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Simple Analytical Model for Understanding Gasoline 

Station Lines 
VICTOR PRINS, ROBERT A. WOLFE, AND STEVEN R. LERMAN 

Recent gasoline shortages have necessitated a better understanding of queues at 
gasoline stations and how to minimize their lengths. This paper is an attempt to 
model the gasoline-line phenomenon and to predict the effects of various 
policies on factors such as mean waiting time, quantity of gasoline purchased, 
hours that stations are open, and mean frequency of visits to stations. This is 
achieved through the use of a Cobb-Douglass demand equation and, simulta
neously, an equation that represents "topping-off" behavior. No comprehen
sive data were available to estimate the model; therefore, the model was cali
brated judgmentally. Policy tests should be seen in this light. Preliminary in
dications are that the use of odd-even gasoline rationing minimizes aggregate 
wait time as well as wait time per visit more than do minimum or maximum 
purchase plans. This papor roprcsonts more of a framework of analysis than 
econometrically acceptable results. The model, although simple, is elegant 
and produces logical results. 

During June 1979, Americans again experienced the 
frustration of waiting in line to buy gasoline for 
their automobiles. Even the trend toward smaller, 
more fuel-efficient automobiles (which was 
accelerated by the first oil crisis) was not enough 
to prevent the occurrence of another gasoline 
crunch. Politicians were caught by surprise, and 
governments hastily developed policies to alleviate 
the inconveniences suffered by their irate 
citizens. Much to the relief of the governments, 
they found that whatever policy they adopted, it 
worked. Gasoline lines soon began to disappear as 
mysteriously as they had appeared. 

Since accurate data on available supplies during 
that period are hard to find, it is difficult to 
determine whether gasoline lines disappeared due to 
government action or simply due to an improvement in 
supply. Since the problem may occur again, research 
efforts should be directed toward a better 
understanding of how and why gasoline lines form and 
toward developing models that could predict the 
effect of various policies on the gasoline-line 
situation should another (possibly more prolonged) 
supply shortage occur. 

There is at least one serious obstacle to 
building a good model of the formation of gasoline 
lines--the lack of available data on which to 
calibrate a model. However, in real life, most 
decisions are based on the incomplete data on hand, 
and the situation is therefore not unique. 

This paper is a modest attempt to use existing 
knowledge, of both a theoretical and a practical 
nature, to set up a model that would facilitate a 
better understanding of the complex phenomenon of 
gasoline lines. It is a beginning and not an end; 
however, there is some elegance in its simplicity. 

The approach followed in this paper is to build 
what Manheim (1) terms a "judgmentally estimated 
model". By c~mbining microeconomic theory with 
professional judgment on the selection of important 
variables, much can be learned from the process as 
well as inferred from the results even without an 
available full data set. 

The procedure followed in this paper was to 
formulate a simple set of equations that reflect 
gasoline purchase behavior and to judgmentally 
estimate the model. The estimation was done by 
first using parameters, such as estimated 
elasticities, that are available from prior 
studies. Next, the conditions that existed 
immediately after the worst of the crisis was over 

were used as a point for which the model had to be 
valid. From this, inferences could be drawn with 
regard to the relationships between parameters. An 
extensive sensitivity analysis was then done on both 
unknown and known parameters. The final selection 
of parameters was based on the model's ability to 
reproduce known conditions as well as the 
plausibility of its general behavior. 

The paper is concluded with a discussion of the 
model results for various policies used during the 
previous energy shortage: (a) an odd-even plan, (b) 
a maximum purchase plan, and (c) a minimum purchase 
plan. A pricing policy is also treated. 

BACKGROUND 

Al though generally transient in nature, severe 
queues for gasoline are perhaps the most publicly 
visible manifestation of what has been loosely 
termed the energy crisis. Given the dependence of 
the u. s. transportation system on the private 
automobile, gasoline shortages typically create 
enormous economic and social disruptions. At a 
minimum, these disruptions result in high economic 
costs (see paper by Dorfman and Harrington in this 
Record); at the worst, violent crimes are associated 
with gasoline lines. 

