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Formation and Dissipation of
Traffic Queues: Some Macroscopic

Considerations

Panos G. Michalopoulos, Vijay B. Pisharody, and George Stephanopoulos,

University of Minnesota, Minneapolis

Gregory Stephanopoulos, California Institute of Technology, Pasadena

Queue lengths at signalized intersections are state
variables that are frequently used for optimal control

of traffic signals particularly at high-volume intersec-
tions. In the absence of a reliable macroscopic model
that describes queue lengths as a function of the de~
mands, intersection capacity, and the control decisions,
existing control schemes are using effective queue size
rather than queue length for optimal control, Effective
queue size is defined as the actual number of automobiles
waiting for service on a particular approach to the in-
tersection at an instant, Queue length, on the other
hand, is the distance immediately behind the stopline
within which traffic conditions are on the right side of
the flow-versus~-concentration curve (i.e., they range
from congested to capacity).

Anyone familiar with traffic signal control problems
will recognize that queue length rather than effective
queue size is the parameter that should be used to
describe the state of the intersection, This is because
an efficient signal control policy should prevent up-
stream intersection blockage; it should effectively con-
trol queue lengths rather than queue sizes. This cri-
—terion-for-optimal-operations-is-semewhat-relaxed-when
traffic demands are relatively low and queue lengths do
not pose any immediate threat to adjacent intersections.

In this paper, a rigorous mathematical model shows
the evolution of queue length in time at any approach to
the intersection as a function of the demands, the inter-
section capacity, and the signal control policy. Due to
space limitations, the results of the simplest possible
model are given here., More detailed (therefore, more
realistic) models, along with stability analysis and
numerical examples, can be found in Michalopoulous
and Stephanopoulos (1). The mathematics of queue
dynamics discussed here can be used for optimal control
of traffic signals. It is believed that, in light of these
results, the traffic signal control problem can be placed
on a new, more realistic, and rigorous framework of
analysis.

BACKGROUND

Consider distance L behind the stopline of a particular

approach to the intersection without entrances or exits.
Further, assume that L is long enough so that queues
never extend beyond this section. Within L, the follow-
ing equation of continuity applies (2):

(0K/at) + (3q/9x) =0 )
where

density,

flow,

space, and
time.

e Mo R’
(1IN IR E R}

Assuming that flow is a function of density, that is,

d = £{K), it can be seen that Equation 1 is a first-order
partial differential equation in which K is the dependent
variable and x and t are independent variables. Solution
of this equation allows the estimation of density at any
point in the time-space domain. Although space limita-
tions preclude a detailed presentation here, the solution
of Equation 1 (also known as the continuity equation)
leads-to-these-conclusions

1. Density K is constant along a family of curves
called characteristic lines or characteristics.

2. The characteristics are straight lines emanating
from the boundaries—x = L (stopline), x = 0 (end of the
section), and t = 0—that have a slope tangent to the flow-
concentration curve:

(dx/dt) = h(k) = (dq/dK) @

3. The characteristics carry the value of density at
the point from which they emanate.

These findings suggest that density at any point that has
the coordinates x and t is found by drawing the ap-
propriate characteristic line emanating from one of the
boundaries and passing through the point. The value of
density at the boundary is carried through the charac-
teristic line (i.e., it is maintained constant), and it cor~
responds to the density of the point of interest. Ik, is
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Figure 1. Queue length developments behind the stopline during a
saturated cycle.
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the boundary value of the density of the characteristic
passing through points x and t, then density at this point
is also ki and the slope of the characteristic line is
(dg/dK) evaluated at point k.

