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A methodology that models the interactive relations between bus-system 
supply and demand and results in an optimal or near-optimal bus-route 
structure is described. On the supply side, the route structure is developed 
by using a heuristic algorithm called SWEEP, written in FORTRAN lan­
guage. The algorithm partitions the total bus stops in the urban area into 
sectors and uses a three-optimum traveling-salesman algorithm or 
Hamiltonian-path algorithm to link these stops. The objective function 
of the algorithm is to minimize the total distance traveled by all buses, 
subject to the capacity and distance constraints on each bus. On the de­
mand side, the program uses the already developed bus network to de­
termine the percentage of total community travel that requires bus ser­
vice. This is carried out by using a disaggregate mode-choice model that 
is based on the total time and cost difference between travel by automo­
bile and travel by bus for each individual user. Costs of bus operations 
are calculated from a four-variable unit-cost model. An iterative, interac­
tive feedback process is used to achieve the equilibrium state of the trans­
portation market. Equilibrium is reached when the bus share of the 
transportation market cannot be increased by improving the bus network, 
under certain resource conditions and financial constraints. The program 
is tested in developing feeder bus routes to the proposed Glebe Metro 
station in Arlington County, Virginia. 

The problems of bus transit planning in small urban 
areas can be boiled down to two major aspects-supply 
and demand. On the supply side, the development of 
route structure, the frequency of buses on each route, 
and the estimation of system operating costs and required 
subsidies are all bus functions that require improvement 
in the existing transit planning process. The system­
wide configuration of bus routes, which is the working 
skeleton of the transit system and the iUedium of contact 
between the users and the bus company, is still developed 
by hand. Bus routes and frequencies are developed on 
a qualitative basis by using a number of routing and op­
erating criteria to judge the route network (1, 2). This 
procedure limits the number of alternative configurations 
to be considered, does not have a defined objective func­
tion, and does not make use of the interactive relations 
between supply and demand. Expected operating costs 
and required subsidies cannot be treated independently 
of developed route configurations and equilibrium de­
mand functions. bn the other hand, demand is a function 
of the attractiveness of the supply system, which includes 
such factors as the characteristics of the bus system and 
its performance under specific physical and financial con­
straints. In short, a computerized methodology that will 
equilibrate the supply and demand functions where the 
supply functions are endogenous to the model is not avail­
able for bus-system planning in small urban areas. 

Few mathematical models have been formulated to 
determine the equilibrium condition of the supply and 
demand functions in a transportation network. Equilib­
rium conditions in highway networks in which demand 
is elastic have. been investigated by Florian and Nguyen 
(3), Martin and Manheim (4), Wilkie and Stefanek (5), 
and Wigan (6). A survey oT the lite1·ature and possible 
approaches to the problem are presented by Ruiter (7). 
Kulash (~ has developed two simulation models for -

analyzing fixed-route bus systems. These models eval­
uate the quality of service that results from various op­
erating policies and are used to predict the impacts of 
various operating decisions that are needed to improve 
route and schedule designs. Yet the route structure in 
Kulash's models is still developed manually, and no de­
mand interaction is considered. Similal'ly, Rapp and 
Gehner (9) developed an interactive graphic computer 
system known as the Urban Transit Analysis System 
(UTRANS). UTRANS is used to evaluate different route 
and schedule policies based on quality of service. Fre­
quency and route structure, again, are used as input 
data. 

The methodology presented in this paper develops bus­
route structure and computes equilibrium flows in a net­
work in which demand is elastic. 

METHODOLOGY 

Equilibrating the supply and demand functions of the bus 
system requires the following models: a collection of 
supply models, a demand model, and an integrating 
model. The demand model represents the demand side 
of the system. It predicts the passenger demand for 
ea.ch bus stop in the system based on economic and popu­
lation forecasts and on characteristics of the various 
transportation modes that serve the city. The supply 
models include the set of activities that represent the 
flow of passengers on bus routes. Two models repre­
sent the supply activities: the network development 
model and the cost model. The integrating model is a 
program that processes the supply and demand functions 
to determine an equilibrium of supply and demand quan­
tities. The structure of the supply-demand equilibrating 
framework is shown in Figure 1. 

