
Transportation Research Record 746 25 

Evaluating Potential Effectiveness of 
Headway Control Strategies for 
Transit Systems 
Mark A. Turnquist and Steven W. Blume 

Holding strategies for control of headways between transit vehicles are 
often considered as a means of improving the reliability of transit 
service. This paper describes simple tests that can be used to identify 
situations for which control is potentially attractive. These tests depend 
only on a simple measure of headway variability and the proportion of 
total passengers who will be delayed as a result of the holding strategy. 
Thus, this analysis provides transit operators with a simple screening 
model to evaluate potential effectiveness of controls. 

Headway control has been proposed as one way to im
prove the reliability of transit service. By reliability 
we mean the ability of transit to adhere to schedule or 
to maintain regular headways and a consistent travel 
time. This ability is important to both the transit user 
and the transit operator. To the user, nonadherence to 
schedule results in increased wait time, makes trans
ferring more difficult, and creates uncertainty about 
arrival time at the destination. To the operator, unre
liability results in less effective utilization of equipment 
and personnel and reflects itself in reduced productivity 
and increased cost in the system's operations. 

A study of the potential effectiveness of various stra
tegies for control of unreliability in transit services is 
thus a vital element in the search for ways to improve 
transit productivity and efficiency. Such control stra
tegies have important implications for both planning and 
management of transit systems. Control strategies may 
be divided into two basic groups: planning and real time. 
In general, the distinction is that planning strategies in
volve changes of a persistent nature. Examples include 
restructuring of routes and schedules, changes in the 
number and location of stops, or provision of exclusive 
rights-of-way. On the other hand, real-time control 
measures are designed to act quickly to remedy specific 
problems. These actions have immediate effects but 
seldom exert any influence on the general nature of op
erations over a longer time period. 

Several real-time strategies for correcting service 
disruptions have been discussed in the literature. A 
good summary of the state of current knowledge in this 
area has been provided by Abkowitz and others (1). One 
commonly considered control strategy is the holding of 
selected vehicles at control points along a route to regu
larize headways between successive vehicles. That is, 
a vehicle that arrives at the control stop too close be
hind the preceding vehicle would be deliberately delayed 
to make the headway between these vehicles more nearly 
equal to the scheduled headway. 

The major incentive for making headways more regu
lar is to reduce waiting time of passengers who board at 
or beyond the control point. If passengers arrive at a 
stop without regard to the schedule of service (i.e., 1·an
domly), a well-known formula [see Welding (2) ] gives 
the average wait time as -

E(W) = [E(H)/2] + [V(H)/2E(H)] (I) 

where 

E(W) =average wait time, 

E(H) =average headway between vehicles, and 
y(H) =variance of headway. 

Thus, making headways more regular (i.e., reducing the 
variance) serves to reduce average wait. 

On the other hand, the major costs of such a policy 
are borne by passengers who are already on the vehicle, 
since they are delayed when the bus is held up. Thus, 
the implementation of a holding control strategy involves 
making some passengers better off at the expense of 
others. At a minimum, if control is to be effective, it 
must reduce aggregate waiting time by mo1·e than it in
creases aggregate in-vehicle time (possibly allowing for 
some differential weighting of these two elements of total 
trip time). 

The purpose of this paper is to provide some basic 
rules of thumb to indicate the conditions under which a 
holding strategy might be effective. By implication, we 
also wish to describe those situations in which such a 
strategy is not likely to be effective. These rules of 
thumb are based on relatively modest data requirements 
about the route and, hence, should be useful in making 
basic planning decisions about whether or not to imple
ment such a control strategy on a given route. 

PREVIOUS ANALYSIS 

An article by Barnett (3) has provided several important 
ideas for the work contained here. He formulated a 
model based on a simple discrete approximation to the 
probability distribution of vehicle arrival ti.mes at bus 
stops. Based on this simple model, an optimal holding 
strategy can be derived to minimize the total delay to all 
passengers who use the route . Tbe resulting strategy 
depends on (a) the mean and variance (or standard devia
tion) of the headway distribution, (b) tbe ratio of average 
vehicle load at the control point to average number of 
boa1·ding passengers at subsequent stops, and (c) the 
correlation between successive vehicle arrival times at 
the control stop. This last information is a measure of 
the degree of bunching or pairing of vehicles on the route: 
A route on which vehicles have bunched in pairs would 
have a large negative correlation between successive 
headways because a very short one (between two paired 
vehicles) will be followed by a very long one (between 
bunches). Statistical estimation of this correlation is 
difficult, however, because of the small sample sizes 
available and the notorious unreliability of the estimators 
of covariance. 

