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Formation and Dissipation of
Traffic Queues: Some Macroscopic
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Queue lengths at signalized intersections are state approach to the ir¡tersection rvithout entrances or exits.
variables tå:at are frequentty used for optimal control Further, assume that L is long enough so that queues

of tra^tfic signals particutarly at high-volume intersec- never extend beyond this section. -Within L, the follow-
tions. In the absence of a reliable macroscopic model ing equation of continuity applies ():
that describes queue lengths as a function of tfie de-
mands, intersection capacity, and the control decisions, (aK/ôt) + (aq/ôx) = 0 (l)
existing control schemes are using effective queue size
rather than queue length for optimal control. Effective where
queue size is defined as the actual number of automobiles
waiting for service on a particular approach to the in- K = densityr
tersection at an instant. Queue length, on the other { = flow,
hand, is the distance immediately behind the stopline x = sPacer and
within which tra-ffic conditions are on the right side of t = time.
the flow-versus-concentration curve (i.e., they range
from congested to capacity).

Anyone famitiar with tra-ffic signal control problems
will recognize tù,at queue length rather than effective
queue size is the parameter that should be used to
describe the state of the intersection. This is because
an efficient signal control policy should prevent up-
stream intersection blockage; it should efÏectively con-
trol queue tengths rather than queue sizes. This cri-

ion foroptimal-operatisns-i€ €sm€rvhet +€laåred when leadsJsJhese +snelusions,
traftic demands are relatively low and queue lengths do
not pose any immediate threat to adjacent intersections. 1. Density K is constant along a family of curves

úr this paper, a rigorous mathematical model shows called characteristic lines or characteristics.
the evolutibn of queue length in time at any approach to 2. The characteristics are straight lines emanating
the intersection ãs a funcíion of the demands, 

-the inter- from the boundaries-x = L (stopline), x = 0 (end. of the
section capacity, and the signal control policy. Due to section), and t = O-that have a slope tangent to the flow-
space limitations, the results of the simplest possible concentration curue:
model are given here. More detailed (therefore, more
realistic) models, along with stability analysis and (dx/dt) ='h(k) = (dq/dK) (2)

numerical examples, can be found in Michalopoulous
and Stephanopoutos (9. The mathematics of (ueue _ 3. .The characteristics carry the value of density at
dynamiðs discussed -here can be used for optimat control the point from which they emanate.
of tra-ffic signals. It is believed that, in light of these
results, ttrJtra-tfic signal control próblemian be placed These findings suggest that density at any point trat has

on a ne*, more rea¡Jtic, and rigõrous framework of the coordinates x and t is found by drawing the ap-
analysis. propriate characteristic line emanating from one of the

boundaries and passing through ttre point. The value of

BACKGROUND density at the boundary is carried through the charac-
teristic line (i.e., it is maintained constant), and it cor-

Consider distance L behind the stopline of a particular responds to the density of the point of interest. If kr is

Assumíng that flow is a function of density, that is,
q = f(K), it ca¡r be seen that Equation 1 is a first-order
partial differential equation in which K is the dependent
variable and x and t are independent variables. Solution
of this equation allows the estimation of density at any
point in the time-space domain. Although space limita-
tions preclude a detailed presentation here, the solution
of Equation 1 (also known as the continuity equation)
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Figure 1. Oueue length developments behind the stopline during a
saturated cycle.

the boundary value of the density of the characteristic
passing tìrough points x and t, then density at this point
is also kr and the slope of the characteristic line is
(dqldlç) evaluated at point kr.

When two characteristic lines of different slope in-
tersect, then density should have two different values
at the point of intersection that is physically unattainable.
The discontinuity of density at the point of intersection
is erplained by the generation of a shock wave moving
upstream or downstream of the highway with speed u,,
as given in tlte well-known equation first proposed by
Lighthill and Whitåam Q):

u* = [(k, u, - kl u1 )/(k, - kr )] = [(q2 - qr )/(k2 - kr )] (3)

the remaining podion Lz of section L, automobiles
arrive at an average flow rate q". Thus, density within
L2 is K". Assuming an average arrival flow q" and
density K" durlng the cycle, then flow and density at
the begiming of section L þoint H) are qu and Ku durÍng
the period B + r = c, where c is the cycle lengür. Finally,
assuming that the cycle is saturated, capacity flow and
density conditions qm and K- prevail at the stopline dur-
ing g (i.e., from point F to point I),

From this definition of initial and boundary conditions,
the characteristic lines emanating from t = 0r x = 0, and
x = L were drawn. These lines are tangent to the flow-
versus-density curve evaluated at the flow and density
conditions corresponding to the point of origin. For
example, within AB, the slope of the characteristics is
negative, and it is the same as the tangent at the point
0rK; of the flow-density curve. At point B, density
changes instantaneously ftom K, to K_ and, therefore,
the characteristics at B fan out, i.e., they take all pos-
sible slopes from (dq/dK)., K, to zero.