It is useful to discuss the methodology in three sec­
tions: (a) supply functions, (b) the demand model, and 
(c) the integrating model. 

Supply Functions 

Network Development Model 

The model used to develop route structure, referred to 
as the SWEEP algorithm, was originally proposed by 
Gillet and Miller (lQ_) as a solution to the general prob­
lem of vehicle dispatch. This algorithm was modified 
and applied to bus network design (11). 

Optimal computer algorithms foroevelopment of bus 
routes had been investigated and applied in the past ru1d 
found to be ineffective and to require an extensive amount 
of computer time. But, in light of the new generation of 
heuristic algorithms now available in the literature for 
solving vehicle-dispatching problems (12-!Q), these 
limitations ai·e no longer valid. Near-optimal solutions 
to problems of large bus networks could be accomplished 
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Figure 1. Supply-demand equilibrating framework. 
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in a reasonable amount of computer time. 
The objective of the SWEEP algorithm is to minimize 

the total distance or time traveled by all buses in satis­
fying demand at all bus stops, subject to the load and 
distance constraints on each bus. The problem is to 
determine the number of routes and the paths in each 
route according to the above objective. The coordinates 
of each bus stop and bus -stop demand are inputs to this 
algorithm. The following notation will aid in its explana­
tion: 

N = number of bus stops, including the trans­
fer station (the transfer station is bus stop 
1 and the dispatch point of all buses); 

Q(I) =demand at bus stop I (I= 2, 3, ... , N); 
X(i), Y(I) = rectangular coordinates of I bus stop 

(I = 1, 2, 3, ... , N); 
C = capacity of each bus; 
D =maximum distance each bus can travel; 

A(I, J) = distance between stops I and J; 
An(I) = polar coordinate angle of the I th stop 

(I = 2, 3 , ... , N); and 
R(I) = radius from transfer station to stop (I). 

The constraints on the problem are as follows: 

Q(l)" c 

for all I; 

A(l, J) > 0 

for all I I J; 

A(!, I)= W 

where W is a constant that denotes extra distance or 
time per stop; and 

A(I, I)+ A(l, I).; D 

for all I. 

(I) 

(2) 

(3) 

(4) 

The stops are renumbered according to the size of 
their polar-coordinate angle, and the transfer station is 
stop 1. The stops are partitioned into routes beginning 
with the stop that has the smallest angles-namely, stop 

SUPPLY CONDITIONS 

ANO ASSUMPTIONS 
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Network A 1 gori thm 
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2. The first route, then, consists of stops 2, 3, ... , J, 
where J is the last stop that can be added without ex­
ceeding the vehicle capacity or distance constraint. The 
second route contains stops (J + 1, J + 2, ... , L), where 
L is the last stop that can be added to the second route 
without exceeding the constraints. The remaining routes 
are formed in the same manner. 

The total distance or time traveled is just the sum of 
the distances for each route . An iterative procedure is 
then used to improve the total distance traveled by re­
placing one stop in route K with one or more stops in 
route (K + 1) for (K = 1, 2, ... , m - 1), where mis the 
number of routes formed. 

The process of adding one or more stops to route K 
and deleting another stop continues until no improvements 
are found. The X and Y axes are then rotated counter­
clockwise so the first location becomes the last, the 
second becomes the first, and so forth. 

This procedure of partitioning routes and interchang­
ing locations between routes is then repeated until all 
possibilities have been exhausted and the minimum total 
distances are calculated. The smallest of these mini­
mums provides a good heuristic solution for a bus-route 
network. 

