range, small-scale, non-capital-intensive solutions to
transportation problems and needs. This emphasis has
made development of new tools for quick, inexpensive
analysis of subregional alternative actions necessary.
Regional models are not always cost effective nor suf-
ficiently detailed for analyzing small-scale or subregional
alternatives. Some examples of new tools are windowing
and network-aggregation programs and small-area and
microassignment programs (1-3).

One need for many subregional or small-area analyses
is a trip table. This paper describes a model for de-
veloping a small-area trip table, The model provides a
powerful tool for the analysis of subregional plans since
it does not require data from outside the area of interest.

The small-area trip~distribution model was devel-
oped to provide an initial starting point for a process to
estimate a trip table based on observed link volumes.

The model can be used independently,

PURPOSE OF THE MODEL

The small-area trip-distribution model (SMALD) is
based on the access and land development (ALD) travel
function (4). It produces a small-area trip table based
on link volumes at boundary points of entry and exit
(boundary load nodes), productions and attractions at
points internal to the small area (internal load nodes),
and minimum-~path friction skim trees within the area
of interest.

A number of definitions are necessary for a clear
understanding of the model:

1. Small area—an area where a major portion of the
trips have one or both trip ends outside of the area under
consideration;

2. Boundary load node-a point where a link crosses
the cordon line that defines the area (also referred to as
a point of entry or exit);

3. Internal load node—a point internal to the small
area where trips originate or terminate; represents an
analysis zone;

4, Skim tree—a matrix that gives the generalized
cost (friction) of the shortest paths between all load
nodes (customarily, friction is a linear combination of
travel time and travel cost); and

5. Domain—the part of the region served by a point
on the network (usually a load node).

It may be possible to use a standard trip-distribution
model to produce a small-area trip table, but the process
is conceptually inferior to SMALD. Regional trip-
distribution models work on the premise that a major
portion of the trips have both trip ends within the area
of interest. However, by definition, this assumption
is violated in small areas. In addition, standard trip
distribution does not consider a source of valuable in-
formation on the characteristics of trips that enter at
boundary load nodes; that is, the type of service pro-
vided by the link as characterized by its functional
class at the boundary load node. A trip that enters the
small area on an expressway will have different char-
acteristics from a trip that enters the area on an
arterial or local street or a trip that is internally gen-
erated. This information is essential to SMALD.
SMALD explicitly considers that the small area is

surrounded by more region that attracts trips (see
Figure 1).

It is possible to extract a small-area trip table from
a regional trip table by using the Urban Transportation
Planning System (UTPS) program NAG (5). NAG per-
forms an all-or-nothing assignment of a regional trip
table on the regional network, traces the trips, and
records them as they pass through the area of interest.
If the regional trip table is unavailable or unreliable,
NAG cannot be used for deriving a small~area trip table.

Thus, SMALD has been developed to fill a void. It
finds reasonable trip tables for small areas based on
data from only the small area. However, it accounts
for and uses the fact that the area is surrounded by
more region that attracts trips.

SMALD THEORY

SMALD is based on the ALD travel function and a gravity-
type distribution process:

Vi = PiFy R/ LY
where
V,; = the interchange between point i and point j,

, = the productions at point i,

o mwoan

R, = the attractions at point j,
F; = decay function, and
I, = the sum of F; and R;.

Decay functions are based on the single-mode ALD
travel function:

Fij = K, (2V/A)/At (2)
where
A = a system constant,

mn

t = any measure of gseparation (e.g., distance, time,
or friction), and
K> = the modified Bessel function of the second type

and second order for the argument (2/A%).

In SMALD the travel function is different for each
type of interchange based on the domains at different
types of facilities. The various travel functions are
derived by integrating the basic travel function (Equa-
tion 2) over the respective domains of the facilities at
the points of entry and exit. The following assumptions

are made about the domains of points of entry and exit
on different facility types:

1. For expressway boundary load nodes, domains
expand two-dimensionally into the region external to the
area of interest;

2. For arterial boundary load nodes, domains ex-
pand in only one dimension into the region external to
the area of interest; and

3. For local street boundary load nodes, domains
are bounded and small enough to be treated as ordinary
point zones (internal load nodes).

Figure 2 shows domains for the different types of load
nodes, It is also assumed that the region external to
the area of interest is uniform in its accessibility and
trip-end density.

The form of the effective travel functions is given in
the table below. Note that K, (where i =0, 1, or 2) is
the modified Bessel function of the second type, ith



Figure 1. Relationship of small area to region.

Figure 2. Domains for various load node types.
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order, and t is the friction of paths internal to the area
of interest.

Destination
Internal or Arterial Expressway
Local Street Boundary Boundary
Origin Load Node Load Node Load Node
Internal or local-
street load
node K, (2VAt) /At Ky (2VAD VAT Kq(24/At)
Arterial boundary
load node Ky (2VAD VAL Ky (2VAY VAWK, (24/A7)
Expressway
boundary load _ .
node Ko(2V/At) VA, (2VAY)  AtK,(2v/At)

Figure 3 shows an example of three of the functions
plotted on semi-logarithmic paper. Note that inter-
changes on higher-level facilities become more and
more attractive in relationship to interchanges on lower=-
level facilities as the friction increases.
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Derivation of the Decay Functions

In the derivation that follows, the region is assumed to
be uniform—that is, it has about the same trip-end
density and accessibility everywhere. Domains shown
in Figure 2 assume that local streets always compete
with arterial roads, arterial roads always compete with
other arterial roads (but not with expressways), and
expressways compete only with an arterial infrastructure
of some sort. Domains have not been, and cannot be,
drawn carefully, Their main and only generally stable
feature is their dimensionality (i.e., point-like, linear,
or geometric).

The following notations are used in the derivation
that follows:

Q

a quantity proportional to trip interchange
volume (i.e., the trip decay function);
productions, production density;

attractions, attraction density;

the ALD travel function, Ka(2/A%)/At;

an element of area (see Figure 2);

a factor related to arterial domain width and

travel friction such that C.dt = dS;

a factor related to expressway domain shape

and travel friction such that C.tdt = dS;

a quantity similar to, but not necessarily

identical with, entry volume at a point of entry

(P = C,p/A for arterial roads and P = C,p/A’

for expressways);

R = a quantity similar to, but not necessarily
identical with, exit volume at a point of exit
(R = C,v/A for arterial roads and R = C,r/A?
for expressways);

t = travel friction internal to small area [with a
subscript it signifies friction on external seg-
ments (t; for external before entrance to area,
t; for external after exit from area)]; and

A = sensitivity to friction.

ol
9 P%"xja'v
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For internal-internal trips, no extended domains are
involved and the function follows the base ALD travel
function [see UTPS manual (5) for extended derivationl:

Q=PFR
= PRK, (2v/AD)/At 3)

For internal-arterial trips, the interchange between an
internal zone and an element of area within an arterial
domain is measured by

dQ = PF(rdS) @

so that the interchange to the entire domain is

Q=Pr f Fds
0
=PC,r f (t +tpdt;
0

= PC,iK, 2VAD/AVAE
= PRK, (2v/AD)/VAT )

For internal-expressway trips, the element of area is

proportional to t.dt rather than just dt,, so that
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Q= Perf F(t + t)t;dt;
0

= PC, 1Ko (2+/At)/A?

= PRK, (2+/AD (6)
For arterial-internal trips, production density and the
elemental size of the production domain measure the
interchange:

dQ = pdSFR @)

so that

Q= RCa[f F(t +t)dt
0

= RC,pK; (2vVAD/AVAL
= PRK, (2VAD/VAL (8)

For arterial-arterial trips, both production and attrac-
tion domains measure the interchange:

dQ = (pdS)F(rdS) ©®)
so that
Q= Cgprfmdtiwa(t +1; + t)tdt;
0 0
= PRK, (2VAD (10)

For arterial-expressway trips, the attraction domain
element of area is, again, proportional to t,dt,, so that

Q=CaCxprf dtif F(t +t; +t)dt;
0 0

= PRV/ALK, (2VAD (1

For expressway-expressway trips, both the production
and attraction domains are proportional to t.dt,, so that

Q= Cfpff tidtif F(t +t; +t;)t;dt;
0 0

= PRAtK, (2vAD 12)

For expressway-arterial trips

Figure 4. Study area map.
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Q=Cchprf tidt,-f F(t +t; +t;)dt;
o 0

= PRALK, QVAD (13)

For expressway-internal trips

Q= Cprf F(t + t)t,dt;
o

= PRK, (2V/AD) (14)

Note, again, that local street domains are assumed to
be bounded and small enough to be treated as ordinary
point zones (internals); wherever the word internal
appears, local street boundary load node can be sub-
stituted without much damage to the mathematics.

Limitations to the Theory

Perhaps the most severe simplification in the functions
listed in the preceding table is that nothing is said about
competition among domains, which occurs, for example,
when

1. An expressway or arterial emerges from the in-
ternal area at a different angle than it enters, so that
its entry and exit domains overlap;

2. Two parallel expressways through the area or in
its neighborhood cut the domain of each;

3. More than two expressways are involved, so that
at least one of the domains tends to grow only linearly
with distance from its boundary load node rather than
geometrically;

4, An expressway domain pinches off an arterial
domain only a short distance from the boundary load
node; or

5. Any peculiarity of network geometry or perfor-
mance causes 3 facility's domain to have an anomalous
shape.

Problems typified by examples 1 and 2 above can be
dealt with in an approximate manner by factoring the
attractiveness between two boundary load nodes based
on the type and severity of the anomaly. If there is an
anomaly, the attractiveness between two load nodes can
be expected to decrease from what would be expected in
a perfect world. Attractiveness factors can be applied
in a logically consistent manner. In effect, they modify
the size of the domains of the facilities in question.

Problems typified by examples 3 and 4 above may be
dealt with on an individual basis. In small areas, links
that cut the boundary must be identified by their actual
function at that point. If there are two expressways in
an area, one may easily serve as an arterial for most
trips around that area even though in the region it serves
as an expressway. SMALD will perform satisfactorily
without taking into account the actual traffic-carrying
function of links at boundary load nodes, but results will
be improved if this information is known.

The model's performance deteriorates as the size
of the area of interest decreases, since the problem
becomes increasingly dominated by the specific struc-
ture of the network external to the area. This is not
considered explicitly in the model.

The present formulation of the model is unimodal
(automobile trips only) and does not consider explicitly
competition with walking trips. As a result, the model's
performance is questionable when zones represented by
internal load nodes are extremely small. In practice,
this should limit zone sizes to a minimum of about 0.65
km® (0.25 mile?).
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Table 1. Equilibrium assignment summary results.

Measure Observed Run 1 Run 2 Run 3 Run 4
Volume (vehicle-h
of travel) 15 350.61 20 866.05 18 959.47 17 659,33 17 325.30

Net error (h) 5 515.39 3 608.97 2 308,87 197477
Percentage error 35.9 23.5 15.0 12.9

Absolute error (h) 6 323.76 4711.11 3 881.09 3 409.27
Percentage error 41.2 30.7 25.3 22.2
Sensitivity to friction® 0.003 8 0.007 6 0.011 4 0.007 6

Average trip length (min) 2.05 2.73 2.49 2.32 2.28

*All nonexpressway boundary load nodes considered as local streets

TEST APPLICATION OF THE
MODEL

Data for a 15.5-km® (6-mile?) test area in Hudson County,
New Jersey (see Figure 4), were extracted from a
regional data set that describes the New York metro-
politan area. The area was rather unique since it is
parallel to the Hudson River and includes the approaches
to both the Lincoln and Holland Tunnels. The data in-
clude 24 internal load nodes and 34 boundary load nodes
connected by 369 unidirectional links. Two-way ground
counts were available for all actual network links in the
small area, including all boundary crossings. Produc-
tions and attractions for internal load nodes were ob-
tained from the trip file and modified marginally; in-
trazonal trips, as estimated by the regional trip dis-
tribution model, were removed.