The objectives of this paper are to analyze holding 
strategies by using a more general probability model of 
vehicle arrival times at the control stop and to shed 
some additional light on the question, Under what con
ditions is control likely to be of value? Specifically, we 
wish to allow a transit operator to address this question 
without detailed knowledge of the covariances between 
successive vehicle arrival times at stops, as this in
formation is seldom available. 

Our approach is to use a general model of the proba
bility distribution of headways between successive vehi-
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cles and then examine two simple cases that provide ap
proximate upper and lower bounds on the potential bene
fits of a holding strategy. By doing this, basic 
conclusions can be reached regarding situations in 
which control is likely to be beneficial and those in 
which it is not. 

We will examine a holding strategy that holds each 
early vehicle (i.e., each vehicle preceded by a short 
headway) until the headway preceding it reaches a min
imum allowable value (hm;n). The structure of the analy
sis is to find the value of hmin that minimizes total delay 
to passengers (including both wait time and in-vehicle 
delay). This optimal value of hmin will be denoted h;t;n• 
Once h.1;;n is found, those situations for which control is 
advantageous can be identified. 

UPPER BOUND ON EFFECTIVENESS 
OF HOLDING 

Control of headways will make the greatest reduction in 
total delay when headways alternate (i.e., short, long, 
short, long). This llappens on routes where vehicles 
are influenced substantially by the operation of the ve
hicle in front of them. For example, this would tend to 
be the case where loading delays are relatively more 
important than traffic congestion in determining overall 
vehicle operating speed. Routes in which pairing is 
prevalent would be of this type. In such a situation, 
holding a vehicle to lengthen a short headway also serves 
to reduce the long one that follows. Thus, the variance 
of headways is reduced by a greater amount for a given 
delay to the held vehicle than if short headways might be 
followed by another short headway. 

The extreme case is when the observed sequence of 
headways alternates between two discrete values. In 
this case, the sum of any two consecutive headways is a 
constant. That is, if one headway is 2 min too short, 
the next one must be 2 min too long. By the same argu
ment, if the second headway is 2 min too long, the third 
must be 2 min too shorl, and so on. In a statistical 
sense, successive headways are perfectly correlated, 
so that knowledge of one headway implies knowledge of 
the entire set. For this case, headway control will have 
maximum benefits. 

If we denote the scheduled headway by H and the mag
nitude of the deviation by x, the marginal probability den
sity function for headways before control is given by p(H): 

I 0.5 
p(H) = 

0.5 

(2a) H= H- x 

H=H+x (2b) 

For the probability distribution of headways described by 
Equations 2a and 2b, the expected headway is H and the 
variance is x2

• The control action lengthens the short 
headways to a value hmin = H - px, where 0 ,;; p ,;; 1. 

We will define an optimal holding strategy to be one 
that minimizes total delay to passengers. Total delay 
is expressed as 

T = -yE(D) +(I -1)E(W) (3) 

where 

T = total delay to all passengers, 
E(D) = expected delay to passengers already on board 

the vehicle, 
E(W) = expected wait time for passengers arriving at 

or beyond the control stop, and 
y =weighting constant to reflect the relative num

ber of passengers already on board to those 
waiting to board at subsequent stops. 
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The expected delay to passengers already on the vehicle 
is simply the average length of time a vehicle will be 
held. If we assume that passengers arrive at stops at 
random times, Equation 1 can be used to determine ex
pected wait time. 

A holding strategy that minimizes T will be defined 
by the value h;t;n. Because hmin = H - px, We can find hit;n 
by finding the optimal value of p. Note that after control 
the headway distribution is given by 

l 
0.5 

p'(H') = 

0.5 

H' = H-px (4a) 

H' = H + px (4b) 

This distribution has expected value still equal to H, but 
has variance p~2 • This reduces wait time for passen
gers yet to board to 

E(W') = (H/2) + (p 2x2 /2H) (5) 

The delay to passengers already on the vehicle is 
equal to (1 - p)x if the vehicle is held. Since the proba
bility of·a short headway is 0.5, the expected in-vehicle 
delay is 

E(D) = 0.5(1-p)x (6) 

By substituting Equations 5 and 6 into Equation 3, we ob
tain total expected delay as 