Each time a set of bus stops is considered for a given 
route, a "traveling-salesman" algorithm is solved to 
determine the minimum path to service each of the stops 
in the route. As a consequence, a loop route is formed. 
To modify the algorithm to form linear bus routes in­
stead of loop routes, a Hamiltonian-path algorithm is 
developed to replace the traveling-salesman algorithm. 

The solution to the well-known traveling-salesman 
problem, in which the origin and destination points co­
incide, represents a "Hamiltonian circuit" . A Hamil­
tonian path represents a route in which the origin and 
destination vertices are at two distinct points. The 
linear bus route, on which the bus goes to the end of the 
route and returns along the same route, is mathemati­
cally equivalent to the determination of the shortest 
Hamiltonian path. 

In the algorithm for determining the shortest Hamil­
tonian path, which is given below, the following nota­
tion is used: Edges are incident to or incident from a 
vertex; v1, V2, •.. , v. =the set of vertices; and Lu = 
distance or time for the edge incident from V1 and inci­
dent to VJ. 



Figure 2. Sample of output of SWEEP algorithm. 

Best sol ut ion is : 

Route l has load 46.00 with distance 184.54 is 

l 02 49 50 44 45 103 107 106 104 105 

78 79 80 82 75 

Route 2 has load 46.00 with distance 255.44 is 

68 91 92 66 94 111 114 110 109 81 108 

69 76 48 72 77 113 73 112 90 

Route 3 has load 44. 00 with distance 281. 23 is 

70 74 83 95 64 60 67 63 62 84 85 

61 58 57 86 87 71 

Route 4 has load 48.00 with distance 235. 73 is 

100 43 34 33 46 4 7 42 41 54 59 55 

56 60 101 

Route 5 has load 45.00 w'th distance 218.14 is 

96 97 99 98 52 53 37 36 35 32 89 

Route 6 has load 47. 00 with distance 205. 15 is 

24 88 38 39 40 31 18 l 0 

Route 7 has load 47.00 with distGnce 192.33 is 

24 88 38 39 40 31 18 l 0 

Route 8 has load 43.00 with distance 182.97 is 

11 14 29 28 27 26 25 30 17 

Route 8 has load 43.00 with distance 182.97 is 

23 20 19 15 8 16 13 22 21 

Route 9 has load 19.00 with distance 54.49 is 

12 51 

Total Distance Is ... .. 1810.01685 (Distances are in 100 feet) 

The steps in the Hamiltonian path are as follows: 

1. Define a T set of edges to be included in the Ham­
iltonian path. Initially, T is empty. 

2. Determine the shortest L 1J. Include the edge 
(v1 - VJ) in T. 

3. Merge the vertices v1 and VJ to form a single ver­
tex. This would imply the revision of distance L1k and 
LpJ, where vk and Vp are typical vertices other than v1 
and Vj. 

4. Check as to whether the set T has (n - 1) edges. 
If yes, go to step 5; if no, go to step 2. 

5. The set T defines the shortest Hamiltonian path. 

The routes developed by the algorithm, whether one 
uses the traveling-salesman path or the Hamiltonian path, 
conform to the general guidelines for bus-route develop­
ment (1) and yet minimize the total distance or time 
traveled by all buses. The computer output under each 
variation shows the number of routes, the path of each 
route, the distance traveled by each bus, and the total 
number of passengers carried on each route. A sample 
of the output of the SWEEP algorithm is shown in Fig­
ure 2. 

The algorithm described above is version 1 of the 
SWEEP algorithm, which determines a bus network in 
which there is only one central transfer point in the ser­
vice area. To overcome this weakness, version 2-
development of which is under way-deals with multi­
terminal network design. The basic concept of version 
2 is the same as that of version 1. Its modifications can 
be briefly described as follows, 
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Assume M to be the number of assigned terminal sta­
tions, which usually are the major traffic attractors in 
the city. The algorithm first assigns each bus stop to 
its most appropriate terminal by a ratio scheme and then 
partitions the primary problem into M smaller subprob­
lems. These individual subproblems are considered as 
problems of single-terminal network design and can be 
solved by using version 1 of the SWEEP algorithm. The 
so-called ratio scheme involves the following steps: 