Criteria for Calibration

At the outset of the testing, we assumed that a small-area
trip table to be used as a calibration standard could be
obtained by extracting it from the regional trip table by
using a program similar to the UTPS program NAG.
Specifically, the regional trip table was assigned by an
all-or-nothing process, and trips were traced and
recorded as they crossed the area's boundary. It was
discovered, however, that the trip table obtained by

this process was subject to the pathological quirks of
all-or-nothing assignment and, as a result, was not very
good,

Since no trip table was available as a standard for
comparison, abstract criteria were used to test the
quality of the model and calibration. The main criteria
used were average trip length in the small area and total
absolute link-volume error (observed versus assigned
volumes) after five iterations of an equilibrium assign-
ment of the trip table. The average trip length was
determined to be 2.05 min from the total vehicle hours
of travel on the links (15 350.61 vehicle~h) and the total
trips (448 864 trips) in the small area. Note that the trip
length was based on friction (a linear combination of time
and distance expressed in minutes),

Results

Four runs of SMALD were made. All runs used the same
friction skim tree. In the first three runs, the value of
the gystem constant (parameter A in Equation 2) was
varied. System constants were chosen to be equal to,
two times, and three times the A value used in the
trip~distribution model (ALDGRAV) for the region. In
the fourth run, the functional class of all arterial
boundary load nodes was assumed to be local to more
accurately describe their operation due to the unique
location of the data set. The A value for the fourth run
was twice the regional A value.

Table 1 summarizes the results of the equilibrium
assignment of the trip tables from the four tests. Net

error is the sum of differences between observed and
assigned volumes on all links in the network. Absolute
error is the sum of absolute differences in observed
and assigned volumes on all links in the network.

Based on the sumimaries shown in Table 1, the model
tends to overpredict average trip lengths even at very
high A values (theoretically, the sensitivity to friction
used in SMALD should be the same as that used in the
regional distribution model),

The size of absolute volume errors is encouraging.
Although the errors seem high, they are about one-half
of the errors that resulted when the trip table extracted
from the regional trip table was assigned. The absolute
volume error from the extracted trip table was 64.9
percent of the observed volume.

Although they are not shown here, the resulting trip
tables appear intuitively reasonable. Specific inter-
changes are reasonable in their relative magnitudes.
The number of right-angle and U~turn movements
through the area appears to be reasonable—about 3 per~
cent of the boundary-to~-boundary trips are U-turn
movements, and about 30 percent are right-angle move-
ments.

CONCLUSIONS

The results of SMALD are encouraging. SMALD is
capable of building a reasonable trip table for a small
area, based on data from only that area. There are
several areas for possible enhancements to the model,
the most promising being methods for specifying routes
through the small area. Additional improvements to
and testing of the model are currently in progress. The
model, in its present form, is applicable in planning
studies.
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Disaggregate Travel Models:
How Strong Are the Foundations?

A.G.R. Bullen and Russell H. Boekenkroeger, University of Pittsburgh

This paper presents a review and analysis of disaggregate travel-demand
modeling founded on an examination of the published literature. This
analysis is directed to the conceptual foundations of the modeling pro-
cess, which appear to be somewhat obscurely covered by the literature.
The analysis is at two levels: (a) a review of where the modeling struc-
ture fits into the overall travel process and (b) an analysis of the founda-
tions of the specific models and how they relate to the target processes,
The particular disciplinary backgrounds that lead to the model formula-
tions are reviewed since a qualitative interpretation appears to be lacking
in the travel literature. From these analyses it is concluded that the basic
random-utility travel model does not have a sufficient behavioral founda-
tion that allows its generalized usage for all components of the currently
perceived travel structure. As a consequence it would seem to have some-
what limited application for many transportation policy questions. The
paper suggests that a more diversified modeling approach is required,

that the traditional modeling structure should be reviewed to exclude
unimportant functions and introduce more policy-relevant ones, and that,
in the development of modals, considerably greater attention needs to be
given to the establishment of criteria for their evaluation and verification.

Disaggregate travel-demand modcls (DDMs) have been
at the forefront of transportation systems-analysis re-
search and academic activity for the past 10 years.
The reasons for this are several. They respond to the
practical need to develop more effective models for
travel prediction and transportation evaluation. They
provide considerable intellectual challenge in their use
of sophisticated techniques, and their attractiveness
has been heightened by the theoretical derivation of an
apparent behavioral basis for earlier empirical
developments.

Despite the quantity and sophistication of the work
that has been done on DDMs, several areas of concern
appear:

1. They still have not been accepted by a substantial
segment of transportation practitioners;

2. They have not, so far, provided any spectacular
breakthroughs in modeling or understanding; and

3. The literature reveals lingering uncertainties
and continuing problems with models and data.

The main response to these difficulties has been
greater technical activity in search of a more complex
and sophisticated methodology. Nevertheless, the litera-
ture has not become much clearer. To many, the
methodology remains unclear and the problems remain
to be clarified.

This paper postulates that the immediate need is a
reexamination of the foundations of the models to pro-
vide at least a clear, concise, and simplified explana-
tion of them, if not a redirection of the modeling pro-
cess. The literature provides much confusion in defi-

nition and terminology at the conceptual level. Many of
the foundations of the modeling approach are subjectively
derived without testing of the underlying assumptions.
Some of the most important concepts are left to the
references, which also remain obscure.

A clear response to these questions, including
clarification of the concepts, would broaden the under-
standing and acceptance of DDMs. The conceptual
base of the current econometric thrust is so narrow,
however, as to preclude the confirmation of the strong
empirical results claimed. The usefulness of the
methodology is thus restricted to fairly limited appli-
cations.

BACKGROUND

DDMs are widely reported in the literature. A series
of conference proceedings provide the most exhaustive
reviews (1-3). Specific modeling developments are
provided by Ben Akiva (4), Charles River Associates
(5), Domencich and McFadden (6), and Manski (7).

DDMs were originally developed to gain greater in-
sight into travel behavior, particularly at the individual
level. This fundamental understanding was found lack-
ing in the aggregate forecasting models generally used
in the Urban Transportation Planning (UTP) process.
Critiques of traditional aggregate models are abun-
dant (1, pp. 13-19).

The initial modeling work was of an empirical
nature, developing logit models of mode choice.
theoretical work of Charles River Associates (5),
McFadden (8), and Domencich and McFadden (6) pro-
vided a behavioral interpretation and foundation for the
preceding empirical work. Despite this formulation,
however, the nature of the DDM methodology remains
overwhelmingly empirical. Conceptual difficulties and
behavioral inconsistencies have arisen from time to
time, and the underlying theory has often been adjusted
in an ad hoc manner to account for discrepancies (7).
Empirical and technical work has dominated; less
attention has been given to theoretical understanding,
and, unfortunately, this had led to what seems to be
lack of concern for the modeling foundations.

DDMs have been looked on as accurate, inexpensive
replacements for traditional forecasting models; they
are capable of dealing with policy questions that the
earlier methodology could not handle. Yet, with the
few exceptions, DDMs have not become a standard tool
for analysis in practical settings. This is despite their
virtues over the UTP models (4, 6).

From time to time questions of a conceptual and
theoretical nature have been raised about DDMs. These

Later



questions include the difference between aggregate and
disaggregate models (2, pp. 116-126), the lack of an
appropriate treatment of nonchoosers (2, pp. 173-179),
the applicability of these models to policy issues (9),
and the wholesale restructuring of the modeling pro-
cess (10). Recently, a number of interrelated research
problems have been proposed (11-13). The questions
and problems, however, remain. Questions arising
from the basic assumptions of DDM are being addressed
at the technical level. If the underlying concepts are
being considered, then the literature does not make this
clear. Rather, it provides a sometimes confusing
terminology and unclear references.

An examination of the assumptions of the theory may
be unwarranted if the principal concern is with testing
a model's predictions rather than its assumptions (14),
The purpose of this paper, however, is to review the
modeling processes through an examination of the con-
cepts and assumptions.

FOUNDATIONS AND CONCEPTS

As the literature recognizes, personal travel is an
extremely complex process. The actual mechanism

by which this complexity is reduced to a manageable
methodology is the central theme of this paper. Al-
though some of the assumptions used in a DDM are
criticized here, this is not in conflict with the process
of idealization and simplification that is essential to
develop a workable model of a complex phenomenon.

Of principal concern are those instances where basic
structures affected by the circumstances being modeled
are not reflected in the modeling methodology. Alter-
natively, there is also concern for those instances
where the foundations of the methodology are so impre-
cise or unclear as to make the user insensitive or un-
aware of the actual processes being dealt with.

Two distinct levels of concept are dealt with in the
analysis of these foundations. The first and more
general level that is examined is concerned with the
general character of personal travel and how it relates
to the overall travel methodology. This provides the
background for the second and more extensive level of
concept, namely those assumptions and techniques that
lead to the specific DDM.

Travel is a realization of human activity structured
over a spatial framework. The analysis of these spatial
connections is the travel modeling problem and, as such,
it has been frequently and clearly described throughout
the literature (6). This initial characterization, how-
ever, is frequently followed by a precipitous leap to the
description of rational economic man as a utility maxi-
mizer. At most, strictly qualitative attention has been
given to the concepts and subsequent assumptions that
transform the former into the latter.

This human activity is an assembly of individual
activities integrated into the larger structure of some
behavioral unit, generally agreed to be the household.
It is here that DDMs are initially tenuous. Although they
have been related to household decision questions (such
as residential location and automobile ownership), their
basic travel structure is concerned with the individual.
The models, therefore, will have limited value for
policy analyses, where changes in the structure of
household interactions are likely. Changes in energy
availability, vehicle size, life-style, and the role of
women have significance for the internal activity struc-
ture of the household—its subtle interactions and sub-
stitutions. In these kinds of instances the assumptions
of the separability of the individual utility functions, so
essential to DDMs, are unrealistic.

The closest approach to the household-identification
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problem is the market-segmentation process currently
in vogue. This, however, cannot analyze changes in
household~-activity structures unless these changes
coincide with transitions between market segments.
Market segmentation appears to be an ad hoc response
to deficiencies in the abilities of the models to handle
demographic or socioeconomic characteristics.

At the level of the individual, DDMs make further
idealizations of the basic activity structure. Two key
assumptions are made:

1. Activities spatially removed from the home have
a suitable surrogate in trip purpose and

2. The separability of utility applies to all compo-
nents of the activity-travel structure.

These simplificationsare sometimesnecessary to reduce
a complex process to a reasonable model but, once again
because of the separability criterion, important interac-
tions are not explicitly considered. For assumptions of
this kind, more effort should be given to identification of
their range of application.

Some of the conceptual problems raised here are re-
lated to the relationship between the traditional aggre-
gate modeling process of UTP and the disaggregate
approaches. Although disaggregate theories are in-
tended to overcome basic difficulties of the traditional
methods, they are highly derivative of these methods.
The traditional aggregate simulation models still domi-~
nate travel analysis thought, and some of the conceptual
problems of aggregate models transfer directly to DDMs.
The difficulties start (2, pp. 116-125) with the mere
description aggregate versus disaggregate, which gives
the impression that the individual is being analyzed.
This, however, is an economic interpretation, and the
study of the individual consumer is actually the study of
a homogeneous aggregate of consumers and, similarly,
DDMs are the study of homogeneous aggregates of
travelers. Both models are aggregate. The traditional
models aggregate space whereas the newer ones aggre-
gate class of individual (or occasionally household).

The major transfer of traditional techniques revolves
around the definition of the trip and the maintenance of
purpose as a substitute for activity. There appears to
have been little, if any, questioning of the basic trip
structure of frequency, time, mode, destination, route,
and purpose. Perhaps alternative structures are fea-
sible. To approximate activity with purpose requires
separability notions that are difficult to justify. The
analysis of household-activity patterns is being looked
at (15) and the travel implications have been concep-
tualized (16), but their potential impact on DDMs is
limited. More understanding of activities, time con-
sumption, spatial structure, and household interactions
are needed. DDM developers have realized this, but they
have tended to pass over these subjects through quali-
tative reasoning and strings of assumptions.

FUNDAMENTAL CHOICE CONCEPTS

The travel process just mentioned is treated in DDM in
a traditional economic framework that has some formal
mathematical propositions from psychology integrated
into it. Theories and models of travel that originate
from this framework are well documented (6, 7), but
little attention has been devoted to relating the frame-
work to the travel process. The failure to explain
precisely how the underlying concepts of the models
are related to these economic and psychological founda-
tions is a source of many conceptual difficulties. To
develop a cohesive basis for further discussion, these
foundations are now highlighted. The material is taken
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from the standard references cited in the DDM literature.

Theory of Choice in Economics

Current approaches to the theory of choice establish
those axioms that must be fulfilled for the existence of
any choice problem. The axioms that constitute the
general theory of choice ensure that (a) a universal set
of choices may be partitioned into the mutually exclu-
sive, attainable choice set; (b) all elements of the uni-
versal choice set may be compared and an induced
strong ordering of the elements established; and (c)
an element will be chosen and it will be the one most
preferred (17, 18).

These principles must be made more specific in the
consideration of a particular choice problem by assert-
ing clear restrictions on the choices made by a choosing
agent, identifying an attainable choice set, and positing
the criterion that will rank the choices. In consumer
theory, the criterion used is utility, and the mecha-
nism that provides this is the utility function.

