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Analysis of Downtown People Mover 
Systems by Using the D PM 
Simulation Model 
Thomas Dooley 

Downtown people movers (DPMs), a class of automated transit system 
that operates on exclusive guideways, are being considered by many 
cities as a possible solution to their circulation and distribution problems. 
This paper describes how a discrete event-simulation model developed 
by the Transportation Systems Center can be used in the planning and 
design of DPM systems. The paper identifies the variables that can be 
studied and that affect system ridership, cost, and performance by the 
model. The key inputs, the modeling functions, and outputs of the model 
are discussed in the context of an example, the 1990 Los Angeles DPM 
system. Use of the model to determine the feasible combinations of 
fleet size, vehicle capacity, and operating headway to meet the Los 
Angeles DPM system performance goals for the year 2000 is discussed. 
Finally, the use of the model to examine the effects of a vehicle failure 
on passenger service and system operation and to evaluate three algo· 
rithms for system recovery is illustrated. 

Downtown people mover (DPM) systems are a subset of 
automated guideway transit (AGT) systems, a class of 
transportation system that is characterized by unmanned 
vehicles operated on fixed exclusive guideways. The 
first generation of DPMs will consist largely of elevated 
systems in which proven technologies are deployed in 
central business districts (CBDs) and adjacent areas of 
larger U.S. cities. 

As part of its program for transportation planning 
support to urban areasi the Urban Mass Transportation 
Administration (UMTAI has sponsored the development 
of special demand and supply analysis techniques. The 
Downtown People Mover Simulation (DPMS) model was 
developed to provide a tool for planners and designers: 

1. To determine the sensitivity of system perfor­
mance to the range of AGT design parameters (such as 
capacity, speed, and safe headway) and to variations in 
the magnitude and spatial distribution of demand; 

2. To determine potential system bottlenecks created 
by the dynamic interaction of demand and service; 

3. To examine the impact on service of infrastruc­
ture decisions that affect system operation, such as sta­
tion size or guideway curvature; 

4. To determine the effect of anomalies such as de­
mand surges or equipment failures on passenger ser­
vice; and 

5. To examine a variety of system operating strat­
egies. 

THE DPM PLANNING AND DESIGN 
PROCESS 

The planning process examines the feasibility of DPM in 
comparison with other modes by determining the rider­
ship of alternative route alignments, station locations, 
and intermodal concepts together with the trip-making 
characteristics of the deployment area. 

The DPMS model provides a tool for the linking of the 
planning process and the design process. Figure 1 il­
lustrates this concept. The design process defines the 
detailed system characteristics that will provide the 
level of service that was assumed in the demand estima­
tion and planning process. Hence, the system designer 
takes the guideway layout, which includes station loca-

tions and the distances between stations, and the base­
line station-to-station demand matrix as given. System 
service characteristics used in the planning process, 
such as headways and travel times, represent con­
straints. 

The system designer incorporates network constraints 
and demand profile assumptions into the scenario rep­
resentation. Sets of system operating and hardware 
characteristics that affect the baseline service charac­
teristics are defined. Table 1 lists the scenario and de­
sign variables that can be manipulated by the DPMS and 
the corresponding service characteristic variables that 
are model outputs or can be derived from model outputs. 
Sensitivity analysis should be performed in the areas 
shown in Figure 1. These include network constraints, 
demand projections, alternative system characteristics, 
and anomaly analysis. The final products of the design 
process include the sensitivity of service characteristics 
to system variables, the cost impacts of system varia­
bles, and the performance specifications. The variables 
addressed by the DPMS that affect cost and performance 
specifications are also shown in Table 1. The design 
variables used as model inputs will be discussed later 
in the context of the Los Angeles DPM example. 