1. Initially, all bus stops are unassigned. For each 
bus stop i, find the closest terminal j 1 and the second 
closest terminal j2 and compute the ratio 

r(i) = d(i,jl)/d(i,j2) (5) 

where d(i, j) is the distance between nodes i and j. 
2. Assign all bus stops i that have r(i) greater than 

2 to their closest terminal. 
3. For each unassigned bus stop i, find j *, k* such that 

Min {d(i, j) + d(i, k) + ctU, k)f = d(i, i*l + d(i, k*) + dU*, k*) (6) 

for all j, k where j and k are bus stops already assigned 
to the same terminal, either j 1 or j2. Assign stop i to 
the terminal to which j* and k* are assigned. 

In this procedure, if r(i) is large it means that stop 
i is relatively close to one terminal. All such stops are 
immediately assigned to the closest terminal. Stops that 
are more or less midway between two terminals are as­
signed more carefully. The minimization implies in­
cluding stop i between j* and k* as linearly as possible. 

Cost Model 

The task of explaining total operational costs as a func -
tion of the output and characteristics of the system has 
proved in many cases to be very difficult. But this is 
not the case for the operational costs of bus systems. 

Several different approaches have been taken to de­
veloping cost models for bus systems, but they are all 
basically single-equation expressions of cost as a func­
tion of the output of the ·system. These models can be 
primarily categorized into three types: the four­
variable unit-cost model, the four-variable regression 
model, and the slowness function model. A review and 
comparison of these models can be found elsewhere (20). 
Hurley and Siegel (21) suggest that "the unit-cost method 
of determining parameters appears to be an accurate 
method when used to predict future costs for the same 
system" and "the four-variable model is equal to, and 
usually superior to, the slowness function." Therefore, 
the computer program uses the unit-cost model, under 
some reasonable assumptions, to generate operational 
cost estimates. 

The four-variable unit model has the following gen­
eral form (since the models presented in this paper were 
formulated in U.S. customary units of measurement, no 
SI equivalents are given): 

OC = a*VM + b*VH + c*PV + d*RP 

where 

OC = annual operational costs, 
VM = annual vehicle miles, 
VH = annual vehicle hours, 
PV = number of peak-hour vehicles, 
RP = annual revenue passengers, and 

(7) 

a, b, c, d .= unit costs for their corresponding variables. 
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According to data collected in 1970, the national aver­
ages for these unit-cost coefficients for public bus op­
erations are as follows: 

OC = 0.277VM + 5.700VH + 6527.480PV + 0.038RP (8) 

These costs are based on the 1970 dollar value and are 
multiplied by the inflation factor to estimate design-year 
operational costs. In this case, the average inflation 
factor is considered to be 7 percent for each year since 
1970. 

In the absence of particular specifications, the mag­
nitude of these four variables is calculated by using the 
following relations: 

VM = total bus-route miles * service frequency in 
vehicles per hour * operating hours per day * 
operating days per year, 

VH = vehicle miles/bus average speed in miles per 
hour, 

PV = number of vehicles in peak-hour operation, and 
RP = total number of passengers on all routes for 

each bus trip during peak hours (capacity) * 
service frequency in vehicles per hour * [peak­
hour operation per day+ (operation per day -
peak hours per day)/2 J * operating days per 
year. 

Demand Model 

Travel demand is divided into captive and choice riders. 
The captive riders are further subdivided into automo­
bile captives and bus captives. The division between 
choice and captive riders is assumed to be known a pri­
ori, through survey or other data. 