T = 0.51(1 -p)x + (1 --y)[(H/2) + (p 2x2 /2 H) ] (7) 

To find the optimal value of p, we can differentiate 
the expression for T with respect to p, and set the re
sult equal to zero. 

dT/dp = -0.51x + (1 --y)p (x 2 /H) = 0 

This implies an optimal value for p: 

p = 0.5/x H/(l - /) x 2 = [0.51/0 - 1)] (H/x) 

The resulting value for h1t;n is then 

h*min = [(l - 1.51)/ l -/] H 

(8) 

(9) 

(10) 

For control to be effective, we must have htun > H - x; 
that is, the optimal minimum headway after control must 
be greater than the short headways before control, or it 
does not pay to control at all. This means th:~.t we must 
have p < 1, which implies that we must satisfy the con
dition x/H > 0.5y/l - y. "However, recall that the vari
ance of the headway distribution before control was x2

• 

Thus, the quantity x/H is simply the coefficient of vari
ation (standard deviation divided by mean) of the headway 
distribution. Thus, for control to be effective, the co
efficient of variation of the headway distribution must 
exceed 0.5y/1 - y. If it does not, the optimal value of 
p is 1, which implies no control. 

This condition, then, provides a simple test for po
tential effectiveness of a control policy. It is based on 
two simple pieces of information: (a) the coefficient of 
variation in the headway distribution and (b) the relative 
proportion of riders who are already on board the vehi
cle to those who are yet to board at subsequent stops. 

It must be kept in mind that this condition is derived 
for the best possible case (i.e., when successive head
ways are perfectly correlated). Thus, if the condition 
is not met, we can be confident that control will not be 
effective. However, we must look more closely at situ
ations for which the condition is met because the actual 
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Figure 1. Headway distribution (a) before control 
and (b) after control. 
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situation may be less favorable to control than is re
flected in this model. 

LOWER BOUND ON THE EFFECTIVENESS 
OF HOLDING 

In order to establish a lower bound on the effectiveness 
of holding, we will examine the opposite extreme case, 
which corresponds to the situtation in which headways 
between successive vehicles are statistically indepen
dent. This means that knowledge that a given headway 
is short gives us no additional information about the 
probable values for the next headway. Such a situation 
would arise, for example, when traffic conditions have 
a much greater effect on vehicle operations than does 
the loading time at stops. In this case control will be 
less effective because we have no guarantee that by 
lengthening a short headway we are also reducing a long 
headway. We might be simply reducing another, already 
short, headway. This case of independent headways thus 
provides a lower bound on the effectiveness of control 
strategies, which will allow us to further refine our 
evaluation of situations likely to be favorable for control. 

We assume that the distribution of headways before 
control is applied is descr ibed by a cumulative distribu
tion function [F(h) J with a density function [;f(h) ]. The 
effect of the control strategy is to make all headways 
less than some value (hm;n) equa l to that value. The dis
tribution of headways before and after control is shown 
in Figure 1. There is a nonzero probability that the 
headway will take on the discrete value hmin, and for 
values of h > hmin, there is a continuous density function. 

The expression for the distribution of headways after 
control is applied can be derived by considering a se
quence of two successive headways after control, which 
we will denote H;_ 1 and H;. The probability that H; ,;; h 
depends o·n both the headways H l-l and H 1 before control 
of vehicle i (if any) , as well as the value of the minimum 
allowable headway 01rnrnl . On one hand , H; ,; h if H1_1 
> hn,;n (and thus not changed by the control st rategyJ and 
H1 ,; h. If H1_ 1 ,;; hrnin, it becomes H;_ 1 = hrnin (after con
trol), and the i th headway is shortened. In this case 
H; ,;; h if the sum of H1 _ 1 and H1 before control of i was 
less than hmm + h. Of course, because the control policy 
enforces a minimum headway, the probability is that 
H; ,; h will be 0 for h < hmin· These statements can be 
summarized in the form of a cumulative probability dis-

tribution function [G(h) ] as shown in Equation 11: 

G(h) = 

0 

P(Hj "'h) = P(H;-1 > hm;n)P(H; .;; h) 
+ P{H;-J .;; hmin) 
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X P{H;-1 + H;.;; h + hmin IH;-1 <;; hm;n) h C> hmin {1 J) 

where P( ·) denotes the probability of the event described 
by .( ·l. From the distribution function in Equation 11, 
we can obtain (at least in theory) the probability density 
function [g(h)] for h ;;: hm1n, shown in Figure l b, by dif
ferentiating with respect to h. The probability that 
h = hmin is given by G(h111;,J. 