Consumer Theory in Economics

In consumer theory the choosing agent is identified as
an individual consumer and the commodities that com-
prise his or her choice set are those that he or she has
at hand. Most consumer theory considers that the com-
modities themselves give rise to utility. DDMS incor-
porate the approach of Lancaster (19), wherein the in-
trinsic characteristics of the commodities give rise to
utility. Lancaster postulated that the characteristics
possessed by a good are the same for all consumers.

In DDM a somewhat modified approach is taken wherein
different homogeneous segments of a population have
different consumption characteristics.

To delineate the attainable choice set for individual
consumers, additional assumptionsare required of these
assumptions, and they ensure that the preference of
utility function possesses certain properties that are lo
be exploited. Once a consumer's utility function is
known and if he or she continues to behave rationally,
the demand function may be derived.

Theory of Revealed Preferences

For DDMs, McFadden (8) has identified modeling travel
choices as the population analogue of the theory of re-
vealed nreferences for individual consumers, which
originated with S8amuelson (20, pp. 90-123), whoproposed
that, by observing a consumer's actions, preferences
would be established. The advantage of this theory is
that, being based solely on observed behavior, it is
presumed to be testable. In its most general statement,
the theory entails two axioms:

1. Given a choice set, the consumer must make a
choice and

2. If the consumer reveals a preference, it can
never be violated at the same set of prices.

In this theory an outside observer constructs the
preference or utility function to conform to the rankings
that a consumer makes. If the function successfully
ranks the choices of consumers, thenitis interpreted as
explaining the behavior. However, the theory only allows
us to glean information about a consumer after choices
have been made. Unless some independent information
exists onthe way in which a consumer's preference
calculus changes over time, the observer is unable to
conclude anything before the fact about the process that
gives rise to the observed behavior. By assuming that

tastes and preferences are fixed in the short run this
problem is avoided and the theory is complete.

Utility

The criterion that a consumer employs in making
choices is utility, and the mechanism is the utility func-
tion. When this concept is employed in consumer theory,
some meaning is invariably associated with the term.
Utility is assumed to summarize a consumer's sense

of well being and it is generally interpreted as a re-
duced form of a number of complex psychological and
sociological processes. Without dealing directly with
these processes, utility may be interpreted to take ac-
count of them, albeit in an unspecified manner.

The characteristics of the choice are selected for
inclusion in the utility function by the observer based
on his or her substantive knowledge of the choice prob-
lem. He or she may not know for sure what the charac-
teristics are and, in the empirical analysis of consumer-
choice problems, different characteristics and transfor-
mations are tried to obtain that combination that is both
theoretically plausible and empirically valid. Of the
two classes of variables that enter the utility function
in DDM (characteristics of the chooser and the choice),
utility is encapsulated in characteristics of the choice.
The characteristics of the chooser are used primarily
to establish homogeneous market segments of con-
sumers.

The concept of utility is a controversial one, even
within the economics discipline, and considerable argu-
ment exists about its measurement and validity (21, 22).
As a basis for travel modeling, Fried and others (10)
tend to dismiss it entirely. Nevertheless, it is a flexible
concept, wide ranging over many disciplines, and it pro-
vides a driving mechanism for the modeis.

CHOICE THEORY IN PSYCHOLOGY

The study of choice behavior in psychology is a search
for the laws between stimulus and response relations,
which can be generalized in many cases to the gamut

of human decision-making situations. Empirical analy-
sis guides the determinations of which theories are
applicable to particular choice situations (23-25).

Those developing DDMs have referred to and used
formal propositions of mathematical psychologists,
particularly Luce (26) and Thurstone (27).

Luce's Theory of Individual Choice

Behavior

Luce presupposes that choice behavior is best des-
cribed as a probabilistic phenomenon. This philosophy
is adopted because of observed intransitivities in indi-
vidual decision making and the plausibility of a proba-
bilistic interpretation for the majority of choice prob-
lems addressed by psychologists. Luce's theory has
an axiomatic foundation, with the standard probability
axioms as its starting point. He assumes only mathe-
matically well-defined sets of choice alternatives.

The core of the model is the choice axiom, which
consists of two parts. The first part states that, if
all pairs of discriminations among the elements of a
universal set are imperfect, then the choice probabili-
ties for any subset are identical to those for the uni-
versal choice set, conditional on the subset having been
chosen. The second part states that if one particular
element is never chosen over another, then the former
element may be deleted from the universal set without
affecting any of the choice probabilities.

Two consequences of the choice axiom that have



been used by DDMs are the constant ratio rule, leading
to independence from irrelevant alternatives, and the
numerical ratio scale for characterizing alternatives in
the choice set. The constant ratio rule states that the
probabilities of choosing one alternative versus another
do not depend on the total set of alternatives. It is

the ratio of probabilities, not the probabilities them-
selves, that is invariant. The constant ratio rule
maintains the assumption of pairs of discrimination
among alternatives as well as transitiveness of choices.
These are also two of the more important basic axioms
of choice theory in economics. The choice axiom also
implies that a numerical ratio scale exists over the
choice set. In DDM, utility is represented in terms of
a numerical ratio scale.

Thurstone's Law of Comparative
Judgment

Thurstone's law of comparative judgment (27) is based
on the notion that choice alternatives (as a stimulus)
are subjectively experienced by an individual as intrin-
sically variable, and this accounts for the variability in
individual judgments. Alternatives are treated as nor-
mal random variables and are called discriminal pro-
cesses that represent the indirectly observable psycho-
logical values involved in choice. A case V Thurstone
model is formally comparable to Luce's choice axiom,
and it is the one of importance for DDM. The dis-
criminal processes are assumed to have identical
variances and common covariances, such that the mar-
ginal distributions differ only in their locations along
the axis. The different stimuli or characteristics of
the alternatives, described by real valued scale func-
tions, are identically and independently distributed
normally about their mean values. Thurstone's case V
model is more familiarly known to economists and
transportation analysts as the random-utility model.

Thurstone, Luce, and the Double
Exponential Distribution

For pairs of discrimination problems, Luce's choice
axiom, which results in the logistic distribution and
the normal distribution of Thurstone's case V model,
produces similar results except for the tails of the
distributions (28, p. 216). Conceptual differences
between Luce and Thurstone notwithstanding,
McFadden (8) and Yellott (29), independently and
under different assumptions, have demonstrated for
multiple-choice comparisons that, if the random
variables for Thurstone's model are restricted to
differ only in their means, then Luce's choice axiom
and Thurstone's case V random-utility model are
formally equivalent. The double exponential distribu-
tion provides the linkage between the two. This distri-
bution is referred to as the Weibull in travel literature
and the Gumbel in some other disciplines, where Wei-
bull is reserved for an alternative extreme value form.
The principal result of this finding is that the
multinomial-logit model has a random-utility interpreta-
tion along the lines of Thurstone's case V model. By
assuming the double exponential as the underlying
probability distribution, an explicit model for deter-
mining individual-choice probabilities results.

CONCEPTUAL ISSUES IN THE
BASIC MODELS

The purpose of this section is to identify and discuss
conceptual and theoretical issues of DDM, particularly
ag they relate to the concepts just highlighted. Some
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of the issues mentioned here have been presented
elsewhere in the literature (1-3, 11). The specific
organization given to this discussion focuses on the
issues of how travel is characterized and modeled.

It is this particular aspect in which the literature is
obtuse and usually concentrates on the technical aspects

of the models.

Basic-Choice Model: The Probability

of What ?

The heart of DDM is a basic-choice model, which in its
elementary form is written

P (i:A) = probability of choosing i from the travel
choice set A.

In dealing with this simple-choice concept as a starting
point, however, the transportation literature presents

a confusing and often inadequate notion of precisely what
concept of choice is being developed and, more impor-
tantly, precisely what behavioral ideas are involved.
There are three possible interpretations of the
probability-of-choice model presented above. They
involve to varying degrees the analyst, or observer,
and the subject, or consumer.

Model A—The probability involved refers to a
sampling probability that the subject, who has com-
pleted a fixed choice, will be selected by the observer.

Model B—The probability involved refers to the
probability of choice by the subject where his or her
choices vary randomly over repeated trials.

Model C—The statistical methodology implied in
model A is being used on a group of model B subjects
to estimate their probability distributions.

Invariably, DDMs are of the type described in model
A. This is often clearly stated (6, 30), but on balance
this distinction is left unclear by much of the literature.
The question at this juncture then is why the psycholo-
gists are references for the basic choice. Clearly, for
DDM to be behavioral in any more than a strict statis-
tical sense (where independent variables explain the
behavior of the dependent variable), something else is
being implied. Are disaggregate models trying to get
at model B through model C or what? McFadden (25)
uses the mathematical methodologies of the psycholo-
gists by restating the choice axioms in the context of
model A. The generalized framework of Manski (7)
combines observer and subject in the context of model
A, but this requires a narrowly defined individual-
choice mechanism. Formal similarities aside, the
underlying choice concepts of DDM are not those of
psychology. Model C presents serious theoretical and
conceptual problems.

Conceptual and behavioral confusion first arises
from the different probability definitions implied.
Model A represents the relative frequency view of prob-
ability, and model B implies the degree of confirma-
tion concept of probability, as defined by Carnap (31).
These are two of the major definitions of the several
put forward by various authors. By adopting this view,
probability may be taken to have a substantive meaning
in particular applications. Thus, model A and de facto
disaggregate models are incapable of logically support-
ing testing of behavioral hypotheses. By its very struc-
ture model A must be an aggregate model.

Model B is a true individual model and is thus dis-
aggregate, wherein a probabilistic mechanism is used
to reflect the degree of uncertainty of a decision maker
regarding his or her alternatives. Model A, on the
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Table 1. Comparison between choice theories of
Luce-Thurstone and disaggregate travel models.

Dimension

Disaggregate Models

Luce-Thurstone

Type of probability

Nature of choice experiment

Choice subjects
Number of trials

Individual decisions
structure

Underlying individual
preferences

Attributes of choice
alternatives

Sampling probability,
relative frequency

Complex, traditional sub-
models provide choice
sets

Aggregates of persons
(market segments)

Single observation for each
individual

Fixed

True individual preferences
unknown

Function of attributes of
dissimilar choices

Subjective probability degree
of confirmation
Simple

A single individual

Many observations for each
individual
Random

Preferences applied re-
peatedly to similar choices

A single attribute is varied
in a predetermined manner

Intervening processes

determined by the
observer

Many, not all of which are
known, understood, or
examined

Controlled by the observer

other hand, results in a sampling probability of choices
arrived at by decision makers from systems where the
alternatives are fixed. The probability mechanism
arises from the variation of that set of characteristics
of alternatives for the subject unknown to the observer.
The varying preferences are accounted for by the joint
consideration of fixed statistical distributions of these
unknown characteristics. The justification for these
distributions, which are the behavioral core of the
DDM is, at best, fuzzy. Unlike the Luce model,
behavior is not directly modeled but is inferred from
the apparent differences that individuals as consumers
of travel indicate in their preference structure. The
probabilistic core of DDM, therefore, appears to be
predicated on the error term in the model structure
and the data bage it ig calibrated from, Some of the
comparative differences between the model concepts
are summarized in Table 1.

Deriving the Basic Travel Model

The individual probabilistic choice models of psychol-
ogy described earlier (model B) are a means of
exploring intransitivities of behavior in simple-choice
experiments. In the context of simple-choice experi-
ments with repeated trials, the characteristics of the
alternatives (their utilities) are treated as random
variables that reflect the subjective preferences of an
individual choosing agent. The associated response
is uniquely determined on each presentation by the
choosing agent. The alternatives are all known to the
choosing agent and to the person conducting the experi-
ment.

A travel model begins with the random-utility model
(model A), which has been interpreted by economists
as an econometric interpretation of maximizing be-
havior. In DDM this interpretation results in the fixed
utilities of travel choices being treated as random vari-
ables by an observer who samples from the personal
travel data set (5, 6, 30). The particular application of
the random-utility model used in these models is more
in the spirit of deterministic modeling than probabilis-
tic modeling. Consequently, the randomness results
not from a lack of rationality or uncertainty on the part
of the traveler as to the utility of his or her alternative
choices, but from a lack of information on the part of
the observer as to which individual is chosen and the
true utility of the alternatives.