The demand model for choice riders used in this re­
search is an individual mode-choice model based on logit 
functions. The mathematical expression of this model is 

(9) 

This equation states that the probability of a passenger 
i taking the bus travel mode (b) is the exponential of the 
bus model utility (Bi) divided by Jhe sum of the total ex­
ponentials of a ll modal utilities 1~ exp(J1) in the market, 
where n is the numbex of total available modes . In a 
small urban area in which there are only two major 
modes available, the equation is 

(10) 

where A1 and Bi are the utilities of automobile mode and 
bus mode for an individual traveler i. 

The development and use of these types of models, 
also referred to as disaggregate travel behavior models, 
are fully described and discussed elsewhere (22-26). 

The above equation is simplified by dividingboth the 
numerator and the denominator by exp(Bi). The following 
equation is obtained: 

Pi(b) = !/[! + exp(Z;)] (11) 

where Z1 is the difference in utility function between bus 
and automobile. 

There are many exogenous variables that can be con­
sidered in calibrating the difference utility function z,. 
Because of unavailable data, a model calibrated for 
Schaumburg/Hoffman Estates Transit demand prediction 
(23) is used here. The difference utility function is 

Zi = -1.37 + 0.0544(T, -Tb)+ 0.0021 (C, - Cb) 

where 

Ta = total travel time by automobile, 
Tb =total travel time by bus, 
c. =total travel cost by automobile, and 
Cb = total travel cost by bus. 

(12) 

Integrating Model 

The integrating model is a simulation model that uses 
the route network and the operating costs developed by 
the supply functions and the demand quantities from the 
demand model to determine the equilibrium state of bus­
system supply and demand, under specific operational 
and financial management policies such as bus fare, the 
boundaries of the service area, and bus headways and 
capacity. The input data for the integrating model 
include 

1. The bus network and its associated operating cost 
developed from the supply model; 

2. The 0-D matrix for the system service area; 
3. The split for automobile-captive riders, choice 

riders, and transit-captive riders; and 
4. All values of travel time and cost parameters used 

in the demand model. 

If the split for automobile captives, choice riders, 
and transit captives is not available for the service area, 
it is assumed that 75 percent of total trip makers are 
choice riders and 25 percent are captives. Among the 
captives, 25 percent are assumed to be transit captives 
and 75 percent automobile captives. In other words, 75 
percent of total trips are sensitive to the level of service 
of the bus system and applicable to the demand model. 

The simulator is based on the Monte Carlo technique. 
If first calculates the probability of a trip origin for each 
bus route and each bus stop. The individual route prob­
ability is the initial total demand on the route divided by 
the total bus demand over the whole service area. The 
nodal probability is the amount of initial demand at the 
particular bus stop divided by the total amount of initial 
demand along the route. Uniformly distributed random 
numbers between zero and one are generated and fed into 
the foregoing cumulative probabilities for the routes and 
stops, respectively. Comparisons with the calculated 
route and nodal probabilities determine the location of 
the trip origin. The location of the trip destination is 
determined by repeating the same process based on the 
number of passengers getting off at each bus stop. 

The travel times for this trip are calculated sepa­
rately for the two travel modes, private automobile and 
public bus. Direct travel times are determined based 
on the available street network and the first developed 
bus network. Automobile access time and bus walking 
time, waiting time, boarding and departing time, and 
transfer time are all determined from appropriate dis­
tributions and appropriate boundary values (8, 2 7, 28) 
that correspond to the system under consideration-:- The 
total travel times for each individual trip, plus other 
utility variables determined or obtained from supply 
functions and operational policies (such as automobile 
travel cost, bus fare, and automobile parking fare), are 
fed into the demand model to obtain the individual prob­
ability of choice rider i traveling by bus, referred to 
here as the bus system's attractiveness to choice 
rider i. 

This simulatfon process is repeated for a large sam­
ple of individual trips. The sample size is chosen to be 



statistically acceptable. Then statistics on all of these 
individual probabilities (bus attractiveness) are collected 
according to classes of trip length. The mean of total 
probabilities-the bus share of choice riders in the trans­
portation market-is assigned the variable name PROB2, 
which implies the "current" attractiveness of the bus 
system, in contrast to PROBl, the "previous" attractive­
ness of the bus system. 