As in the previous case of perfectly correlated head
ways, our analysis proceeds by solving for the optimal 
value of h 01;n and then using this to describe the condi
tions for which control is potentially beneficial. The 
process of finding the optimal hmin involves trading off 
reductions in wait time (due to reduced headway variance) 
against in-vehicle delays due to holding of vehicles. 

The variance of headways after control can be written 
as shown in Equation 12: 

V(H') = [hmin - E(H')]2 G(hm;n) +f ~ [h - E(H')J 2 g(h)dh 
hmin 

(12) 

The rate of change of this variance with changes in h111in is 

(d/dhm;n)V(H') = 2G(hminHhmin - E(H')J [I -(d/dhm;n)E(H')] (13) 

For relatively small values of h111;n, we can argue (to a 
first-o rder approximat ion) that changes in hniin will not 
affect the mean headway. Thus, (d/dhm;n)E(H') ~ 0. 
While this approximation is not strictly accurate, a 
good case can be made that an operator is unlikely to 
implement a control policy that increases mean headway 
significantly. This would have negative impacts on ve
hicle productivity and also on passenger wait and travel 
time. Thus, the magnitude of control delays applied is 
likely to be small, and hence the approximation is a 
reasonable one . For small values of control delay, we 
can a lso approximate G(hrn1n) by F(hmin). T hese two ap
proximations allow us to obtain the result in Equation 14: 

{d/dhm;n)E(W') = (d/dhm;n) { [E(H')/2] + [V(H')/2E(H')J} 

~ Chm;n - H/H) F(hm;J (14) 

This provides the ability to evaluate (approximately) the 
marginal rate of reduction in waiting t ime as the mini
mum allowable headway increases. Total delay (T) will 
be minimized when the marginal rate of reduction in 
waiting time is just equal to the marginal rate of increase 
in in-vehicle delay. 

The delay incurred by passengers already on a vehicle 
that is held is given by: 

I hmin-H 
D= 

0 

(l 5a) 

(I Sb) 

From this, we can derive the expected delay, as shown 
in Equation 16: 

i h . fhmin 
E{D) = mm(hmin - h) f{h)dh = hmin F(hmin) - hf{h)dh 

0 0 

(16) 
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Figure 2. Areas of potential usefulness for headway control. 
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Figure 3. Trajectory of stops along a bus route. 
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The marginal change in expected delay is then 

1.0 

By using the expressions in Equations 14 and 17 we 
can then solve for an optimal value of hrrun by setting 
dT/dhmin = O. 

(18) 

Since y > O, hmin s H. Because we must also have hmin > O, 
this solution is only valid if y < 0,5, We can summarize 
this as shown in Equations 19a and 19b, which give the 
expression for the optimum value of hrrun, denoted hil:J:. 
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•• -! [(1-2-y)/(l--y)JH Oc -y < 0.5 
hmin -

0 ~S c -y c l 

(I 9a) 

(19b) 

The condition for which nonzero holding is beneficial 
(O s y < 0.5) provides important information on the situ
ations in which holding strategies are potentially useful, 
in the same way that the condition x/ff > 0.5y/l - 'Y from 
Equation 9 did. 

IMPLICATIONS OF THE ANALYSIS 

These two pieces of information can be combined, as il
lustrated in Figure 2, to yield a convenient representa
tion of situations for which headway control is likely to 
produce benefits for passengers-those for which it is 
unlikely to be worthwhile and those for which more care
ful analysis is required. By analyzing the two extreme 
cases of independent headways and perfectly correlated 
headways in detail, we can bound the regions of effective
ness for a class of headway control strategies, as shown 
in Figure 2. For situations in which control produces 
benefits under both extremes, we can be fairly confident 
that it will be beneficial. On the other hand, there are 
situations in which control does not appear to be de
sirable under the best of circumstances; hence, control 
in these situations is unlikely to be useful. There re
mains one reasonably small region in which control 
would probably produce benefits on routes where vehicles 
are substantially influenced by the vehicles in front of 
them but not on routes where vehicles move relatively 
independently of one another. For situations in this re
gion, more detailed and specialized analysis is required. 