The characteristics that are specified by the observer
comprise the mean utility in the random-utility model,
and those characteristics that are not specified are
assumed to be part of the intrinsic utility, which each

individual considers uniquely, or that utility that the
observer does not have knowledge of. The socioeco-
nomic characteristics of the traveler included in the
utility function serve the primary purpose of segmenting
the sample into homogeneous groups that have similar
tastes and preferences. Within each market segment it
is assumed that demand has a structure determined by
behavioral regularities, which remain stable over time
and space. As individuals are sampled from the data
set, only the choices made or their revealed preferences
are known to the observer, since he or she has no
knowledge of the actual alternatives at the time the
observed choice was made.

A core conceptual problem is the random distribution
of unknown tastes, which is the essential behavioral
driving force of the DDM. It has a particular set of
properties assigned to it, yet little is actually known
about it. It remains unknown, and must remain un-
known, for the model as such to survive. The model
is data specific. If more behavioral variabhles emerge
they cannot come out of the distribution of unknowns,
so a new model is specified. The distribution of tastes
then must change its dimension but maintain its distri-
butional properties. There has been no interest in
establishing any information about the details of this
basic behavioral process. Perhaps this indifference to
the behavioral core of the model is responsible for
%u(;e's apparent lack of interest in travel modeling

28).

" Less fundamental technical questions arise. The
independence of irrelevant alternatives issue has been
widely thrashed around, but it presents a conceptual
singularity fatal to the imputed behavioral basis of the
model. The implication of the distributional indepen-
dence requirements on the model are rarely addressed.
Also, why are extreme value distributions used? In
most applications of these, the use of an order statistic
is clearly related to the modeling purpose and the
parent statistical distribution contributes to that purpose.

The Basic Model Applied to a Perceived

Travel Structure

The next stage of the travel-modeling process is to
apply the basic random-utility model to the perceived
travel structure. As already discussed, this percep-
tion is highly derivative of the existing UTP process
and the available data bases. Two general approaches
have been taken: the recursive approach and the simul-
taneous approach. The problems discussed below
apply to either. The basic choice model is applied to
every phase of the travel process, although its deriva-



tion has been largely in terms of mode choice. The
travel process as conceptualized in conventional UTP
submodels is purely descriptive. This breakdown of
travel choices (frequency, mode, destination, time of
day, route, and purposeg seems to be accepted as a
matter of faith. There appears to be little discussion
on whether alternative structures may be desirable,
whether each of these components is equally important,
and whether all components are relevant to the analyses
to which the models might be put. This structure will
be examined from the point of view of relating a quali-
tative view of the elements of the travel process to the
basic model. The table below summarizes this analysis.

Travel Component Behavioral Proceﬁ

Mode The individual's perception of the modes is
constant—model A

Destination Model A or model B, depending on trip
purpose

Route Generally model A but some model B by
regular commuters

Frequency A renewal point process

Time of day A renewal process or scheduling process

For mode choice, the choice model is applied to the
fixed preferences of a variable population, with complete
knowledge of their travel alternatives. Each individual
arrives at a consistent choice. Since the random-
utility model has been derived in this context, this is a
reasonable approach to what can be visualized.
Generally, mode choice appears constant and, if the
individual does randomly vary choice of mode, it is
probably for reasons unrelated to the variables usually
calibrated. Mode choice is a model A choice mecha-
nism that has led to the random-utility model formula-
tions.

For the choice of destination, there is the possibility
of randomly varying individual choice, as given by model
B. The choice set will be extremely complex since trip
purpose does not define activity very well. Depending
on the activity engaged in at the destination, some forms
of the mechanisms supplied by both models A and B will
be in evidence. Most work trips entail the fixed pref-
erence of model A, but for others, such as shopping or
social and recreational trips, some form of model B
mechanism may be operational. In any case, a uniform
behavioral interpretation is not possible across the
various purposes of travel, The choice set will also
vary from household to household, confounding the deter-
mination of homogeneous market segments.

In the application to route choice the problems in-
herent with destination reappear. No doubt, many
decision makers are displaying a fixed preference and
others present more probabilistic individual behavior
on a day-to-day basis. The direct application of the
random-utility model presents some conceptual difficul-
ties. Route choice deals with one of the most clearly
defined choice problems, since the decision is closely
related to the usual fixed attributes of cost and time
and not relevant to any unknown tastes. The real
decision mechanism is probably driven more by in-
complete information on the part of the decision maker,
a model B process.

Problems arise for the associated choices of fre-
quency and times of day, since they fit neither model B
nor model A. Clearly the traveler does not choose
frequency in the preference scale of the basic model.
What are its attributes? How does the taste variation
fit around the do-nothing alternative, which may be a
do-it-tomorrow alternative ? This particular choice
and that of time of day involves some kind of renewal
process, a stochastic point process, which hardly fits
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either conceptual approach.

The simultaneous model structure lumps all of the
described choices together into one model, which cor-
responds with model A. This can result only in models
of extreme behavioral obscurity and great complexity.

CONCLUSION

The conceptual foundations of the DDM as they relate
to choice theories from economics and psychology have
been highlighted and explained. Behavioral interpreta-
tions attributed to DDM by the use of these choice con-
cepts appear to be mainly formal in nature and rather
obscure when related to the travel processes being
modeled. Much of the DDM literature misinterprets
what can be achieved from these concepts, and the ap-
plication of them to the perceived travel process com-
pounds the conceptual difficulties of the DDM. The
fundamental discrepancies between the stated and actual
interpretations of the DDM indicate a tenuous behavioral
base and render its use for most purposes highly sus-
pect.

The random-utility model is perceived as a signifi-
cant advance, in fact and in potential, on the conven-
tional UTP models—yet the travel structure is unchanged,
the calibrated variables are little different, and the ag-
gregation remains, albeit on a different dimension.
These models are driven by variation over the popula-
tion rather than by the imputed variability in the indi-
vidual decision-making processes. As a consequence,
the underlying behavior being modeled remains largely
unexplained.

DDMs meet some important modeling objectives in
that they are elegant and simple. Yet, as reasoned
here, they are not proven behaviorally and, as such,
they should not be considered sacrosanct and the only
basis for further examination and generalization of
travel. The models are helpful to have and they possess
properties that may be exploited, but they are not a
behavioral truth. DDMs have provided no modeling
breakthroughs nor have they led to an increased under-
standing of travel.

A greater awareness of the complex processes that
cause travel is required. Attention at all levels of the
modeling process would help to conceptually structure
models that are behaviorally and empirically valid.

The determination of criteria for evaluation should be

a parallel effort to the development of the models them-
selves, for the lack of clearly stated and operational
criteria for evaluation is one of the causes of the con-
fusion and inconsistency in current models.

The use of probability in DDM does not appear to
have proved any new insight into the travel process.

It is used in a descriptive statistical sense to take ac-
count of human variability, whether or not that vari-
ability is germane to the problem at hand. Yet, the
process at hand may be susceptible to stochastic analy-~
sis since the events take place over time. Rather than
use probability as a substitute for what is not known, it
could perhaps reinforce what is known.

The conclusion is that DDMs lack the strong founda-
tions, the power, or the capability to provide much ad-
ditional understanding of travel structure. Beyond a
predictive capability in the short run within the limits
of their empirical calibration, they would appear to be
limited in application. The development of more ex-
planatory models for travel analysis will require more
diverse research approaches, which will entail a con-
centration on assumptions rather than on methodologies.
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Choice of Access Mode to

Intercity Terminals

J. Sobieniak, N.D. Lea and Associates, Ltd., Vancouver

R. Westin, University of Toronto and the World Bank,
Washington, D.C.

T. Rosapep and T. Shin, University of Toronto

Disaggregate demand models are developed for Canada’s national capital
region (Ottawa-Hull and vicinity) for the choice of access mode to inter-
city transportation terminals. Models that consider a choice of five
alternative access modes are reported for the airport, railroad station,
and intercity bus terminals. The results show that considerations of
convenience (walking time, schedule frequency, and baggage handling)
are dominant factors in the choice of access mode. The models are
applied to test passenger preference for several proposed strategies for
improving access to intercity transportation terminals in the region.
The evaluation indicates that, although more direct and faster public
limousine and transit services will produce a modest increase in mode
share, shared-ride taxi services offer a better compromise between the
low cost of public transportation and the convenience of the private
automobile and conventional taxi service.

Municipal transportation and planning authorities are
often asked to formulate policies and provide service
for access to intercity transportation terminals.
Indeed, the need for access to major terminals such
as airports and railroad stations is often used as a
justification for major investments in roadways and
rapid transit facilities. This paper reports on the
development of disaggregate demand models for choice
of access mode to intercity transportation terminals
[see also Rassam and others (1)]. We will give sepa-
rate models for air, rail, and intercity bus terminals,
stratified by personal and business trip purposes. In
addition, we report on the application of the models to
the prediction of the impact of several strategies for
improving access to intercity terminals in Canada's
national region (Ottawa-Hull and vicinity).

The results of our investigation, although compatible
with professional intuition, have not been previously
confirmed in the literature and therefore bear empha-
sis. In particular, our results show that the most im-
portant factors that determine use of public transpor-
tation modes for access to intercity terminals are the
schedule frequency and the ease of access to pickup
points for the service. Comparatively speaking, im-
provements in line-haul travel times are ineffective
in increasing the use of public transportation modes
for access to intercity terminals. Major investments
in infrastructure to improve the travel time for public
transportation to intercity terminals are unlikely to
be justified on a cost-effective basis as compared to
policies that promote taxi, limousine, and flexible
bus service to the terminals. Shared-ride taxi offers
a compromise between the low cost of public transport
and the convenience of the private automobile and con-
ventional taxi and could attract a significant share of
passengers if provided in all parts of the catchment
area of the region’s terminals.

The results reported are based on travel surveys
performed in April and May of 1978 on departing pas-
sengers at the airport, railroad station, and intercity
bus terminals that serve the national capital region.
The purpose of the study was to develop models for
access mode choice for each of the terminals and to
apply the models to test passenger preference for
several strategies proposed for improving access to
the intercity terminals. The technique used for cali-

brating the demand models was the familiar multi-
nomial logit model, which has been extensively docu-
mented elsewhere (2, 3).

DATA

The set of access modes considered in this study are
automobile driver, automobile passenger, taxi, lim-
ousine, and public transit (either regular or special
bus). Not all these modes are available for each of the
intercity transportation terminals we considered. For
example, because of the absence of long-term parking
at the bus terminal in Ottawa, drive alone was not con-
sidered to be a feasible alternative. Because only limited
bus service to the airport is available, only 0.1 percent
of survey respondents used this mode and it was deleted
from our calibration data set for the airport. Neither
the intercity bus terminal nor the railroad station is
serviced by limousine.

Table 1 summarizes the variables used for our cali-
bration.

Cost

Travel cost figures for automobile were estimated by
adding an assumed operating cost of $0.09/km to any
long-term parking charge (i.e., $2.50/day at the airport
terminal). Total parking charges were determined by
multiplying the per diem rate by the reported trip dura-
tion from the survey. Transit cost consisted only of the
fixed $0.55 flat fare. Similarly, limousine travel was
figured at the set trip cost of $2.75. The fare structure
for taxi was $0.80 plus $0.44/km. In addition, a 10
percent surcharge was added to the taxi fare to account
for standing charges and tipping.

Line-Haul Time

Line-haul travel times for automobile, taxi, and lim-
ousine were obtained from skim-tree values provided
by the regional municipality of Ottawa-Carleton.
These times were based on an average speed of 19
km/h plus an extra 3 min when passing downtown.
Transit travel times were derived from current bus
schedules and routes.

Waiting Time

Waiting time for limousine and transit was computed
as half of scheduled headways to a maximum of 10 min
plus the expected waiting time for transfer when re-
quired. No waiting time was assigned to the automo-
bile and taxi modes.

Walking Time

Total walking time includes walking at both ends of the
trip. Terminal walking times from park-and-ride lots
were estimated as 7 min at the airport and 4 min at the
railroad station. For driver-served passengers,
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Table 1. Variables used for model development.

ransit

Abbreviation Variable Driver Passenger Taxi T Limousine Comments

COST Cost X X X X X Terminal dependent

WALK Walking time X 0 0 X X Terminal dependent

WAIT Waiting time 0 0 0 X X Terminal dependent

LINE Line-haul time X X X X X Terminal dependent

HBRES Resident-home-based 1 0 0 0 0 Drive-specific variable

HBVIS Visitor-home-based 0 1 0 0 0 Passenger-specific variable
NHBVIS Visitor-non-home-based 0 0 1 0 1 Taxi-limousine-specific variable
BAG Baggage 0 0 0 1 0 Transit problem = 1, other = 0
SEX Sex 0 1 0 0 0 Female = 1, other =0

ALTI1 Alternative-specific dummy 1 0 0 0 0 Drive alone = 1, other =0
ALT2 Alternative-specific dummy 0 1 0 0 0 Passenger = 1, other = 0
ALT3 Alternative-specific dummy 0O 0 1 0 0 Taxi = 1, other - 0

PURI" Taxi purpose 0 0 1 0 0 Business = 1, other =0

PUR2" Transit purpose 0 0 0 1 0 Business = 1, other =0

Note: X = calculated value; 0 = unaffected alternative.
2Alternative-specific dummy variables used for bus terminal only to account for trip purpose.

terminal times werc assumecd to be zero.