When two characteristic lines of different slope in-
tersect, then density should have two different values

at the point of intersection that is physically unattainable,

The discontinuity of density at the point of intersection
is explained by the generation of a shock wave moving
upstream or downstream of the highway with speed u,,
as given in the well-known equation first proposed by
Lighthill and Whitham (2):

Uy = [k, = kyu)/(kg - ko)) = (g, - ay)/(ky = k)] (3)
where

k; = upstream section concentration,

k; = downstream section concentration,

u, = speed of the upstream section,

uz = speed of the downstream section,

q: = upstream flow, and

gz = downstream flow,

THEORETICAL RESULTS

Based.on this.preliminary discussion,Figure-1-was—
prepared to show the shock wave developments behind
the stopline, This figure assumes that at the stopline
the discharge rates are those as suggested by Webster
(3). Briefly, Webster's model suggests that some time
is lost due to the driver's response time, acceleration,
and deceleration. During the remaining green interval,
automobiles are discharged from the intersection at
saturation flow as long as a queue exists, and they
depart with no delay after the queue dissipates. Of
course, during the red interval, no automobiles are
discharged. This modeling leads to the conclusion

that the entire cycle can be divided into two intervals
called effective green, denoted by g, and effective red,
denoted by r, in Figure 1,

In Figure 1, it should be noted that along the x axis,
point B corresponds to the stopline and point A to the
tail end of the queue at the beginning of the effective
green interval. Thus, t = 0 corresponds to the start
of the effective green, Within AB, jam density and
zero flow conditions prevail. Upstream of A and in

the remaining portion L, of section L, automobiles
arrive at an average flow rate q,. Thus, density within
Lz is K,. Assuming an average arrival flow g, and
density K, during the cycle, then flow and density at

the beginning of section L (point H) are g, and K, during
the period g + r = ¢, where c is the cycle length, Finally,
assuming that the cycle is saturated, capacity flow and
density conditions q,, and K, prevail at the stopline dur-
ing g (i.e., from point F to point I).

From this definition of initial and boundary conditions,
the characteristic lines emanating from t =0, x = 0, and
X = L were drawn. These lines are tangent to the flow-
versus-density curve evaluated at the flow and density
conditions corresponding to the point of origin. For
example, within AB, the slope of the characteristics is
negative, and it is the same as the tangent at the point
0:K; of the flow-density curve. At point B, density
changes instantaneously from K; to K,, and, therefore,
the characteristics at B fan out, i.e., they take all pos-
sible slopes from (dg/dK),, K, to zero.

The characteristic lines emanating from the bound-
aries divide the entire time~-space domain [0 s x < L,

0 =t < clinto four distinct zones of different flow and
density conditions as shown in Figure 1. When the
characteristics infersect, a shock wave is generated.
The shock wave developments that result are shown in
Figure 1. At the tail end of the queue, shock wave
ACMDE is generated during the period of one cycle, and
this line represents the trajectory of the tail end of the
queue. Therefore, its vertical distance to the stopline
represents queue length denoted as y(t). The slope of
line ACMDE at any point represents the speed at which
this shock wave (or, equivalently, the tail end of the
queue) propagates upstream or downstream of the high~
way. At the end of the effective green, shock wave FD
is generated and meets the tail end of the queue at point
D. Finally, at the end of the cycle, the distance Ly
represents the final queue length of the existing cycle
or, equivalently, the initial queue length of the next
cycle.

It should be noted that, if the cycle is undersaturated,
line ACMD intersects the stopline during green and
point D falls on the stopline. After point D, queue
length is zero, For the remainder of the green interval,
automobiles depart without delay, At point F, the queue
length starts increasing again linearly until the end of
the cycle.

ANALYTICAL RESULTS

Each segment of line ACMDE and the coordinates of

points C,; M, D, and E can be described analytically.
Analytical expressions are, of course, needed for the
purpose of developing a control policy that restricts
the queue lengths within predetermined upper bounds
for each approach to the intersection, In order to ob-
tain analytical results, however, one must assume a
specific relation between flow and density or, equiv-
alently, between speed and density. For simplicity,
we assumed the linear speed~-density model (4), but it
should be noted that similar results can be obtained for
any other model if the guidelines given here are fol-
lowed. Because space limitations do not allow presenta-
tion of detailed proofs, only the final results are given.
[See Michalopoulos and Stephanopoulos (1) for further
details and for more elaborate models that take into
account gradual transitions at point B (Figure 1) and
capacities to the left or right of the theoretical capacity.]
Analytical expressions for the trajectory of the queue
length (Figure 1) were obtained by using the following
notation:



y(0) = L; = initial queue lengthatt =0,
ye) = L = final queue length at t = c,
y(t) = queue length at any time point t,
g = effective green interval,
r = effective red interval,
¢ = g+ I = cycle length,
2., = minimum green time required for
undersaturation,
X,, = equation of any line 1J,
u, = free-flow speed of the approach under
consideration,
k; = jam density of the approach under
consideration,
d,,k, = arrival flow and density conditions,
%;,t,,y; = coordinates of point i, and
y, = equation of line IJ with respect to the y

axis (Figure 1),

Thus, the following analytical expressions can be
obtained by following the guidelines that are offered in
Michalopoulos and Stephanopoulos (1):

Xpe = L-ugt 4
Xac= (L= L) - [(que/k)]t (5)
Xe = L= kL /s - k)] (©)
te= [k Ly fup(k; - k)1 M
ve =T L (k- k) (C)
Yo = [up + (k)] (E10)% - k)t &
where
h(k,) = up [1 - (2K, /k;)] a0
ta = [up +h(k)1? t/410(k,)] 2 an
yw = [up +h(k)1? tefalh(k,)] (12)
Yo = gt - up(te)” (13
tn = { ()" + [up(g)?ur + (k)] (14)
- yo = urfte - [ush(k)gl /Tue + ik,

+ [uy - 1lk,) 1/ Tug + 1k, (gte)”) (15
Yor= v + [urky (t - tp)/k;] (16
yi= L) =Ly + [(kupe)/ky] - [kyuegl 4k - k) an

tpc (18)
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where
b = (k,yurc/k)) - [kjueg/ddk; - ko)l (22)

If c and g are given, b is constant, i.e., it is independent
of the initial queue Li. Thus, Equation 22 can be gen-
eralized for any cycle N and rewritten as

Lysy =Lntb (23)

where Ly and Ly. are the queues at the beginning of
cycle N and N+1, Clearly, a steady state exists if
Ly = Livet or if Ly = Ly + b, i.e., if b = 0. Therefore,
for steady state

(kuufc/kj) - [kjufg/4(kj ~kJ)1 =0 24)
and to solve for g/c
gfe = [kig/4(k; - k)l = X (25)

Since A is positive, it is easily seen that if g/c < A, the
queue length at the end of the cycle will be growing for
as long as this situation persists. Otherwise, ifb <0
or, equivalently, g/c > A, the queue at the end of the
cycle will decrease. It should be noted that Equations
23 and 25 are meaningful for saturated cycles, i.e., for
green times less than the ones given by Equation 19.
Otherwise, Ly is not related to Ly and it is given from
Equation 20. A final note concerning the stability of
the steady state is worthy of emphasis. As Equation

23 reveals, the steady state is metastable. Ifb =0, a
small variation of the demands will change the steady
state to a nearby value that is also metastable. There-
fore, the queue length at the beginning of each cycle will
change according to the fluctuating values of b, which
depend on the demands.

CONCLUSION

The approach taken here to a new and rigorous mathe-
matical model and analysis that show the formation and
dissipation of traffic queues at signalized intersections
is macroscopic in nature in the sense that automobiles
are treated as platoons rather than as single units. The
shock wave analysis is fairly realistic for moderate to
high demands where the shock waves can be clearly
realized. In fact, it is this volume range in which the
traffic signal control problem is more pronounced.