A major implication of the result shown in Figure 2 
is that it is wise to control a route at a point where rel
atively few people are on the vehicle and relatively 
many are waiting to board at subsequent stops, in order 
that the value of y be small. Generally, this means that 
the control point should be located as early along the ve
hicle's route as possible. However, reliability prob
lems worsen as one proceeds along a route. If dispatch
ing at the route origin is effective, the headways will be 
reasonably regular at the early stops along the route, 
which implies that the coefficient of variation will be 
small. At stops further along the route, however, the 
coefficient of variation in headways will tend to be larger. 
Thus, the decision of whether or not to implement a con
trol strategy is tied to identification of a logical control 
point along the route. 

Each stop along a route will have a particular headway 
distribution (with implied coefficient of variation) and 
value of y associated with it. Thus, each stop could be 
plotted as a point in the space defined by these two vari
ables, as shown in Figure 3. Then, by looking at the 
trajectory of the route relative to the boundary values, 
the transit operator can make a decision about whether 
or not to control the route and, if so, where. For ex
ample, for the route illustrated by Figure 3, control at 
stop 3 might be worthwhile, but at stop 8 it is unlikely 
to be beneficial. 

It is also illuminating to examine the form of the op
timal holding policy for the two extreme cases analyzed 
here, as illustrated by Equations 10 and 19. Note first 
that, in both cases, the magnitude of the optimal mini
mum headway is dependent on the scheduled average 
headway, but not the variability of headways. Thus, de
termining a policy on minimum headways to be enforced 
for each extreme case is quit2 simple and requires very 
little data and only simple analysis. 

Second, note that the optimal minimum headway is 
always smaller if successive headways are independent 
than if they are negatively correlated. This follows 
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logically from the fact that a given amount of delay is 
less beneficial when headways are independent. Thus, 
we would expect the optimal delay to be smaller. 

Clearly, as previously demonstrated by Barnett (2), 
precise setting of an optimal strategy for a given situa
tion requires knowledge of the covariance between suc
cessive headways. However, our analysis, based on 
much more general models of headway distributions than 
he used, indicates that the range of possible values is 
not large, at least for small values of y (for which con
trol is likely to be most beneficial). 

The models described here make several simplifying 
assumptions in order to make the analysis relatively 
tractable. For this reason they should be viewed pri
marily as screening models, whose purpose is to iden
tify situations in which decisions are relatively clear
cut and to distinguish those situations for which further 
analysis is likely to be required. While measures of 
benefits (reduction in total delay) can be derived from 
the models presented here, those estimates are likely 
to be less useful than the identification of regions of po
tential benefits because the models omit several impor
tant factors. More detailed simulation studies of se
lected situations have been reported by Bly and Jackson 
(4), Koffman (5), and Turnquist and Bowman (6). Such 
models incorporate considerably more detail about spe
cific routes and can be used to estimate actual benefits 
from control much more precisely. 

SUMMARY AND CONCLUSIONS 

The major point of the analysis in this paper is that basic 
and important decisions regarding headway control can 
often be made by using only limited statistics about sys
tem operation. The essential data on which fundamental 
decisions can be based are the coefficient of variation in 
the headway distribution and the relative proportions of 
passengers who are on board the vehicle fand will be de
layed) and passe11ge1·s who have yet to board (and will 
benefit from reduced wait time) . By using this rudimen
tary information, a transit operator can make prelimi
nary decisions regarding whether or not headway control 
is likely to produce benefits or whether further analysis 
is required. 

The models are based on the assumption that passen
gers arrive randomly through time at bus stops; there
fore, use of the results should be limited to situations 
for which that is likely to be true. In most cases, this 
means that average headways should be 10 min or less. 
For routes on which average headways are longer than 
10 min, an analysis that includes a more sophisticated 
representation of passenger arrivals is necessary. Ex
amples of such passenger arrival models are discussed 
by Jolliffe and Hutchinson (7), Turnquis t (8), and Turn-
quist and Bowman (6). - -

This analysis has had nothing to say regarding the 
costs of implementing the control strategy. Our objec-
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tive has been simply to illustrate situations in which 
headway control is likely to produce positive benefits. 
Of course, the decision to implement such a control sys
tem would involve evaluation of the costs as well as the 
benefits. We have described a rather general concept of 
a headway control strategy. Details of the implementa
tion of such a strategy are likely to vary greatly from 
property to property, and hence the cost of implementa
tion is likely to vary greatly as well. The transit oper
ator may be able to generate relatively good cost esti
mates for a particular system but is likely to be much 
more uncertain regarding the potential benefits of the 
controls. The analysis in this paper should provide use
ful information in that regard. 
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