HBRES, HBVIS, NHBVIS

HBRES, HBVIS, and NHBVIS are dummy variables de-
signed to account for the effects of residential status
and trip origin. Three principal trends were identified
in the analysis of these data and were incorporated into
dummy variable definitions.

1. HBRES—Ottawa area residents who initiated their
trips from home were more likely to drive alone than
any other group of travelers.

2. HBVIS—Visitors to the area who began their trips
to the terminal from a private residence were more
likely to be automobile passengers.
trips to the

..... crip

terminal from a hotel or business location were more
inclined to travel by taxi or limousine.

Baggage

The survey elicited information on the difficulty of
using public transit because of baggage-handling prob-
lems. Passengers who responded that baggage con-
siderations made the use of public transit difficult
were identified by a dummy variable.

Sex

Female travelers showed a higher likelihood of making
their trips as automobile passengers. This informa-
tion was included in the model as a dummy variable.

Alternatives 1-4

Alternative-gpecific dummy variables were included in
all models to capture the average influence of unobserved
attributes for each mode.

Purpose 1,2

Separate models were developed for business and
personal travelers for the air and rail terminals.
This was not possible for the bus terminal because of
the small number of business travelers in the sample.
The samples were therefore combined for the bus
terminal only, and dummy variables were included to
capture the alternative-specific effects of business
trip purpose.

Besides the variables discussed above, extensive
experiments were made with several other variables.
Our failure to find any consistent influence of these

variables is as instruclive as our more positive results
reported below, and these conclusions are briefly sum-
marized here.

Household Income

In the initial analysis of our data, travelers from
higher-income households (more than $20 000) ap-
peared to have a higher propensity for using single-
occupant automobiles or taxis as an access mode.
Once we stratified our models by terminal and trip
purpose, we were unable to identify any consistent
effect of household income. Numerous experiments
were made that treated household income interactively
with the time and cost variables, as a dummy variable
classification, and as an imputed wage rate. Our in-
ability to find any consistent results indicates that
income primarily determines choice of intercity mode
and trip purpose. Conditional on these decisions,
access mode choice is relatively free of income effects.

Automobiles per Driver

We initially felt that family competition for the auto-
mobile would be an important variable in determining
the use of the automobile as an access mode. Once our
models were stratified, however, the variable "auto-
mobiles per number of drivers in the household' lost
virtually all explanatory power.

Transfers

Because of the inconvenience associated with trans-
ferring between vehicles, particularly with baggage

in hand, a variable was defined equal to the number of
transfers required to use public transportation. This
variable was insignificant when waiting times were in-
cluded in the model.

THE MODELS

Table 2 summarizes the stratifications used in defining
the models calibrated. Because the number of business
travelers who used the intercity bus terminal was small,
business and personal travelers were combined for this
terminal only. For the other terminals, separate
models were estimated for each trip purpose.

The strategy used in the selection of variables for
inclusion in the models was whether the coefficient of
the variable had the predicted sign and whether the
variable enhanced the predictive capability of the model.
If variables passed these tests, they were included re-
gardless of their statistical significance. These



Table 2. Model segmentation.

Model Market Sample
Terminal Number Segmentation Size Modal Choice Set
Bus 1 Business and 556 Automobile passenger
personal Taxi
Transit
Rail 2 Business 96 Automobile driver
Automobile passenger
Taxi
Transit
3 Personal 222
Air 4 Business 670 Automobile driver
Automobile passenger
Taxi
Limousine
5 Personal 198

criteria were deemed a reasonable search procedure
in an exploratory study such as this one.

Because transit service to the airport is virtually
nonexistent, we were not able to include any of the time
variables in either of the airport models, Without tran-
sit service as a standard of comparison, the time
variables either showed no difference between the re-
maining modes (line-haul time) or were virtually dum-
my variables for one or another of the modes (walking
and waiting time). Because we were able to obtain
reasonable time coeflicients for the other two terminals,
these coefficients could be added to the air terminal
models for predictive purposes.

Table 3 presents the most successful model calibra-
tions for each terminal and market stratification.

Bus Terminal Model

This model contains a complete set of level-of-service
variables (walking, waiting, line-haul travel time, and
travel cost). Of the time components, travelers are
most sensitive to walking time, display moderate sen-
sitivity to waiting time, and are least sensitive to line-
haul time. They also display moderate sensitivity to
trip cost, as can be seen by examining the implied
values of time for the model.

Values of Time

Bus Terminal ($/h)
Walking time 27.31
Waiting time 6.12
Line-haul time 3.97

In addition, transit handling difficulties are a strong
negative influence on the use of public transit, and
there are significant differences in modal choice
probabilities based on trip purpose and being a home-
based visitor to the Ottawa-Hull region.

Rail Terminal Models

These models also contain a full set of level-of-
service variables, except that line-haul time has been
deleted from the personal travel model because of a
positive but statistically insignificant coefficient. The
magnitudes of the time coefficients are compatible with
those of the bus terminal model and also indicate that
travel choices are most sensitive to walking time, are
somewhat less sensitive to waiting time, and are rela-
tively insensitive to line-haul time. The magnitudes of
the cost coefficients are smaller than for the bus
terminal. The values of time for business travelers
who go to the rail terminal reflect a rather high sensi-
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tivity to time considerations as comparead to travel
costs.

Values of Time

Rail Terminal ($/h)
Walking time 74.24
Waiting time 41.06
Line-haul time 20.82

For personal travelers, the very small coefficient for
trip cost would imply unreasonably high values of time
if interpreted literally. A more conservative interpre-
tation is that personal travelers are relatively insen-
sitive to trip cost considerations as compared to travel
time. We also note no significant difference between
business and personal travelers in their sensitivity to
the components of travel time. This result is at odds
with the common statement that business travelers
worry about time and personal travelers worry about
cost.

As noted for the bus terminal model, the necessity
to handle luggage is a strong deterrent to transit use
for personal travelers. The failure of this variable
to enter for business travelers probably reflects the
shorter length of business trips and the correspondingly
less luggage required. We also note that trip origin,
residence status, and sex are important influences on
modal-choice probabilities.

Air Terminal

As noted earlier, we were not able to obtain indepen-
dent coefficients for any time variables for the airport
models because of the absence of transit as a feasible
airport access mode. Therefore, the only level-of-
service variable that enters this model is trip cost.
Although statistically significant for both the business
and personal trip purpose models, the magnitude of the
cost coefficient is small in absolute value and would
imply implausible values of time if computed by using
time coefficients from either the rail or bus model.

In addition, as with the rail models, the cost coeffi-
cient for personal travelers is smaller than that for
business travelers. The absence of the baggage vari-
able from the air terminal models is due to the lack

of transit as a feasible alternative, Otherwise, we see
that residence status, trip origin, and sex are impor-
tant determinants of modal choice. The alternative-
specific dummy variables are almost all significant.
We note that the difference in sign for the alternative-
specific dummy variables as compared to the signs for
the other terminals is due to the use of limousine as a
base mode for the air terminal; transit was used as the
base mode for the rail and bus terminals.

Cross-Model Comparisons

Comparisons between the five calibrated models in
Table 3 yield interesting implications. First, we note
the uniformity of the implications of the time coefficients
in the three models where they could be estimated. In
each case, walking time is the most important trip time
component that influences modal choice, followed by
waiting time; line-haul time is relatively least impor-
tant in its effect. In addition, there is no significant
difference in the travel time coefficients between busi-
ness and personal travelers for the rail terminal or
with travelers to the bus terminal.

In contrast, the cost coefficients show significant
differences by terminal and by trip purpose. Cost con-
siderations are most important for travelers to the bus
terminal, are somewhat important for business trave-
lers to the rail terminal, and have a small effect on
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Table 3. Model calibrations.

Model 1 Model 2 Model 3 Model 4 Model 5

Variable Number t-Value Number t-Value Number t-Value Number t-Value Number t-value
COST -0.003 9 -4.09 -0.001 7 -1.28 -0.000 3 -0.30 -0.000 9 -4.19 -0.000 5 -2.17
WALK -0.180 -1.63 -0.207 -1.75 -0.200 -3.52
WAIT -0,040 -1.80 ~0.115 -1.06 ~0.146 -2.60
LINE -0.026 -2.26 ~0.058 -0.72
HBRES 0.44 0.80 .35 1.26 1.07 1.48
HBVIS 1.25 3.19 1.77 3.18 1.27 2.19 1.26 1.57
NHBVIS 1.03 1.76 0.65 2.44 2.92 3.60
BAG -2.03 -6.35 -1.41 -3.00
SEX 1,35 1.95 0.45 1.09 0.84 2.68 0.96 2.1
ALT1 -1.20 -0.91 -2.17 -2.46 1.15 4,18 1.54 1.77
ALT2 -1.64 -1.53 -3.82 -2.56 -3.96 <413 -0.39 -1.62 1.68 2.95
ALT3 -0.24 -0.24 -2.23 -1.44 -3.25 -3.57 1.43 9.01 1.20 2,30
PUR1 1.05 2.29
PUR2 -1.18 -3.51
o’ 0,184 0.229 0.129 0.203 0.190
Percentage

correctly

predicted 65 63 58 61 63

modal choice for air travelers and personal travelers
to the rail terminal. These differences are probably
due to the relative magnitude of terminal access costs
as compared to the total cost of the intercity trip.

Since intercity bus is the least expensive intercity mode,
terminal access costs are a larger proportion of total
trip costs and, therefore, play a larger role in deter-
mining access modal choice. On the other hand, air
travel is the most expensive intercity transport mode,
particularly because of the generally longer trip lengths
and, therefore, terminal access costs are a smaller
proportion of total costs and are relatively less impor-
tant to the traveler. Rail represents an intermediate
cost case between air and bus.

With respect to the fact that personal travelers
exhibit smaller cost coefficients than do business
travelers going to the same terminal, this result at
first glance appears to be unintuitive. There are two
considerations that make it reasonable, however. The
first is that personal travel is generally of longer dur-
ation than business travel, so again the cost of access
to the terminal is relatively smaller as a proportion of
the total trip costs. In addition, personal travel often
requires the carrying of more baggage, which is a
strong dissuasion from using transit, as is evidenced by
the baggage variables in two models. These considera-
tions act together to suggest that personal travelers
may be less sensitive to access costs and more con-
cerned about baggage convenience than are business
travelers. Our results suggest that trip cost considera-
tions are not unimportant to business travelers, even
if many of them will be reimbursed for out-of-pocket
charges.

POLICY IMPLICATIONS

Walking and waiting times are more important factors
than line-haul time in determining access modal
choice. Therefore, policies and programs that en-
courage greater service frequencies and convenient
access at the trip origin should lead to an increased
market share for the mode under consideration.
Policies that focus on faster line-haul travel time alone
(e.g., exclusive transit lanes or expressways) will be
less successful in achieving modal objectives.

Baggage-carrying considerations are a strong dissua-
sion from using public transit for personal travelers.
Therefore, public transit is unlikely to compete satis-
factorily with private automobile, taxi, and limousine
for this market.

The use of an access model is strongly correlated

with trip origin (home versus nonhome based) and
residence status of the traveler (resident versus non-
resident). Therefore, the best market for public ac-
cess modes to intercity terminals will continue to be
in the employment center and around hotels.

These conclusions are neither surprising nor contro-
versial. They have definite implications about public
policies for providing access to intercity terminals,
however. The policies most likely to be successful will
stress convenience, flexibility of service, and ease in
baggage handling. Capital investments to improve
transit line-haul times to intercity terminals are un-
likely to attract a significant number of new passengers.

ACCESS TO INTERCITY TERMINALS
IN THE NATIONAL CAPITAL
REGION

The models were developed to predict access mode
choice to the intercity terminals in Ottawa-Hull for
different arrangements of access services and termi-
nal locations. This is a key element in a study cur-
rently being done to evaluate alternative strategies for
improving access to intercity services in the national
capital region.