The analytical results given here have been used for
the derivation of a real-time control policy that mini-

In an undersaturated cycle, the queue dissipates in
time:

min = L(ye/te) + k)1 te/h(k,)]? (19)
This is the minimum green time to dissolve the initial
gueue L;. In sucha cycle, the final queue length L{is
independent of the initial L; and is given by

yi=Li=(c- ) k,u)/k; (20)
QUEUE LENGTH STABILITY

The analytical relations between the initial and final
queue developed in the preceding section of this paper
can be used for stability analysis. Equation 17 can be

rewritten as

Li=L, +b @n

mizes total intersection delays subject to queue lengih
constraints at isolated critical intersections (1, 5). It
is impoxrtant to note that the traffic queue dynamics
noted here are valid for isolated intersections at which
the assumption of constant average flow rates is fairly
realistic. If traffic arrivals are affected by an upstream
signal, the analysis becomes more complex. Extension
of the basic theory to a system of two or more intersec-
tions in succession is not trivial due to the side streets
and sinks or sources between the intersections, The
fact that the input flows to the downstream intersection
is a function of the output of the upstream intersection
for any pair of intersections further complicates the
analysis. We have also studied the queue dynamics

for a system of intersections as well as the related
optimal traffic signal control problems (1).

It should be recognized that the analysis presented
here does not include all possible combinations of shock
wave developments that can occur at signalized inter-
sections. Rather, the ones that are most likely to
occur are noted. However, analysis for the cases not
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discussed can be easily performed by following similar
guidelines. A number of other cases and numerical
examples are treated in Michalopoulos and Stepha-
nopoulos (1),
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Discomfort Glare: A Review of

Some Research

Corwin A. Bennett, Kansas State University, Manhattan

Extensive research on discomfort glare as applied to
roadways has been done in Europe by De Boer (1) and
Hopkinson (2). However, discomfort glare research in
the United States, as has most lighting research, has
focused on interior applications. In the past few years,
discomfort glare research conducted at Kansas State
University under the sponsorship of the Illuminating
Engineering Research Institute has been aimed pri-
marily at fixed-roadway lighting. This paper surveys
this research and briefly discusses its applications.

SINGLE~SOURCE STUDY

An initial major study was conducted with a single glare
source.

to Kaufman (7), the former represents an overcast
horizon night sky with the moon and the latter, an
horizon sky on a very dark day.

Observers adjusted the luminance of a glare source
to the BCD, which has been the common North American
criterion for discomfort glare for about 30 years. The
long instructions say that somewhere between a dim
comfortable light and a bright uncomfortable one is a
point of change or threshold called BCD. They further
state that this threshold is neither the one that dis-
tinguishes pleasantness and comfort nor the one that
distinguishes tolerable and intolerable. Rather, at
BCD, if the glare source was made just slightly brighter,
it would be uncomfortable.

The 97 paid participants in this study~primarily
college students~-adjusted (with replication) the in-

Method

Putnam and others (3-5) did what might be considered
pilot studies for this experiment by selecting the vari-
ables and the range of variation and by running a few
subjects. The study summarized here is described in
detail by Bennett (6).

Glare source size, position, and background lumi-
nance were independent variables; glare source lumi-
nance at the borderline between comfort and discomfort
(BCD) was the dependent variable.

Glare source size was varied in five equal steps
from 10-° to 10-* steradian, At arm's length, these
vary from pinhole size to that of a quarter and were
selected to cover the range of practicable sizes of the
luminous parts of roadway luminaires., Source position
varied in five equal steps from 0° (along the horizon)
up to 30°above the line of sight (above the occluding
angle of windshield tops). Background luminance was
varied in five equal steps from 0.0034 cd/m® (0.001
footlambert) to 34 cd/m® (10 footlamberts). According

candescent glare source to BCD for 23 of the 125 pos~
sible combinations of the three variables in a confounded
design. The observer looked at the pole of a 0.6-m
(2~-ft) radius hemisphere sitting on edge. By using a
combination of a transformer and several neutral density
filters (to reduce the voltage range and, hence, the
lamp color variation), the glare source was set to BCD.

Multiple regression analysis, which involved some
trial and error on transformations of variables, was
performed. However, this work was largely guided by
previously published research.

Results and Discussion

The selected multiple~regression model is as follows:

BCD = 200 (LB) 0.3 X e0.0SA/sO.G (])

where