The charaeteristic lines emanating from the bound-
aries divide the entire time-space domain [0 < x < L,
0 < t < cl into four distinct zones of difTerent flow anâ
density conditions as shown in Figure 1. When the
characteristics intersect, a shock wave is generated.
The shock wave developments that result are shown in
Figure 1. At the tail end of the queue, shock wave
ACMDE is generated during the period of one cycle, and
this line represents the trajectory of the tait end of the
queue. Therefore, its vertical distance to the stopline
represents queue length denoted as y(t). The slope of
line ACMDE at any point represents the speed at which
this shock wave (or, equivalently, the tail end of the
queue) propagates upstream or downstream of the high-
way. At the end of the effective green, shock wave FD
is generated and meets the tail end of the queue at point
D. Finally, at the end of t}re cycle, the distance Lí
represents the final queue length of the existing cycle
or, equivalently, the initial queue length of the next
cycle.

It should be noted that, if the cycle is undersaturated,
line ACMD intersects the stopline during green and
point D falls on the stopline. After point D, queue
length is zero. For the remainder of the green interval,
automobiles depart rvithout delay. At point F, the queue
length starts increasing again linearly until the end of
the cycle.

ANALYTICAL RESULTS

where

kr=
kz=
llr =
tlz =

Qr=
qr=

THEORETICAL RESULTS

upstream section concentration,
downstream section concentration,
speed of the upstream section,
speed of the downstream section,
upstream flow, and
downstream flow.

RasedonrhispreriminaÊy¡iseussion, Figuæ 1-w"* jå'j'ii#, f#å+##-#åi,ïäi91"*W"Jr#prepared to show the shock wave developments behind Anat¡icâl é4pressions are, of course, neeåed for tt¡ethe stopline. This figure assumes that at the s_topline pu"pä"u of developing a co¡itrol policy'that restricts
the discharge rates are those as suggested by Webster in" qu"u" lengths within predetermineO upper bounds
fÐ: Briefly, Jilel¡sterls model suggests ttrat some time io" .iacrr apprãach to thelntersection. In order to ob-is lost due to the driver's response.time, acceleration, |¿in analytiõal results, however, one must assume aand deceleration. During the remaining greerr.interval, specific relation betwéen flow arid density or, equiv_
automobiles are discharged from the intersection at aientty, between speed and density. noi siápUcity,
saturation flow as long as a queue exists, and they we asåumed the linear speed-density model (4), but itdepart with no delay after the queue dissipates. Of sfrouU be noted that similar ""À"iti".* ¡ã-oìídi"J to"
gourse, during the red interval, no automobiles^are any other model if the guidelines given here are fol_discharged. This modeling leads to tåe conclusion - lowed. Because space limitations- do not allow presenta_
that the entÍre cycle can be divided into two intervals tion oi detailed prõofs, only the final results a"ä giv"rr.
called effective green, denoted by g, and effective red, ßã" Ui"fr"fopouto" anâ $eihanopoulos e for furítrer¿"tlot4 by r,.in,Figure 1' details and for more elaborate models that take intoIn Figure 1, it should be noted that along the.x axis, 

"ããä"rt 
gradual transitions at point B (Figure 1) andpoÍnt B conesponds to the stopline and point A to. tIe ;p;;ities to the left or right of the theoretical capacity.Jtail end of the queue at tlre beginning of the effective. -î*fyti"rl 

e4pressions for the trajectory of the queuegreen interval. Thus, t = 0 corresponds to the start tengttr lirigu"e fj *"r" oùtained by using the followingof tle-effective green. Within AB, jam density and ;;d;i;",
zero flow conditions prevail. Upstream of A and in
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V(0) = Lr = initial queue length at t = 0r
y(c) = Lí = final queue length att = ct
y(t) = queue length at any time point t,

B = effective green interval,
r = effective red interval,
c = B+r=cyclelength,

9.,n = minimum green time required for
undersaturation,

Xrj = eQuation of anY line IJ,
ur = free-flow speed of the approach under

consideration,
k, = jam density of the approach under

consideration,
Q,, k u = arrival flow and density conditions,

xi,t¡,Y¡ = coordinates ofPointi, and
y¡ = eQlation of line IJ with respect to tlte y

axis (Figure 1).

Thus, the following analytical e4pressions can be
obtained by following the guidelines that are offered in
Michalopoulos and Stephanopoulos Q:

where

b = (k"u¡c/k¡) - [kiuig/4(k¡ - k")] (22)

If c and g are given, b is constant, i.e., it is independent
of the initial queue Lr. Thus, Equation 22 can be gen-
eralized for any cycle N and rewritten as

L¡11=L¡lb (23)

where Lu and LN*r are the queues at the beginning of
cycle N and N+1. Clearly, a steady state exists if
Ln = LN*r or if Ln = Lr'r + b, i.e., if b = 0. Therefore,
for steady state

(k"u¡c/k¡) - [\urg/4(k, - k,)l = 0 (24)

and to solve lor gfc

elc=lk¡el4(k:-k,)l =tr Q5)

Since À is positive, it is easily seen that if g,/c < À, the
queue length at the end of the cycle will be growing for
as long as this situation persists. Otherwise, if b < 0
or, equivalently, g/c > À, the queue at the end of the
cycle will decrease. It should be noted that Equations
23 and 25 ate meaningful for saturated cycles, i.e., for
green times less than the ones given by Equation 19.