Current Situation

The location of the existing bus, rail, and air terminals
in Ottawa-Hull and the access services provided are il-
lustrated in Figure 1. There are no terminals of sig-
nificance in Hull and nearly all passengers who originate
in Hull and other areas north of the Ottawa River must
use the Ottawa terminals. Currently all major inter-
city bus and rail services to and from Ottawa-Hull,
even those to points east of the region, radiate from
Ottawa on the south side of the Ottawa River because of
superior highways and rail corridors. Only a few local
bus and rail services pass through Hull and pick up pas-
sengers at satellite stops.

All of the Ottawa terminals can be reached by transit
from most of the urban area although it may require a
prolonged trip, involving several connections, especially
from fringe areas. Moreover, the bus terminal is lo-
cated one city block west of the major north-south
arterial that carries several of the busiest north-south
transit routes. These transit services do not deviate
to serve the bus terminal except on weekends, so bus
passengers must walk from the nearest transit stop to
the bus terminal. The transit route that serves the



airport is not an express service and is intended for
airport employees.

Limousine services are provided between the major
hotels in the central business district (CBD) and the rail
station and the airport. The limousine service to and
from the rail station crosses the Ottawa River and
terminates in the Hull CBD, but the airport limousine
service terminates in the Ottawa CBD and does not
serve Hull.

Long-term parking is provided at the rail station and
airport but not at the bus terminal. The nearest off-
street pay lot for the bus terminal is located several
blocks away.

Future Situation

A transitway is to be developed to serve the Ottawa
urban area south of the Ottawa River. Initially, this
transitway will be a busway, but it is designed to be
upgraded to light rail transit at some future date. The
transitway will not pass through any of the intercity
terminals. During the planning phase, the possibility
of running the transitway through the rail terminal was
evaluated but rejected on the basis of the low number
of trips generated by the rail terminal (relative to
other trip generators to be served) and the high cost of
traversing the rail lines in the terminal area. The
transitway alignment selected is approximately 1.3 km
west of the rail terminal. Alternative transit corri-
dors, which would have located the transitway nearer
to the bus terminal, were rejected during the planning
phase due to a combination of demand, cost, environ-
mental, and other practical considerations. The south-
eastern end of the transitway terminates approximately
2 km from the airport, near the limits of the urbanized
area, and it was not considered feasible to extend the
transitway to the airport.

It is planned to operate only regular transit services
on the transitway. Approval would be required before
the limousine services between the CBD and the rail
station and airport would be permitted.

Figure 1. Current situation.
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OPTIONS FOR IMPROVING
ACCESS

The options recommended for improving access to the
bus, rail, and air terminals are listed below

Terminal Option

Bus More direct transit

New limousine

Shared-ride taxi

Optimum terminal locations

Reduced transit and limousine
line-haul times

Shared-ride taxi

Extended limousine service and
reduced line-haul times

Shared-ride taxi

Rail station

Airport

Bus Terminal

Rerouting the high-frequency north-south transit
services through the bus terminal is not practical be-
cause it would impose an unacceptable time penalty on
the majority of transit users. However, a bus service
that runs east-west along the crosstown expressway has
been introduced recently and will connect with all major
transit lines that radiate from the CBD at each inter-
change. The new bus service also serves the bus
terminal that is located near one of the expressway
interchanges. The service will allow a large number
of bus passengers to avoid having to travel first to the
CBD in order to connect to the bus route that passes
nearest to the bus terminal.

A limousine service similar to the rail station
limousine, which will link the bus terminal with prin-
cipal points in the Ottawa and Hull CBDs, is being
considered.

Shared-ride taxi is an alternative access mode that
satisfies many of the requirements to which passengers
are particularly sensitive when selecting the access
mode. Compared to exclusive-ride taxi, passengers
must trade off cost versus a certain amount of delay (if

\

Limousie, e
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Table 4. Access mode shares for national capital region.

Qutomobile
{#)

Terminal

Option

Taxi

(%)

34
34
32
21

44
43
30
45

43
41

Current

More direct transit
New limousine
Shared-ride taxi

Rail Current
Reduced transit and limousine line-haul time

Shared-ride taxi

Air Current
Extended limousine and reduced line-haul time

Shared-ride taxi

37
31
28
18

42
39
28
47

42
34

Limousine Transit Shared- Ride
(*) (%) Taxi (%)
29
35
9 31
5 21 35
5 9
5 13
3 9 30
8
15
8 15

not picked up or dropped off first), convenience (need
to prebook a trip to the terminal), and privacy (however,
Ottawa~Hull is much more socioeconomically homoge-
neous than most large North American cities). Most
importantly, shared-ride taxi services can he pro-
vided to all areas in the region.

Another means of improving access is to relocate
or add new bus terminals to bring the intercity trip end
nearer to passenger origins and destinations. This can
be done in a combination of ways, including moving the
bus terminal to a more central location (ideally on the
transitway) or establish satellite bus terminals to pick
up or drop off passengers in fringe areas en route.
Another possibility would be to begin and terminate some
of the intercity bus routes in Hull with an en route stop
at the main Ottawa bus terminal to pick up and drop off
passengers.

Rail Station

The rail station is served by several transit routes that
stop directly at the station and by a limousine service
to hotels in the Ottawa and Hull CBDs. Access transit
has been improved by the same crosstown transit ser-
vice that was introduced recently at the bus terminal.
When the transitway is developed, the line-haul portion
of limousine and transit trip times are expected to be
reduced significantly.

Airport

The limousine service that currently links the airport
with the major hotels in the Ottawa CBD could be ex-
tended to serve the new hotels and commercial
complexes now being developed in the IIull CBD. This
service would be a simple extension to the existing
service during off-peak periods and a separate direct
service in the peak periods. When the transitway is
developed, these services could operate along this
facility to avoid road congestion and reduce line-haul
time.

MODE CHOICE FOR OPTIONS

The mode choices of different categories of passengers
represented in each of the models (e.g., home-based
residents on a personal trip, non-home-based visitors
on a business trip) were determined by dividing the
national capital region into zones, determining repre-
sentative values of the explanatory variables for each
model and zone, and then applying these values to the
models. The overall mode share for the region was
calculated as the average mode share weighted by the
number of passengers in each category and zone. These
results are presented in Table 4.

Bus Terminal

The current share of transit to the bus terminal is fairly
high at 29 percent because a large number of bus passen-
gers originate in the center of the city or are transit
dependent. The provision of more direct transit ser-
vices will increase transit's share from 29 to 35 per-
cent; most of this increase will come from taxi.

New limousine services to Ottawa and Hull CBDs will
attract more passengers from taxi and a few from
automobile and (improved) transit.

Assuming that shared-ride taxi services would be
operated as specified, they would be highly favored by
passengers and could attract a large number of passen-
gers away from the other modes (including improved
transit and new limousine services) to become the pre-
dominant mode.

The results of relocating or adding new bus terminals
are inconclusive and are not presented in Table 4. It
was found that changes in the terminal location tend to
affect all modes more or less cqually and, therefore,
the mode shares remain almost unchanged or change in
favor of taxi, whose costs are reduced relative to tran-
sit. The mode share is also heavily dependent on whether
or not long-term parking is provided at the new bus
terminals.

Rail Station

Reduced transit and limousine line-haul times for using
the transitway will increase transit's mode share from
9 to 13 percent but will not affect the limousine's share.
The transitway affects transit line-haul times from a
large number of zones within Ottawa, but it produces
only a minor reduction in the limousine line-haul time.
Shared-ride taxi services are expected to attract a
significant number of passengers from all modes.

Airport

Extended limousine services to the Hull CBD and re-
duced line-haul times due to using the transitway for
part of the trip will increase limousine's mode share
by almost 100 percent. Shared-ride taxi is not ex-
pected to attract as large a share as at the bus and
rail terminals.

CONCLUSIONS

The majority of intercity passengers in Ottawa-Hull
currently use private automobile or taxi for access to
the intercity terminals; however, the evaluation
demonstrates that there are several ways in which
public transportation services can be improved and
thereby attract significant numbers of passengers.
These results bear out the policy implications pre-
viously drawn from the developed models.



Improvements in transit services that provide
more direct access to the terminals by reducing walk-
ing and waiting times and the number of connections
can produce further modest gains for transit as an ac-
cess mode. The difficulty is, of course, in providing
a high level of service to the intercity terminals from
all points in the terminals' catchment area.

Limousine services that provide express service
between hotels and other central points in the CBD and
specifically cater to passenger baggage requirements
can attract a majority of passengers whose origins and
destinations are in the CBD. These passengers can
form a significant portion of the total trips in the
catchment area.

Shared-ride taxis offer a compromise between the
lower cost of public limousine and transit services and
the convenience and speed of private automobile and
taxi. They also provide service to nearly all parts of
the catchment area of the Ottawa-Hull terminals. As
a result, the evaluation estimates that shared-ride
taxis can capture a substantial share of bus and rail
passengers and a smaller share of air passengers.
They offer a clear alternative to existing public trans-
port services.
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Use of the Gravity Model for Pedestrian

Travel Distribution

G. Scott Rutherford*, G.S. Rutherford and Associates,
Washington, D.C.

Knowledge of pedestrian travel behavior is very important to attempts
to improve congestion problems in central business districts. This paper
describes the results of the use of a traditional gravity model for predict-
ing pedestrian trip distribution. The model is calibrated by using a data
set from downtown Chicago. The results indicate that the traditional
gravity model closely reproduces the characteristics of pedestrian trip
distribution and might be a useful tool in the analysis of downtown
travel.

A great deal of discussion is now taking place on how
to improve the central business districts (CBDs) of
our major cities. Many proposals that are being
evaluated and implemented deal with malls, personal
rapid transit, downtown people movers, and sky walks.
All of these systems have implications for the mobility
of people in the CBD. Since much, if not most, of the
CBD mobility is provided through pedestrian journeys,
these proposals will certainly affect the number and
length of such journeys and compete with them for
patronage. An understanding of pedestrian trip distribu-
tion is, therefore, necessary in order to evaluate the
potential impact of some new suggestions for the CBD.
The purpose of this paper is to review the calibra-
tion and application of a standard gravity model for a data
set collected in Chicago in 1963 (1). This data set offers
more than 10 000 origin-destination interviews in the
Chicago CBD and presents the opportunity to test the

gravity model on pedestrian travel behavior.
THE PEDESTRIAN SURVEY

The pedestrian survey was conducted by the Chicago
Area Transportation Study (CATS). The interviews
were conducted by people from various city depart-
ments in Chicago's downtown, known as the Loop,

due to the elevated transit line that defines it. The
survey was taken during the period from 7:00 a.m.

to 7:00 p.m.; each interviewer collected a predeter-
mined number of interviews. Interviews were collected
randomly along 98 stations on one side of a street about
three blocks in length for each hour in the time period.

The survey collected data for each station by hour,
including purpose of trip, direction of travel, and
whether the respondent was coming from work. The
interviewer also obtained origin and destination ad-
dresses. The total number of people interviewed was
11 632. The sample rates for each station were based
on pedestrian volume counts done by regular traffic
counters the previous year.

The sampling techniques employed resulted in a
sample that was uniformly distributed across the Loop
area (i.e., an approximately equal number of interviews
at each station). This distribution has two beneficial
effects from a statistical standpoint.
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1. It assures that blocks with low volumes on the
edge of the Loop are not ignored (if a uniform sample
were taken, very few trips from low-volume areas
would be sampled, thus producing 2 possible bias),
and

2. When the sample is expanded, the tendency will
be to equalize the percentage of standard error of ex-
pansion across blocks (if a certain sample percentage
were taken from a low-volume location and an equal
percentage from a high-volume location and both ex-
panded, the low-volume location expansion will have a
larger percentage of standard error than will the
high-volume location).

By surveying larger percentages in low-volume areas
and smaller percentages in high-volume areas, the
tendency will be toward an expansion that has smaller
variance in the percentage of standard error than if a
uniform sample were taken for the entire area. The
problem of even getting a uniform sample, should one
want it, would be nearly insurmountable in sidewalk
interviews in a location such as Chicago's Loop.

This method of sample expansion and an analysis
of the pedestrian travel characteristics were pre-
sented previously (2).

THE GRAVITY MODEL

The gravity model is calibrated by using the observed
trip-length distribution to adjust model parameters.
Analysis performed on the Chicago data (2) indicated
that these data yield distributions of trip Tength that not
only compare with other cities fairly well but could also,
if necessary, be described with a simple negative ex~
ponential relationship. In short, it was apparent that
the data to support the calibration of the gravity model
were complete (i.e., trip-length distributions) and
showed substantial promise.