PROBl is among the initial input data, which are de­
termined by either demand survey or analogy. PROBl 
can be calculated as follows: 

PROB I =(total bus riders - bus captives)/[total travelers 

- (bus captives+ automobile captives)] (13) 

If the numbers of automobile captives and bus captives 
are not available, the model determines PROBl by the 
previously assumed division between captive and choice 
riders: 

PROB 1 =(total bus riders - '/,, total travelers) 

7 (total travelers - '/, total travelers) 

=(bus choice riders/total choice travelers) (14) 

The values of PROBl and PROB2 are compared. If 
they are different, the market is in an unstable condition 
and demand is subject to change. Demand at each bus 
stop (one of the initial input data) is modified by the fol­
lowing relation: 

Q(l) = Q(l) {[ 1 - (bus captives/total choice riders)] (PROB 2 

7 PROB I)+ (bus captives/total choice riders)} (15) 

or, for the assumed division, 

Q(l) = Q(l)[(l l/12) x (PROB2/PROB 1) + (1/12)] (16) 

where bus captives/total choice riders= (1/16)/(3/4) = 
1/12. The previous system attractiveness is then 
dropped and the current attractiveness is substituted; 
i.e., PROBl = PROB2. 

New demands [Q(I)] at each bus stop are fed back to 
the SWEEP algorithm, and the whole process is per­
formed again. Current system attractiveness (PROB2) 
is once again generated from the integrating model. 
PROBl and PROB2 are compared. If they are different, 
the whole process is repeated. The termination of the 
iterative process occurs only if PROB2 falls within a 
95 percent confidence interval of PROBl. At this stage, 
it is assumed that the equilibrium state is reached-Le., 
that the supply and demand sides are in stable condition. 
The equilibrating strategy is shown in Figure 3. 

As Figure 3 shows, the equilibrium state or condi­
tion changes with system management policies. Dif­
ferent sets of policies will produce different levels of 
bus-system attractiveness. Under a specific set of poli­
cies, maximum local attractiveness is obtained at the 
equilibrium state. When different policies are evaluated 
by sensitivity analysis, the one that generates global 
maximum attractiveness is the most preferable set of 
policies if maximization of attractiveness is the manage­
ment objective. 

APPLICATION 

The methodology described above is now applied to the 
development of feeder bus routes to the proposed Glebe 
Station of the Washington, D.C., Metro rail rapid transit 
system. The study area is located in the midwestern 
section of Arlington County, Virginia. It surrounds the 
last Metro station on the Rosslyn-Ballston Corridor and 
acts as a catchment area for the station. The boundaries 
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of the designated area, determined by using a conserva­
tive radius from the transit station, extend 3 .2 km (2 
miles) to the north, south, and west of the station. The 
area to the east is assumed to be serviced by the pre­
vious station on the Metro line. 

The locations of bus stops are determined by land­
use patterns, the major attractors, the road network, 
and passenger walking time. Candidate streets for bus 
routes are initially identified. These streets .fall into 
the categories of major and minor arterials. Bus stops 
are then located on these streets based on land-use pat­
terns, the major generating and attracting points of the 
study area, and the consideration that passenger walking 
distance to a bus stop should not exceed 0.4 km (0.25 
mile). Because 70 percent of morning-peak work trips 
in the study area are bound for Washington, D.C., the 
Metro station can be considered as the major traffic at­
tractor in the area and version 1 of the SWEEP algorithm 
appears to be applicable. The Metro station is consid­
ered to be bus stop 1 and the dispatch point of all buses. 
One hundred and thirteen bus stops, excluding the Metro 
station, were developed for the study area. The study 
area and its boundaries, as well as the location of bus 
stops, are shown in Figure 4. 

Initial demand for each bus stop is calculated from 
the 1970 census-tract data for bus ridership in the study 
area. 