By use of the simulation input variables defined in 
Table 1, the system designer conducts a series of simu­
lation experiments. The simulation model represents 
the movement of the vehicles on the guideway. Safe 
headway separation is maintained according to defined 
vehicle control strategies. Vehicles travel along pre­
defined routes. The vehicles are dispatched from the 
stations according to the route headways and dispatch 
algorithms specified. Passengers arrive at their origin 
station at the time defined in the trip list and enter a 
boarding queue. When the simulated vehicle arrives, 
passengers deboard if the particular station is their 
destination and board if the vehicle has sufficient space 
and is headed toward their destination station. The 
model records the time at which individual passengers 
deboard and board all vehicles. The model keeps track 
of the current occupancy and time integral of occupancy 
for all passengers at each station and on each vehicle 
and for all vehicles at each station, on each link, and on 
each route of the network. 

At user-specified intervals, samples are collected 
on passenger- and vehicle-related statistics. These 
sample statistics are reported at periodic intervals dur­
ing the simulation process and stored for analysis dur­
ing the output processing stage. The model also records 
statistics on each completed trip. During the output pro­
cessing phase, the statistics of interest are displayed 
in a variety of ways, depending on user requirements. 
Three major types of reports can be generated: (a} a 
standard summary report; (b} time-series plots, histo­
grams, summaries, or lists of sample values of key 
variables; or (c) station-to-station matrices for key 
travel time statistics. 

A complete description of the model is provided in 
the DPMS program writeup (1). A computer-animated 
film has also been developedto illustrate the model's 
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key features. Both of these documentation sources are 
available from the Transportation Systems Center (TSC) 
of the U.S. Department of Transportation. 

THE DPM MODELING PROCESS: THE 
LOS ANGELES DPM EXAMPLE 

Figure 1. DPM planning and design process. 
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This section describes the modeling of the baseline Los 
Angeles DPM system . Variables that describe the Los 
Angeles DPM were supplied by the Los Angeles Com­
munity Redevelopment Agency. The variables were con­
verted by TSC to DPMS inputs to model the Los Angeles 
baseline design . The Los Angeles DPM case studies are 
included in this paper to illustrate the use of the model. 

Network Modeling 

Network connectivity is modeled in the DPMS by a set of 
unidirectional links that are defined by in-nodes and out­
nodes. The nodes are numbered, and contiguous links 
are defined by common node numbers. Since DPMS 
represents the actual movement of vehicles through de­
fined physical areas, stations are also represented by 
unidirectional links. Figure 2 shows the DPMS repre­
sentation of the Los Angeles DPM network . 

In addition to the connectivity, the guideway links are 
defined by the following par ameter s : length (m) , ca­
pacity (vehicles), average speed (m/s), nominal travel 
time (s), and minimum safe headway (s). The two most 
important variables for simulation are the nominal 
travel time and the minimum safe headway. These var­
iables are used to schedule the completion of events in a 
vehicle's traversal of the guideway link . The minimum 
safe headway defines the time during which no other 
trains may enter a link. The nominal travel time de­
fines the time required to complete the link travel event. 
If a train cannot enter a link due to capacity, headway, 
or failure conditions, the train is queued until the con­
dition is cleared. The list below shows the Los Angeles 
network parameters . 

Los Angeles DPM Baseline 

1. Demand-evening peak period = 2 h, peak hour 
demand = 9200 passengers/h, and 4600 passengers are 
carried during the peak 20 min; 

Table 1. Simulation variables related to ridership, cost, or performance specifications. 

DPMS 
Variable 

Input 
Station-to-station demand 

rate by time interval 
Guideway speed limits 
Station configurations 
Station-to-station diotuncc 
Vehicle speed 
Vehicle capacity 

Vehicle loading rates 
Vehicles per train 
Mlnim11m s"fe headway 
Route headway 
Transfer points 
Minimum and maximum 

door open times 
Failure conditions 

Output 
Wait-time distribution 

In-vehicle time distri-
bution 

Maximum station queue 
Load factors 
Vehicle kilometers 

Passengers served 
Peak vehicles 

Ridership 
Variable 

In-vehicle and wait 
times 

In-vehicle time 
In-vehicle time 
In-vehicle time 
In-vehicle time 
Wait time 

Wait time 
Wait time 
Wait time 
Wait time 
Transfer time 
Wail and in-vehicle times 