The gravity model concept derives its name from
Newton's law of gravity that states that the attraction
between two bodies is directly proportional to their
mass (or amount of attractions) and inversely propor-
tional to some function of the distance between them.
The form of the gravity model is as follows (3):

Tijp:PipAipF(t)ijp/]ZAij(t)ijp 10 =142; 3,5 w050 ()

where

Ty;p = one-way trips from block i to block j for

purpose p,

trips produced at block i for purpose p,

trips attracted to block j for purpose p,

and

F(t);, = friction factor based on the travel dis-
tance between block i and block j for pur-
pose p (ordinarily travel time would be
used but since the level of service for
walking is nearly constant, it is easier
computationally to substitute distance,
which is then directly proportional to
time).

Py

AJD

The premise of the gravity model is that trip inter-

changes can be estimated based on the relative attractive-

ness and impedance between the blocks in question. For
this application, attractiveness is measured by the
ratio of the number of trips attracted to block i for
purpose p versus the total trips to all blocks for pur-

pose p:

Attractiveness of block j for purpose p = Ajp/z Ajp )
J

The impedance is calculated similarly in the following
fashion:

Impedance between block i and j for purpose p = F(t)ijp/Z F(T)jp (3)
i

Mathematically, F(t),, is a complex function but,
in general, is proportional to a function of the inverse
of the distance between blocks raised to a power, as is
shown below:

F(thj, f (T/AE®) 4)

where dyy = the distance between blocks i and j and
f2(n) = a factor that depends on the trip purpose and trip
length. Mathematical description of F(t) is quite com-
plex, so it is generally described as a discrete dis-
tribution of numbers and not as a mathematical expres-
sion. 'I'he F(t) values are generally referred to as
friction factors or impedances; however, as is indi-
cated by the equation, the higher F(t) is, the more
trips will be assigned to the i-j interchange. The F(t)
values might better be referred to as travel propen-
sities rather than frictions; however, to avoid con-
fusion, this paper will continue to refer to F{t) as a
friction factor or impedance.

In summary, the gravity model is based on very
simple intuitive assumptions that deal with spatial
separation of points and rewards or benefits available
at these points. It has been applied widely in trans-
portation planning and many examples of its use are
available in the literature (4, 5).

Calibration of the Gravity

Model

The calibration method adjusts the F(t) values itera-
tively until the trip-length distribution calculated by
the model on the basis of distances between blocks

is essentially equivalent to the observed trip-length
distribution. The equivalence point is arbitrary and
depends on the judgment of the person doing the cali-
bration; however, a criterion of £5 percent for the dif-
ference between observed and calculated mean trip
length for each purpose has been suggested (6). This
((:alik;ration technique is discussed further elsewhere
3,4).

~ The computer formulation of the model first reads
in the necessary inputs for the calibration phase; these
are

1. The observed trip-length distribution for each
purpose,

2. Initial estimated for F(t) values for each purpose
(these can be based on prior knowledge of simply set
equal to one),

3. Observed productions and attractions by purpose
for all blocks in the area being studied, and

4, A matrix containing the distances between all
blocks.

The model then distributes the trips based on the
previously described equation for each purpose for as
many iterations as the user specifies. During each
iteration, trips are distributed over all blocks, new
trip-length distributions are calculated, and new F(t)
values are adjusted on the basis of the length distri-
butions.

These F(t) values then serve as input to the next
iteration. Once the calculated trip-length distribution



is sufficiently close to the observed distribution, the
model is then considered to be calibrated. Again, this
point of calibration is determined by the planner based
on judgment. The final calculated values of F(t) for
each purpose are then ready to be used for the trip-
distribution forecasting process. The calibration pro-
cess is solely to obtain the F(t) or impedance function
used in forecasting with the distribution model.

Calibration Results

To demonstrate how the model is stabilized (i.e., how
the calculated trip distribution approaches that observed),
Figure 1 shows the change in value of calculated trip-
length distribution over five iterations. As one can see,
the model rapidly approaches a stable point. This is
somewhat dependent on the initial F(t) values assumed;
should one use an initial value of 1.0, the process might
take more iterations. This application began with a set
of friction factors that have a slope similar to those
found appropriate in other trip-distribution modeling
efforts. The final, calibrated set of friction factors,
however, was substantially different from the initial
set.
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The result of the full calibration can be analyzed
by comparing the final trip-length distributions with the
observed trip-length distributions. This comparison
is best demonstrated in Figure 2, which shows the total
observed distribution along with the calibrated distri-
bution; this figure shows near perfect correlation.
Another comparison is made in the table below, which
gives observed and calculated mean trip lengths by

purpose. Again, close agreement is apparent.
Mean Trip Length

Purpose Observed Calculated

To work 296 299

To home 335 311

To shop 274 274

Work-related business 299 300

Personal business 299 297

Social-recreation 247 244

All purposes 296 292

These curves are the result of the three initial itera-
tions of one purpose to gain approximate values plus
four additional iterations of each of the six purposes.

It should be pointed out that the purposes that have
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length distributions similar to 'to work'' (which were to
home, work-related business, and personal-business)
calibrated very rapidly, generally after one additional
iteration over the initial three; it was necessary, how-
ever, to perform four additional iterations in order to
establish stabilized F(t) values for purposes "to shop"
and "social-recreation'. It is evident from this
experience that one can save a great deal of calibration
time by starting with a realistic set of friction factors.
Figure 3 shows the set of calibrated F(t) values for
three representative trip purposes on a log-log scale.
As expected, the shopping and social-recreation trips
have more peak distributions, which indicates a pro-
pensity for shorter trips.

After the F(t) values have been calculated, one can
plot and estimate a curve based on the points. From
this curve, new F(t) estimates can be made that ensure
that the values will decrease monotonically; this was
not done in this study since the calibration values were
essentially monotonically decreasing without further
adjusiment,

After the tables and curves are reviewed and, recall-
ing that the basis for calibration was the observed trip-
length distribution, one can conclude that the model
has been successfully calibrated. A better test of the
model is its ability to reproduce the observed trip inter-
changes between blocks. One check is available at this
point, and that is to compare the friction factors calcu-
lated from the model with those found in a study done in
Toronto (6). By using an average walking speed for
downtown Chicago of 1.386 m/s (4.55 ft/s) so that the
results here can be plotted on the Toronto study graph,
the F(t) values for the 'to home" trip (due to their associ-

Figure 3. Log-log plot F(t) versus distance.
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ation with transportation facilities) are plotted along with
Toronto's values associated with terminals and appear
in Figure 4. Keeping in mind that Chicago's ""to home"
values include trips to all modes, the Chicago values are
generally within the curves that describe Toronto's
envelope for trips to transportation facilities. This
shows that the curves are generally similar and in-
creases confidence in the calibration of the gravity
model for Chicago.

Possible Improvements to the
Calibration Process

Numerous factors influence the trip-length distribution
that was used as a basis for calibration of the gravity
model. These factors include purpose of trip, time of
day, employment status, and area of trip origin. It
seems likely that the inclusion of these factors in the
calibration process would result in a better description
of travel. The inclusion of any of these items in the
calibration process is quite easy; all one has to do is
run the calibration separately for each factor in the
same manner as was done for the six purposes. For
example, one might decide to calibrate a separate
model for various CBD areas, for employees and non-
employees, and for the six purposes. Should this be
done, the model would undoubtedly be improved, but
the cost of calibration would rise significantly and
problems involved in forecasting these disaggregate
values in the future would be difficult to surmount.

The most reasonable adjustment to the model (for
Chicago) would be to subdivide the trips by employee
group and by two areas (Loop and fringe). This scheme,
although it includes many factors found to affect trip
length, would be less expensive to calibrate than the
previous suggestion.

Figure 4. Chicago F(t) values compared to those of the

Toronto study.
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research for several reasons: (a) it was felt that avail-
able resources could be better used in extending the
applications of the model rather than fine tuning it for
downtown Chicago; (b) once calibrated for the factors
listed above, the model then used for the distribution
process will again be more expensive since the distri-
bution must be done for each trip group (a typical trip
group might be trips by Loop employees for the purpose
of work); and (c) it was felt the model was generally

Figure 5. Observed destinations—all purposes.
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valid based on its overall calibration. Therefore, the
model appears to be calibrated satisfactorily with
respect to the observed length distributions, and the
results compare favorably to another pedestrian study.

APPLICATION AND EVALUATION
OF THE GRAVITY MODEL

In order to evaluate the performance of the gravity-
distribution model, it is necessary to see whether or not
it can reproduce the observed trip interchanges. The
basis of evaluation for the calibration of the model was
the reproduction of trip-length distributions; it did that
nearly perfectly. The task at hand is to evaluate the
model's ability to distribute trips to the blocks in the
Loop in a similar manner as they were observed (i.e.,
Can this model send trips to blocks in the same numbers
that were surveyed?).

The model results can best be presented by comparing
the observed destinations per block with the destinations
predicted by the gravity model (summed over all pur-
poses). This comparison is made by observing Figure
5, ‘which shows observed destinations, and Figure 6,
which shows the difference between the calculated trip
destinations and destinations observed. Agreement is
fairly close; however, one can see that, in general, the
model distributes too many trips to the central area
and too few to the fringe. This indicates that the model
cannot distribute trips adequately to the fringe areas.
This is not a surprising result since the same set of F(t)
values was used for fringe trips as for central trips.
Further analysis showed that trips that originate in
the fringe were much longer, since only external trips
were surveyed and internal trips ignored, and would
thus have different F(t) values. This can be seen in
Figure 7, which shows the difference between length
distribution for the Loop and fringe.

In particular, the commuter railroad stations located
in the fringe did not get an adequate number of trips dis-
tributed to them. The observed destinations to the
blocks west and south of the Loop with commuter sta-
tions totaled 70 000 trips, and the model only distributed
a total of 21 000 trips. This may indicate that special
generators, such as those on the periphery, must be
treated differently.

The fringe area as a whole had a total of about
220 000 trips according to the observed data analysis,
whereas the model distributed about 56 000 trips or
only one-fourth of the observed total; the missing
trips were distributed to the Loop area, which caused
the totals there to be larger than observed. An adjust-
ment of some sort is clearly needed and it seems clear
that, as in models of vehicle trips, external trips must
be modeled separately.

Another comparison can be made by relating the ob-
served and distributed trips in Table 1. This table lists
the distribution error by categories that represent the
magnitude of trip attractions. One would expect more
error for blocks that have large magnitudes and smaller
errors for those with less (i.e., the percentage of er-
ror should be nearly constant over all the blocks). The
results viewed from Table 1 are somewhat inconclusive
since blocks in the 3000-9000 range had a larger per-
centage of error than other blocks. This probably re-
flects the poor distribution to the fringe blocks, which
generally fell into this range. The error in blocks with
larger values was quite small.

It seems that the gravity model produced a reasonable
replication of the observed trip attractions, except for
the fringe areas. It is important to note that these
results were obtained without any special adjustments
to the basic theoretical equation. In practical planning
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Figure 7. Trip-length distributions for Loop and fringe—all purposes.
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Table 1. Error for distribution by volume range.

Error*

Block

Attraction +1000 £1000-2000 +2000- 5000 £5000-10 000 +10 000 Total
0-3 000 35 12 5 52
3 000-6 000 6 12 14 1 33
6 000-9 000 5 5 17 1 28
9 000-12 000 2 3 3 5 13
12 000-20 000 9 2 10 5 2 28
20 000-40 000 3 7 9 6 5 30
40 000 1 3 9 3 16
Total 61 44 67 21 7 200

*Error = observed-distributed trips.

efforts, such models usually go through a considerable
amount of fine tuning (i.e., parameter adjustment)
before reproducing observed results within reasonable
limits.

Many applications of the gravity model for prediction
of vehicular travel have used an iterative approach to
ensure that the number of trips attracted to each zone
is equal to the initially estimated trip attraction. The
application of that approach in this research might have
eliminated some of the problems discussed above. How-
ever, there is considerable uncertainty in the measured
trip attractions and productions. Forcing the model to
conform to the measured values of attractions, there-
fore, does not have strong appeal. (Productions, by
definition, conform to the initial survey estimates. )

In a forecasting mode, some applications of the
gravity model to vehicular travel prediction have fore-
gone the step of balancing attractions on the grounds
that, indeed, the gravity model is about as likely to
give a good estimate of attractions as is the trip attrac-
tion model itself. This is a rather indirect way of let-
ting accessibility assist in the determination of trip
attractions: the gravity model attraction estimates are
determined both by accessibility provided by the trans-
port system and by the initial attraction estimated.
Given the uncertainty in the input data and in spite of
the lack of knowledge about accessibility-trip generation
relationships, this latter approach was adopted for this
research.