Otherwise, Ln*r is not related to Lw and it is given from
Equation 20. A final note concerning the stability of
the steady state is worthy of emphasis. As Equation
23 reveals, the steady state is metastable. If b = 0, a
small variation of the demands will change the steady
state to a nearby value tlrat is also metastable. There-
fore, the queue length at the begirming of each cycle will
change according to the fluctuating values of b, which
depend on the demands.

CONCLUSION

The approach taken here to a new and rigorous mathe-
matical model and analysis that show the formation and
dissipation of traffic queues at signalized intersections
is macroscopic in nature in the sense th,at automobiles
are treated as platoons rather than as single units. The
shock wave analysis is fairly realistic for moderate to
high demands where the shock waves c¿ln be clearly
realized. In fact, it is this volume range in which tl¡e
traffic signal control problem is more pronounced.
The analytical results given here have been used for
the derivation of a real-time control policy that mini-

Xs¡= L-n¡t

Xnc= (L- L,) - [(k,ur/kt)]t

Xc= L- [k;Lri(k¡ - k,)]

tc = [ kj Ll /ui(kr - k")]

Yc= [\Lrl(k: - k,)l

Ycun = [ui + h(k,,)] (t.tc)% - h(k")t

where

h(k,)=urtl -(2k"/kj)ì

tu = [u¡ + h(k,)]'? t,'/4[h(k")1':

yr,¡ = [ui + h(k")1'? t./4[h(k")l

! ¡:¡ = u¡t - ui(tg)%

tn = { (tc)7'+ [u¡(g)/'/u¡ + h(k")] ]'?

vu = ui { tc- [ufh(kÀ)g] iIu¡ + h(k,)1'?

+ [ur - h(k,)] /tur + h(k")l (etc)%l

yur = yo + [u¡k. (t - tD)/kj ]

yt¡= L't = L, + [(k"u¡c)/k;] - [kturgl/4(k; - k")

(4)

(s)

(6)

(7)

(8)

(e)

00)

(11)

(12)

( l3)

( l4)

(1s)

(16)

07)

In an undersaturated cycle, the queue dissipates in
time:

s-in = [(yc/tc)+h(k")]'?tcl[h(k,)]'z (19)

This is the minimum green time to dissolve the initial
queue Lr. In such a cycle, the final queue length L{ is
independent of the initial Lr and is given by

yr:=Li=(c_e)(k,uÐ/k¡

QUEUE LENGTH STABILITY

(20)

The analybical relations between the initial and final
queue developed in the preceding section of this paper
san be used for stability analysis. Equation 17 can be
rewritten as

rsecfl0n
constraints at isolated critical intersections $!). It
is important to note that the tra-ffic queue dynamics
noted here are valid for isolated intersections at which
the assumption of constant average flow rates is fairly
realistic. If traffic arrivals are affected by an upstream
signal, the analysis becomes more complex. Extension
of ttre basic theory to a system of two or more intersec-
tions in succession is not trivial due to the side streets
and sinks or sources between the intersections. The
fact that the ínput flows to the downstream intersection
is a function of the output of the upstream intersection
for any pair of intersections further complicates the
analysis. 'ffe have also studied the queue dynamics
for a system of intersections as well as the related
optimal traffic signal control problems (!).

It should be recogrrized that the analysis presented
here does not include all possible combinations of shock
wave developments that can occur at signalized inter-
sections. Rather, the ones that are most likely to
occur are noted. However, analysis for the cases notLi=Lr+b (21)
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to Kaufman (Ð, tne former represents an overcast
horizon night sky with the moon and the Latter, an
horizon sky on a very dark day.

Obser:vers adjusted the luminance of a glare source
to the BCD, which has been the common North American
criterion for discomfort glare for about 30 years. The
long instructions say that somewhere between a dim
comfortable light and a bright uncomfortable one is a
point of change or threshold called BCD. They further
state that this threshold is neither the one that dis-
tinguishes pleasantness and comfort nor the one that
distinguishes tolerable and intolerable. Rather, at
BCD, if the glare source was made just slightly brighter,
it would be uncomfortable.

The 97 paid participants in this study-primarily
college students-adjusted (with replication) the in-

laæßõu¡ce toBCD fOr2S ofthe l2b pos-

B4

discussed can be easily performed by following similar
guidelines. A number of other cases and numerical
examples are treated in Michalopoulos and Stepha-
nopoulos [).
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the United States, as has most lighting research, has
focused on interior applications. In the past few years,
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this research and briefly discusses its applications.
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sible combinations of the three variables in a con-founded
design. The observer looked at the pole of a 0.6-m
(2-ft) radius hemisphere sitting on edge. By using a
combination of a transformer and several neutral density
filters (to reduce the voltage range and, hence, the
lamp color variation), the glare source was set to BCD.

Multiple regression analysis, which involved some
trial and error on transformations of variables, was
performed. However, this work was largely guided by
previously published research.

Results and Discussion

The selected multiple-regression model is as follows:

BCD = 200 (LB) 0.3 x eo.osA/S0.6

where