Wait and in-vehicle times 

Wait time 
reliability 

In-vehicle time 
reliability 

Fare 
Fare 

Fare 
Fare 

Cost 
Variable 

Capital cost 
Capital cost 
Vehicle cost 
Vehicle cost, 

guideway cost 

Station cost 
Vehicle cost 

System cost 

Station cost 

Operating and main­
tenance cost 

Capital cost, operating 
and maintenance cost 

Performance 
Specification 

Square meters per passenger, 
standee-seated ratio 

Deboard and board rate 

Time to unload vehicle 

Maximum delay times 

Maximum wait 

Platform size 
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Figure 2. Los Angeles DPM network. 
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2. Network-average speed on guideway including 
station input ramps and crossovers = 8.76 m/s, station 
configuratio-ns (all on line) are two end-of-line stations 
with inbound crossovers, four single-side one-way sta­
tions, and seven split-platform stations; average station­
to-station distance = 436 m, network connectivity is 
closed loop, and door is open a minimum of 5 s and a 
maximum of 55 s; 

3. Vehicle characteristics-vehicle speed = 8.76 m/s 
average, vehicle capacity = 41, number of seats per 
vehicle= 17, passenger loading rate per vehicle= 0.8 s/ 
passenger, vehicle length = 8 m, and vehicle dispatch = 
midpoint; and 

4. System characteristics-one route that stops at 
all stations , route headway = 106 s, vehicles per train = 
4, transfer points = 2 (one at 10 sand one at 108 s), and 
average dwell time = 24.5 s (15 s with door closed+ 5 s 
minimum+ 4.5 s expected variable). 
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In the DPMS, stations are modeled as a set of links and 
a set of events that occur on each link. Events include 
headway and travel times, which are similar to the 
guideway link events. In addition, deboard, board, and 
launch events can be specified. The deboard event re­
moves passengers from vehicles and computes the time 
to deboard each vehicle in a train. The board event 
places trips from the station boarding queue in vehicles 
that have sufficient capacity and go to their destination 
and computes the time to board all passengers on each 
vehicle. Deboarding and boarding times may be con­
stant or may vary between a minimum and maximum, 
depending on the number of passengers. The launch 
event is used to determine the time the vehicle is dis­
patched as a function of the current time and the dis­
patching algorithm in use. The modeling of the Los 
Angeles DPM stations was summarized in the above list. 

Trip-List Generation 

The DPMS generates a time-ordered sequence of pas­
senger arrivals, called a trip list. The trip list con­
tains the time of arrival and the origin and destination 
times of each trip. The trip list is generated from a 
station-to-station demand matrix and a set of scale and 
interval values. The model uses this information to de­
termine an average arrival rate for each station pair. 
The trip list is generated as a series of Poisson arrivals 
based on these rates and a specified random number. 
Figure 3 shows the Los Angeles evening peak demand 
profile as a set of 20-min intervals with varying demand 
magnitudes. 

Vehicle Characteristics 

The vehicle characteristics that are specified include 
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capacity, length, speed, number of seats, and load and 
unload rates. The above list shows these variable values 
for the Los Angeles DPM baseline. 

Network Operations 

The final step in modeling the baseline Los Angeles 
DPM system is to specify the system operating condi­
tions. These include a definition of the route (set of sta­
tion stops), the operating headway on the route, the defi­
nition of which routes passengers board at each station 
for each destination, the points at which passengers 
transfer, the time it takes to transfer at each transfer 
point, the dispatching policy used, and the number of 
vehicles per train. 

The model can calculate the desired route headway 
from the number of trains or vice versa based on the 
nominal round-trip time. Since the designer works 
within the constraints of the planned system, the route 
headway is usually input. If a given train capacity is 
known, the model can calculate the route headway and 
the fleet size based on a specified demand interval, such 
as the peak 20 min, The above list shows these variable 
values for the Los Angeles DPM baseline. 