CONCLUSION

This paper has shown that pedestrian trip distributions

are predicted fairly accurately by using a standard
gravity model, and with a few simple modifications the
accuracy can be greatly improved. This model outputs
block-to-block interchanges that could be used as a
basis to begin testing the impact of various CBD im-
provements, such as downtown people movers, which
would compete with walking for patronage. A distri-
bution model is central to any transportation-planning
analysis. This study demonstrates that the gravity
model (an institution in itself) can be easily adapted

to pedestrian travel, and, therefore, provide an alterna-
tive iramework for analyzing improvements to travel
in CBDs.
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Population Segmentation in Urban

Recreation Choices

Peter R. Stopher and GCkmen Erglin, Department of Civil Engineering,

Northwestern University, Evanston, Illinois

The paper describes an investigation of various segmentation bases for
capturing the behavioral differences in urban recreation demand. The
analysis and evaluation of the segmentation bases were mainly achieved
through the calibration of disaggregate quantal choice models (by using
the multinomial logit technique) for each population segment and sta-
tistical comparison of these models and their estimated coefficients.
After a preliminary elimination, three segmentation bases were selected
for detailed evaluation: stage in the family life cycle, recreation-
activity attractiveness, and geographic location. For each of the cate-
gories of these bases, a recreation-activity choice (a detailed trip-purpose)
model was calibrated. These segment models were then compared with
the pooled model both in terms of the overall goodness of fit and in
terms of the differences in their coefficient estimates. Each of the seg-
mentation schemes that was tried revealed significant differences and
most of these differences bear plausible relation to the segmentation
variables. Significant behavioral variations, which may result from dif-
ferences in tastes, motivations, and personalities, may be captured
through population segmentation.

Recreation is a broad and diverse area of human activity,
encompassing a wide range of pursuits. Increased de-
mand for participation in these activities creates, in
varying degrees, increased use of transportation facili-
ties. Visits to national parks alone have increased at
an annual growth rate of about 7.5 percent in the period
from 1957 through 1976 (1,2). This is considerably
higher than the population growth rate during the same
period and also implies a very considerable growth rate
in the consumption of fossil fuels for recreation activities.
The concern of the research in this paper is urban
recreation and cultural activities. Most work on demand
for recreation has concentrated on nonurban recreation
and vacation activities (3-5), although many government
units in urban areas are becoming increasingly con-
cerned about issues of policy and investment in recrea-
tion facilities. If in the future transportation fuels are
less available or the costs of such fuels are increased
significantly, urban recreation facilities will probably
receive the impacts of resulting changes in travel be-
havior. This will occur because travel to recreation is
one type of travel most likely to be reduced or diverted
from far sites to near ones (urban) in the event of high
price or low availability of fuel. From a policy view-
point, freedom to participate in a wide range of recrea-
tion activities may be considered to be one element of

the high living standards enjoyed in the United States
and Canada. Thus, substitution of local (urban) recrea-
tion activities for long-distance ones may be one way

to prevent energy scarcity or high prices from eroding
living standards.

This research introduces market segmentation as a
means to understand and analyze recreation travel
behavior. However, the paper deals only with
recreation-activity choice (i.e., a detailed trip purpose)
for a variety of reasons:

1. The reasons why people engage in recreation
activities are much more complex, diverse, and nu-
merous compared to other trip purposes. Recreation
activities can be undertaken simply for fun or to fulfill
various other complex psychological matters such as
needs, motivations, and values. Hence, the conse-
quences of recreation travel can only be understood
after recreation behavior, per se, is understood. This
is perhaps more crucial than for any other trip purpose.

2. Recreation is a gross trip purpose. The activi-
ties covered include a wide variety of activities and
widely varying needs for travel, ranging from skiing to
watching television. Thus, activity choice becomes an
important issue, especially for the resulting travel im-
plications.

3. We believe that the differences in individual
tastes, motivations, and perceptions are the greatest
influences on activity choice and, hence, concentrating
on this choice can show the effects of segmentation more
clearly.

4., The passage to recreational travel demand from
recreation demand is a relatively trivial matter.

The basic demand-modeling hypotheses, which are
described elsewhere (B), assume that both characteris-
tics of the individual and attributes of the alternatives
affect the choice process. Several mechanisms may
be argued for the process by which these characteristics
influence choices. One possibility is to use these char-
acteristics as linear, additive terms in the utility func~
tion of the recreation activities. In this case, the effect
of the characteristics is marginally to add to or sub-
tract from the utility of activities and to affect the
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relative tastes of individuals for different attributes.
Watson and Stopher (7), inter alia, argue that this is
not the most appropriate manner in which to portray
the effects of these variables. Rather, they argue that
the appropriate manner to enter the variables is to use
them as a basis for population (market) segmentation.
This has also been argued extensively as a basis for
improving the capability and responsiveness of indi-
vidual choice models (8, 9).

The data for this research consist of 812 cases from
two suburbs of Chicago: Evanston and Des Plaines.
They provide information on the perceptions of attributes,
availabilities, attractiveness, and annual and seasonal
participation for selected recreation activities. In addi-
tion, data were obtained on socioeconomic characteris-
tics of respondents. Some of the questions in the survey
pertain to a list of 17 activities that were determined to
represent a majority of urban recreation pursuits;
however, perceptions of the attributes were obtained for
only three activities, which were selected by each re-
spondent as his or her most frequent recreation activi-
ties. The attributes include physical measures, such
as distance traveled to the site, fee paid, and duration,
and 23 conceptual items, which were rated on a five~
point Likert scale that covers a range of agreement from
strongly agree to strongly disagree.

One of the principal tasks of this research was to de-
termine the feasibility of transferring the technology of
individual choice modeling from travel demand to
recreation demand by using the multinomial logit model
(10-12). This technique can be expressed mathemati-
cally as

P(i; Ay = exp[V(Z;, §;)] E exp[V(Z;, Sp)] n
jeAg
where
P(i; A,) = the probability that recreation alterna-

tive i is chosen by consumer t from his
or her choice set (A)),

V(Z;,S,) = systematic (nonrandom) part of the utility,
Z, = vector of attributes of recreation alterna-
tive i, and
S = vector of characteristics of individual t.

In this project, further support for segmentation is
provided by the models built on the Evanston and Des
Plaines data sets, which revealed substantial differences;
however, ihese diiferences were also found in the dis-
tributions of various characteristics of respondents
from the two locations. It seems reasonable to postulate
that the observed differences may, therefore, be due to
different distributions of tastes for recreation-activity
attributes in the two suburbs. Also note that McFadden,
Tye, and Train (13) have shown that treatment of a
heterogeneous population as a homogeneous one results
in case 2 violations of the independence of irrelevant
alternatives property of multinomial logit models and
leads to biased coefficient estimates and a pattern of
overprediction and underprediction. Hence, population
segmentation is necessary in order to reduce the likeli-
hood of bias in the fitted models. (Of course, if no dif-
ferences are found in the fitted coefficients of models
from different segments, it may be postulated that the
population is homogeneous and that case 2 violations
from this cause are not present.)

HYPOTHESES OF SEGMENTATION

A number of hypotheses relating to population segmenta-

tion can be tested. First, a number of variables may
be considered as bases for segmentation, including avail-
able socioeconomic characteristics (income, age, sex, and
stage in the family life cycle) and situational or taste
variables (geographic location, importance of recrea-
tion activities, and activity attractiveness, subjectively
rated). In travel-forecasting work, results have been
rather inconsistent with socioeconomic variables (7, 14-
16). Nevertheless, it seems appropriate to test such
variables because some canreadily be hypothesized to
have an effect on participation in recreation activities.
The first hypothesis is, therefore, that socioeconomic and
situational or taste variables can be used as a basis for
population segmentation and will reveal significant dif-
ferences in recreation-choice behavior. This hypoth-
esis can be tested partially by analyzing variations in
participation rates for different activities over the
ranges of selected segmentation variables. Methods
for this include simple graphical and cross-tabular
presentations and analysis of variance.

The second hypothesis arises from the treatment of
the ratings of the 23 conceptual attributes of recreation
activities. These fundamental attributes should not be
used in modeling because their individual reliabilities
are very low, as has been established in psychometric
theory (17); because they relate to a few underlying
salient concepts that are formed by groups of the funda-
mental attributes; and because the evaluative space of
an individual is believed to be quite limited in its num-
ber of dimensions, and these dimensions represent the
salient concepts. The salient concepts can be identified
by multidimensional scaling, individual scaling, and
factor analysis. Previous work (18, 19) has shown
factor analysis to be an acceptable procedure that is
cheaper and less subject to limitations than the scaling
procedures, and it was therefore used in this study (6).
Three-factor solutions were used for all analytical work
because these solutions appeared to meet all of the cri-
teria set for selecting the most efficient space.

The second hypothesis, which arises from this, is
that different population segments operate with different
perceptual spaces and, hence, different factor structures.
Although a statistical test for different factor structures
has been suggested recently (20), this hypothesis was
not tested in this research for three reasons: (a)
Allaire (21) and Hauser (22) have shown that in con-
sumer marketing it is reasonable to assume homoge-
neous perceptual spaces but with heterogeneous pref-
erence parameters; (b) some preliminary investigations
of heterogeneity on two of the segmentation variables
failed to reveal any apparent differences in the percep-~
tual spaces for the data of this project; and (c) the
adoption of an assumption of heterogeneous perceptual
spaces would invalidate the use of the other statistical
tests of comparison used in this research. Therefore,
a homogeneous perceptual space was assumed for all
segments.

It may be postulated that different segments will
weigh various attributes differently in the recreation-
participation model. This hypothesis may be tested by
building models of the same specification for each
selected population segment. Statistical tests, using
Student's t-distribution, may be conducted on the coef~
ficients of different segments by using Equation 2.

t= (a* - al)/ Vio")® + (o})* - 2cov(af?, af}) @

where

ay,ay = coefficients for attribute k from the
mth and nth segments,
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Table 1. Geographic segmentation models.

Pooled Model (812 cases)

Segments

Des Plaines (395 cases) Evanston (414 cases)

Variable® Coefficient

t-Value

Coefficient t-Value Coefficient t-Value

ACHV
EXTR
PAST
ATTR
AVAIL
FEINC
DISTLDA
CARLDA
GOLFAGE
EDCULT

0.283
0.102
0.061
0,249
-0.057
-0.088
-0.0002
0.041
0.008
0.117
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0,335
0.231
0.278
0,338
-0.136
-0.046
-0.0006
0.051
0.015
-0.148

0.258
0,017
-0.062
0.190
0.018
-0.307
0.0004
0.038
-0.002
0.197
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*The alternative specific constants have been excluded for space considerations.

og,0, = standard errors of the coefficients,
. and
cov(a™,al) = covariance of the coefficients a and
ag.

k

If the segments can be considered to be independent
samples, the covariance term can be ignored (and, in
practice, usually is).

In addition, likelihood-ratio tests can be performed
between the pooled results of the segments and an un-
segmented model. Minus twice the logarithm of the
likelihood ratio (-2 log A) has been shown by Theil to be
distributed like chi-square, with degrees of freedom
equal to the difference between the sum of the number
of fitted parameters of the segmented models over all
segments and the numbers in the unsegmented model
li.e., N,(N,-1), where N, is the number of parameters
and N, is the number of segments or groups used].

The likelihood-ratio test, in this case, establishes
whether or not the segmented models succeed in ex-
plaining more of the behavior than does the single un~
segmented model. If the value of ~2 log A for the un-
segmented model and the segmented models exceeds the
table value of chi-square at a given significance level,
then the null hypothesis (that segmentation provides no
improvement in explanation of the phenomenon) can be
rejected at that confidence level.

It may also be postulated that different segments of
the population have different choice mechanisms, as
would be shown if models with different specifications
provide the best fit for different segments. This hy-
pothesis is somewhat more difficult to test than was
the preceding one. Rigorous statistical tests can be
made only if the specification of the best model con-
tains variables that represent a subset of those used
under the preceding hypothesis or if the model from
the preceding hypothesis is a subset of the best model.
Otherwise, judgment would have to be on the basis of
predictive performance and other similar properties.

In this research it was assumed that the perceptual
spaces were common to all groups of the population
and that all segments have the same choice mechanisms.
Thus, it was necessary to find the best specification for
a model to test for different weights on given attributes.

The search for the best model was done on the pooled
data of the Evanston and Des Plaines suburbs,<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>