Various computer runs were conducted by using dif­
ferent input parameters. On the supply side, bus ca­
pacity, maximum allowable travel distance for each bus, 
and the schedule of bus headways are all input variables. 
On the demand side, bus-fare structure, automobile 
parking fare, and automobile cost per mile are also in­
put parameters that affect the measure of bus-system 
attractiveness. All of these variables are tested in or­
der to investigate how alternative policies will affect the 
attractiveness of bus to the community. 

The findings can be summarized as follows: 

1. Capacity and distance constraints versus opera­
tional cost-Two types of buses were chosen for computer 
runs: buses with 32 seats and a maximum allowable 
travel distance of 9 km (5.68 miles) and buses with 50 
seats and a maximum allowable travel distance of 13 km 
(7.97 miles). The results show that the system with the 
larger buses will operate at lower cost. 

2. Capacity and distance constraints versus attrac­
tiveness-From intuitive judgment, a decrement in at­
tractiveness should result if buses of greater capacity 
are used. The bus with greater capacity can serve 
longer routes, which will consume longer travel time. 
Not too surprisingly, however, bus capacity does not 
significantly affect system attractiveness in this case 
study. The variation ranged between 0.005 and 0.01. 
Such a small range of variation can be attributed to the 
structure of the behavioral model. 

3. Fare structure and parking price versus attrac­
tiveness-Four levels of bus-fare policies were tested: 
$0.25, $0.30, and $0.50/ride and free fare. Three 
levels of parking-price policies were tested: $1, $2, 
and $3/trip. The results show that higher bus fares 
suppress ridership and higher parking prices increase 
ridership. Increasing parking price will be a more ef­
fective means of increasing ridership than decreasing 
bus fare. 

4. Trip length versus attractiveness-The simulation 
output stratifies the data on trip length. The results 
show that the range of maximum distance for bus use is 
approximately 4.8-6.4 km (3-4 miles). When trip length 
is longer, the attractiveness of bus decreases rapidly. 

Other findings related to the supply side are that the 
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Figure 3. Flow diagram of equilibrating strategy. 
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Figure 4. Selected bus-stop locations in the study area. linear routes developed by the Hamiltonian-path algo­
rithm, in comparison with the loop-routes developed by 
the traveling -salesman algorithm, saved 5-10 percent 
of the total distance traveled by all buses under the same 
conditions of bus capacity and travel-distance constraint. 
Although both algodthms are computationally efficient, 
the Hamiltonian-path algorithm is far superior for this 
specific problem. Each computer run for the Hamil­
tonian path took an average of 1 min of central processing 
unit (CPU) time versus 9.5 min for each run with the 
traveling-sal esman algorithm. In both cases, computer 
time increased linearly with the total number of bus stops 
and c1uadratically with the number of stops per route. 

Based on the sensitivity experiments, the following 
observations are made: 

1. The larger the constraint is on the distance, 
traveled by each bus, the fewer routes will be formed. 
This yields a lower distance traveled for all buses. 

2. The greater bus capacity is, the fewer routes will 
be formed. This yields a lower total distance traveled. 

CONCLUSIONS 

The methodology described in this paper is a compi·e­
hensive computer model and an efficient tool for ana­
lyzing and evaluating bus systems in small to medium­
sized urban areas. It determines the impacts of differ­
ent policies and conditions on the bus system. It can be 
useful to small bus companies in evaluating and designing 
their systems and to local planning commissions in plan­
ning bus systems in their communities. The model is 



easy to use and provides quick answers to many of the 
decision maker's questions. In addition, it is a strong 
educational tool by means of which the user can easily 
learn the interactions among the different elements of 
the bus system. 

However, additional improvements and modifications 
in bus-network development in the model are being 
sought, such as {a) inclusion of the actual street network 
and variable travel times on each link of the network and 
{b) a built-in capability in the algorithm to change the 
locations of bus stops and their spacing according to 
demand. 
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