Los Angeles Baseline Results 

Figure 4 shows one of the system summary printouts 
from the model, and the "base" column in Table 2 shows 
the significant statistics of this run, Passenger waiting 
times and trip times are key performance measures. 

Figure 4. System summary statistics. 
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The trip time is defined by the network speed constraints; 
the wait time is a measure of the service provided. The 
worst-case station (number 6, Pershing Square) had a 
maximum wait of 184 s. Figure 5 shows a time-series 
plot of maximum wait times at Pershing Square. This 
plot shows stable service with a slight degradation dur­
ing the peak period. This plot also shows that vehicles 
are being dispatched from this station evenly, since each 
asterisk at a point greater than zero represents a dis­
patch in that 60-s sampling interval. We can also verify 
this stability from the minimum and maximum dispatch 
times shown in Table 2. 

Other key statistics from Figure 4 include the system 
average load factor (0.315) and the maximum load factor 
on any link (1.00). The worst-case link is after the 
worst-case station. The queuing at station 6 is caused 
by a combination of high demand and trains that arrive 
at near capacity. The vehicle speed in the network and 
the ratio of planned to actual travel time vary due to the 
effects of variable dwell times. 

Other key statistics shown in Table 2 include the 9 5 
percent wait time, which is derived from a sort of the 
log of all completed trips; the standard deviation of trip 
time, which is derived from the trip log tor each pair of 
stations and indicates predictability of service; the max­
imum door-open time, which indicates station dwells and 
affects minimum route headways; and the maximum num­
ber of waiting passengers at the worst-case station, 
which can be used to evaluate station platform capacity. 

This simulation indicates that the system design de­
scribed in the preceding list performs almost as ex-

DPHS STANDARD REPORT 2----SYSTEM SUMMARY STATISTICS 

SYSTEM-WIDE MEASUREMENTS 

VEHICLE FLEET SIZE 
SEAT CAPACITY 
SEAT AVAILABILITY 

TOTAL 

VEHICLE METERS TRAVELLED 2365500.00 
VEHICLE LOAD FACTOR 
HUMBER OF PASSEtlGERS IN SYSTEM 
PASSEtlGER METERS TRAVELLED 29887632.0 
PASSENGER WAIT TIHE C SEC) 
NUt18ER OF PASSE~lGERS WAITING 
PERCENT COMPLETED TRANSFERS 17. 717 
NOMINAL TRAVEL TIME I ACTUAL TRAVEL TIHE 0. 951 
VEHICLE SPEED IN NETWORK--INCLUDING STATION TIHE IH/SECl 6.299 
VEHICLE SPEED ON GUIDEWAY--EXCLUDING S,TATION TIHE IM/SEC J 9. 753 

STATION MEASUREMENTS I BY STATION l 

--STATION 1--

NUtlBER OF VEHICLES 
NUtloER OF VEHICLES QUEUED: 

INPUT RAHP 
ItlPUT QUEUES 
DOCl<3 
OUTPUT QUEUES 
OUTFUT RAHP 
S fORAGE 

VEllICLE TIME IN STATION 
NUrlBER OF PASSENGERS: 

ENTERING 
EXITING 
TRANSFERRING 
WAITING 

PASSENGER WAIT TIME 
VEHICLE LOAD FACTOR--IN 
VEHICLE LOAD FACTOR--OUT 

--STATION 2--

NUMBER OF VEHICLES 

I SE Cl 

HUrlBER OF VEHICLES QUEUED: 
I._NPllT J;iAHP 

TOTAL 

1424.000 
3515 . 000 

o.o 

AVERAGE 

56.000 
952.000 
335. 753 

0. 315 
879. 233 

57 . 016 
112 . 165 

AVERAGE 

2. 099 

0 .0 
0 . 0 
0 . 0 
0 . 0 
0 . 0 
0 . 0 

55 . 669 

10. 223 
53.960 

0. 315 
0 .128 

0 .829 

0. 0 

MINIMUM MAXIHUH 

56 . 000 56 . 000 
952 . 000 952 . 000 
101 . 832 450 . 340 

11116 . 000 26096 . 000 
0 . 0 l. 000 

606 . 000 1679 . 000 
108705 . 000 579067 . 000 

0. 0 183 . 900 
37. 000 324 , 000 

2 .857 41.860 
0 .553 l. 116 
4.484 8 . 257 
8.515 10 . 6 75 

MINIMUM MAXIMUM 

0. 0 4. 000 

0. 0 0. 0 
0. 0 0. 0 
0. 0 0. 0 
0. 0 0. 0 
0. 0 0. 0 
0. 0 0. 0 

51. 500 69.400 

4 . 00 0 30. 000 
0 . o 100.000 
o. o 0. 0 
0 .0 47.000 
0 .o 112.900 
O. l~ O 0. 610 
0 .. 02'• 0. 323 

0. 0 4. 000 

0. 0 0. 0 
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Table 2. Los Angeles DPM year-2000 
Characteristic Base Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 sensitivity analysis. 
System 

Headway (s) 106 106 106 88 75 59 45 
Train capacity 164 180 240 180 160 120 90 
Number of trains 14 15 15 18 21 27 35 
Evening peak demand 15 321 21 891 21 891 21 891 21 89 1 21 891 21 891 
Evening peak time (h) 2 2 2 2 2 2 2 
Throughput (places/h) 5570 6113 8151 7361 7680 7322 7200 

Performance 
System maximum wait (s) 184 558 153 164 150 167 169 
Station 6, 95 percent wait' (s) 129 404 122 114 95.2 99 . 7 103 
System 95 percent wait' (s) 120 201 121 104 89.1 75.4 66 
Trip time 

Mean (s) 400 433 423 413 409 399 394 
Maximum SD' 38. 7 57.8 25. 8 29 37 

Dispatch time 
Minimum 94 94 87 78 64 52 41 
Maximum 119 119 125 102 87 67 51 

Maximum door open, station 11 37 45 49.5 40.6 36.6 39 22 
Maximum waiting passengers, station 6 77 102 103 95 100 116 

•95 percent wait = 95 percent of trips wait less than this time. 
b Maximum standard deviation of travel time between any pair of stations 

pected. However , it is significant to note that station 6 
did experience some queuing. This potential problem 
would not have been predicted without the DPMS. The 
static peak link-load analysis indicated that a train ca­
pacity of 154 would be sufficient. Even though the sim­
ulation experiment was run by using a train capacity of 
164 (a 7 percent increase), some passengers wer e forced 
to wait for another train. 

One run of the simulation experiment, as discussed 
here, is not sufficient to base design conclusions. Since 
many random events interact with one another in the 
simulation, several experiments that use different ran­
dom number seeds should be run to obtain the desired 
level of confidence. The experiments discussed in this 
paper are illustrative of the type of information avail­
able from the model. 

LOS ANGELES BASELINE SENSITIVITY 
ANALYSIS 

Once the baseline system has been modeled, the DPMS 
can be used to explore a range of demand and system 
characteristics and possible system anomalies. This 
section shows how the model was used to determine the 
combinations of route headway and vehicle capacity that 
would meet the baseline wait-time goals for an estimated 
demand of 100 000 persons/ day in the year 2000 versus 
72 000 persons/ day in the baseline year. 

In the absence of other information, we assumed that 
the spatial distribution in the evening peak would be the 
same in the year 2000 as in the baseline year, 1990. The 
increase in demand will be modeled by a change in the 
scale factor in the demand profile. The scale factor for 
each interval was multiplied by 1.38 to generate the trip 
list for the year-2000 case. This was derived from an 
increase from 72 000 to 100 000 persons/ day. 

The only other changes made to the baseline case were 
the removal of the switchback constraint at the end sta­
tions and an increase in the expected door-open time at 
the stations from an average of 10 s to an average of 15 s 
because of the higher demand. This change resulted in 
a total nominal travel time around the network of 1593 s, 
an increase of 109 s from the baseline case. 

The simulation experiments examined s ystem opera­
tion at the following nominal headways: 45, 59, 75, 88, 
and 106 s. Train capacities ranged from 80 to 240 pas­
sengers. To evaluate the performance of these various 
combinations of throughput, several measures of pas­
senger wait time were calculated. These measures in­
clude the average, maximum, and 95 percent wait times. 
These measures were computed for the entire system and 

for each station from the station-to-station matrices, 
which were der ived from the log of trips completed dur­
ing the evening peak. 

Results of Year-2000 Demand Study 

Table 2 presents the results of a set of simulation runs 
for the demand in the year 2000. The left-hand column 
lists the key system and performance characteris tics . 
The base run lists the statistics of the baseline (1990 
demand) scenario discussed previously. Run 1 shows 
the results of using essentially the baseline system to 
try to serve the year-2000 demand . Even with an in­
crease in train capacity from 164 to 180, the system is 
clearly saturated. Run 2 shows the results of a simu­
lation experiment that uses a train capacity of 240 and a 
headway of 106 s. The statistics for this run indicate 
service comparable to the baseline case. The next four 
columns (runs 3, 4, 5, and 6) show the results of simula­
tion experiments that use different headways and train 
capacities that offer comparable levels of service. In 
all cases the system average wait time was equal to one­
half of the headway, and the average wait time at the 
worst-case station was slightly higher. 

The performance characteristics for runs 2-6 are 
approximately equivalent in terms of the worst-case 
station (and syst em ) maximum and 95 percent wait times. 
The system 95 percent wait time (as well as the s ystem 
average wait time) decreases with decreasing headway . 
The next two lines show the average trip times for each 
run and the maximum of standard deviations for the 
station-to-station trip times. Trip time is measured 
from time of arrival at a station to time of completion. 
The average trip time is not affected significantly by the 
headway changes . In fact, the change shown is approxi­
mately one-half the headway change, as would be ex­
pected. The worst-case standard deviation of trip time 
is a measure of the predictability of service. In all 
cases shown here , this number is low. However, a de­
crease in the headway does not guarantee an improve­
ment of this statistic . The average dispatch time be­
tween vehicles was equal to the planned headway in all 
cases. The range of dispatch times is shown here. 
These ranges indicate that the dispatching algorithm 
used by the model worked well . The maximum door­
open time statistic at the end station can be used to eval­
uate the feasibility of using switchbacks at lower oper­
ating headways. The maximum number of waiting pas­
sengers can be used to evaluate the station design 
capacity. 

Figure 6 shows the train capacities and headway com-
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Figure 5. Time-series plot of 
maximum wait time at 
station 6. 
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Figure 5. Continued. 103 . 6000 
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Figure 6. Headways and capacities needed to produce 95 percent wait 
time of 2 min at station 6 on the Los Angeles DPM in the year 2000. 

hicle stoppage on the link between stations 5 and 6 by 
inputting the location and time of the failure and re­
covery events. The failure is assumed to occur at the 
beginning of the peak 20 min and last for 5 min. 
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binations needed to meet the 9 5 percent wait-time goal 
(2 min) at the worst-case station. These results were 
derived from a series of simulation runs. 

Modeling System Anomalies 

The DPMS was used to model system response to a ve-

A vehicle stoppage is represented in the DPMS by a 
failure of a link exit, which then prohibits vehicles from 
leaving the specified link. The first vehicle that reaches 
the end of the defined link queues, as do all following ve­
hicles. When the failure is removed, the guideway link 
model within the DPMS prompts the queued vehicles to 
start moving again. All passengers remain in the sys­
tem and the failed vehicle is considered operational once 
the failure is removed . 

Three failure experiments were conducted by using 
the same failure scenario and different dispatching algo­
rithms. The dispatching algorithms affect the time the 
system takes to recover from the failure. The first 
algorithm dispatches vehicles as fast as they are loaded 
if they are far behind schedule. The second algorithm 
dispatches vehicles one predetermined headway behind 
the preceding vehicle. The third algorithm dispatches 
vehicles midway between the predetermined headway and 
the time vehicles are ready to be launched. 

Analys is of the Failure Scenario 

Table 3 presents the results of the simulation experi­
ments. The system and performance characteristics 
shown are similar to those shown in Table 2. The first 
column shows the baseline results. The second column 
shows the results of the baseline system by using the as­
soon-as-possible dispatching scheme . The increase in 
system maximum and system 9 5 percent wait times are 
dramatic , as expected. The average wait time over the 
2-h peak period increases by only 15 s. The station that 
has the worst average and 95 percent wait times is now 
station 17. The range of dispatch times indicates the 
possibility of bunching. 

The results of the alternative dispatch algorithms can 
be explained by looking at Figure 7. This figure is a 
reproduction of the time- series plots of passenger max­
imum wait time at station 17. Samples have been taken 
every 60 s. A zero wait time means that no passengers 
were dispatched; a positive time indicates that at least 
one vehicle was dispatched in that interval. 

The first algorithm works best in this case, because 
it moves vehicles to the stations downstream of the fail-
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Table 3. Los Angeles DPM failure scenario 
analysis . 

Characteristic 

System 
Headway 
Train capacity 
Number of trains 
Evening peak demand 
Evening peak time (h) 
Failure location 
Failure time (s) 

Performance 
System average wait (s) 
System maximum wait (s) 
System 95 percent wait (s) 
Worst station 
Worst station average wait (s) 

Baseline 

106 
164 
14 
15 321 
2 

57 
183 
121 
6 
62 
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Dispatch 

Fixed After Midpoint 
As Soon Preceding After Pre-
As Possible Vehicle ceding Vehicle 

106 106 106 
164 164 164 
14 14 14 
15 321 15 321 15 321 
2 2 2 
Link 25 Link 25 Link 25 
300 300 300 

72 76 86 
395 615 734 
194 208 275 . 
17 17 17 
92 112 141 

Worst station 95 percent wait (s) 128 256 403 509 

Figure 7. Los Angeles DPM baseline to 5-min 
failure on link 25. 
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ure quickly, which is important when the failure occurs 
in the peak hour. The effects of bunching are seen in the 
periodic peaking of the wait times later in the simulation. 
The second plot shows that the vehicles are spaced nicely 
but that they provide insufficient throughput to handle the 
large queues during the peak. This algorithm might be 
more effective for off-peak stoppages. The third algo­
rithm moves the vehicles downstream only slightly faster 
(the sixth vehicle arrives sooner). Its poor performance 
results mainly from the fact that the initial gap between 
dispatches after the failure was 420 s, rather than 300 s 
for the first two alternatives. Another set of failure runs 
was made by using the same failure scenario (time and 

SIMULATION TIME 

place) but a differ ent random number. They showed 
that the midpoint dispatching algor ithm was slightly 
more effective than the fixed-interval algorithm, but 
both were inferior to the first algorithm. From this 
result, we can conclude that the best algorithm for this 
failure scenario is the one that dispatches vehicles as 
fast as possible and that bunching is a secondary effect. 

SUMMARY 

The results presented illustrate the capability of the 
model to represent a variety of demand, network, sys­
tem operation, and system event scenarios. The model-
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ing of these changes from the baseline case is quite 
simple and the model provides the analyst with the in­
formation necessary to understand the results. 

ACKNOWLEDGMENT 

The development of the DPMS model was jointly spon­
sored by UMT A's Office of New Systems and Automation 
and Office of Planning Methods and Support. The speci­
fications for· the model were developed by me, Art 
Priver, Don Ward, and Sy Prensky of TSC and Gran 
Paules of UMTA. The software and documentation for 
the model were written by John Duke of General Motors 
Transportation Systems Division and Mark Handelman 
and Al Melgaard of IBM Federal Systems Division. The 
modeling of the Los Angeles DPM was done by me in 
conjunction with Gill Hicks and Foster Needles of the 

17 

Los Angeles Community Redevelopment Agency. The 
year-2000 demand analysis was done in conjunction with 
George Scheck of Kentron Hawaii, Ltd., and Art Priver. 
The data and conclusions presented here are mine and 
do not represent the position of either UMT A or the Los 
Angeles Community Redevelopment Agency. 

REFERENCE 

1. Systems Operation Studies for Automated Guideway 
Transit Systems, Downtown People Mover Simula­
tion (DPMS) Program Write- Up. General Motors 
Transportation Systems Division, Warren, MI, Rept. 
EP-79020, Feb. 1979. 

Publication of this paper sponsored by Committee on Transportation 
Systems Design. 

Generating Alternatives for Alternatives 
Analysis 
William S. Herald 

Alternatives analysis is the planning process mandated by the Urban Mass 
Transportation Administration for the assessment of major transit invest­
ments. The alternatives analysis process is a means of ensuring compara­
bility between rapid transit planning studies across the nation. Up to 
now, the focus of attention has been on the results or products of the 
process. Interest has centered on the selection of a recommended alterna­
tive and its costs and impacts. This paper examines an earlier stage in the 
planning process that has critical importance in the validity of alterna­
tives analysis studies. The basic concern is with the ways that alternatives 
are derived and described. If alternatives are the central feature of the 
process, we should know more about what they are and where they come 
from. The investigation reviews a group of alternatives analysis reports 
to establish the state of the art in generating alternatives for major transit 
studies. Ten potential imputs to alternatives generation are identified. In 
addition, the paper assesses the use of specific techniques or methodol­
ogies for the generation of alternatives. Specifications for alternatives 
and the properties of alternative sets are reviewed. The paper includes 
an examination of the ways that transportation system management and 
baseline alternatives have been defined and used in past studies. Conclu­
sions on the state of the art in alternatives generation and its expression 
in alternatives analysis studies are presented as the results of the investi­
gation. 

Alternatives analysis is the process mandated by the 
Urban Mass Transportation Administration (UMT A) for 
planning major rapid transit facilities. As the name 
implies, the central feature of this planning process is 
the comparative assessment of the costs and impacts 
of a set of alternative configurations of technologies and 
services. Paradoxically, although alternatives occupy 
a central position in this planning process, little atten­
tion has been focused on the alternatives themselves. 
The major focus of methodological interest has been on 
techniques to predict the impacts of alternatives on the 
urban transportation system and the environment. 

This paper is concerned with such issues as where 
alternatives come from and what makes up an alterna­
tive. The review of the transportation literature for 
this investigation suggests that these basic issues are 
seldom articulated and that alternatives development may 
be an activity characterized by pervasive assumptions 

and a lack of structural approach. The purpose of this 
paper is to examine the state of the art in the identifica­
tion of alternatives. We are interested in the answers 
to a number of questions: 

1. When are alternatives generated in the planning 
process? 

2. What are the inputs to alternatives generation? 
3. What techniques are used to identify alternatives? 
4. What characteristics have been used to define and 

describe alternatives? and 
5. How have baseline and transportation system man­

agement (TSM) alternatives been considered? 

To assess the actual experience of the alternatives 
analysis process with respect to the generation of alter­
natives, 15 sources were read and evaluated (1-15). 
These sources were a mixed collection of complete 
alternatives analysis final reports, single volumes from 
a series of rapid transit engineering studies, supple­
mentary reports submitted in response to UMT A ques -
tions, and draft reports. Altogether the group of docu­
ments reviewed represents 11 alternatives analysis ef­
forts. This represents roughly a 30 percent sample of 
the universe of 35-40 alternatives analysis studies iden­
tified in this investigation. Although this is not a random 
sample, it is assumed that the reviewed studies are 
reasonably typical of past and current alternatives 
analysis experience. 

Some important limits on the analysis must be noted. 
The first of these is the evolutionary nature of the al­
ternatives analysis process. Because the process has 
developed over time, each application has been treated 
somewhat differently. Thus, all the studies cannot be 
expected to be similar. Also important is the fact that 
the alternatives analysis process was imposed on sev­
eral rapid transit planning efforts in midstream. It can 
be expected that these studies show significant differ-