In order to understand the formation of gasoline 
lines at the qualitative level, one must first 
recognize that the queues for gasoline serve a 
significant (albeit inefficient) function. In the 
recent shortages, the queues for gasoline have 
provided the basic short-run mechanism through which 
gasoline has been rationed. 

In the short run, the supply of gasoline to 
service stations is, for practical purposes, fixed 
by federal allocation formulas and oil company 
delivery schedules. Maximum pump prices are 
regulated by using formulas that reflect estimated 
production and acquisition costs, not the demand for 
gasoiine. If under these conditions the available 
supply of gasoline suddenly is curtailed to a level 
less than the equilibrium volume at the regulated 
price, some nonprice mechanism for clearing the 
market will operate. In the absence of any 
governmental action (e.g., relaxation of price 
regulation, restriction of operating hours, or 
rationing), the most typical mechanism is for queues 
to build up. Essentially, people pay more for 
gasoline through a time (rather than monetary) cost 
that is high enough to clear the aggregate, 
short-run market for gasoline. 

Given this perspective, a number of questions are 
relevant to policy: 

1. What is the social cost of allowing queues to 
serve as the basic market-clearing mechanism? 

2. Are alternative mechanisms available for 
clearing the market that are more cost effective? 

3. What is the effect of alternative mechanisms 
for clearing the market on various segments of the 
population? 

Dorfman and Harrington estimated that the cost of 
using queues to clear the gasoline market in an 
urban area is significant. The obvious solution of 
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allowing prices to perform their usual market
clearing function has been widely rejected by the 
political process, particularly as a response to the 
very short-run shortage problems manifested in long 
gasoline lines. 

Other strategies have been oriented toward 
reducing the number of visits to stations per liter 
of gasoline purchased. These plans all involve some 
form of minimum purchase or limited access to 
stations (e.g., odd-even plans). In an analysis of 
the effect of such strategies, one must explicitly 
recognize that lines can be reduced only by imposing 
some cost (monetary or other) that reduces the 
demand for gasoline to equal the current, fixed 
supply. Such costs can include reduced access to 
stations (the effect of odd-even plans). 

The above discussion suggests that, in modeling 
the demand and market clearing of the gasoline 
market, one must incorporate measures of 
nonpecuniary cost into the demand function. Thus, 
the traditional notion of a demand function for 
gasoline must be extended to include wait time and 
availability. Nonpecuniary costs always influence 
demand, but in most typical situations they can be 
ignored since they are small and relatively uniform 
for the entire population. Only when gasoline 
queues are significant factors in clearing the 
market should these variables be explicitly modeled. 

MODEL STRUCTURE 

Before proceeding with a detailed description of the 
model, some assumptions of the analysis should be 
stated. First, market forces will be assumed to 
clear the market for gasoline. In the case where 
the dollar price of gasoline is artificially 
restricted to a price below the equilibrium market 
price, the consumer will have to pay the additional 
price in some other form, such as waiting time in 
line. Second, the model is aggregate in the sense 
that expected values of variables are used rather 
than disaggregate individual observations. This 
does not imply that all consumers are expected to 
have the same values for the different variables, 
since individual consumers might have values that 
vary around the expected values. Third, the model 
is applicable to an urban area in which gasoline 
stations are distributed proportionally to 
population. The actual size of the area under 
consideration is not important. 

On the model's supply side, the allocation of 
gasoline to the area under consideration is assumed 
to be fixed--the amount is determined by forces 
outside the area, such as government allocation 
rules. This apiount is then divided among the 
gasoline stations in the area. Because the supply 
of gasoline is limited, all gasoline will be 
consumed and each consumer (defined here as an 
automobile owner) is expected to obtain a fraction 
of the gasoline. Mathematically, this can be stated 
as follows: 

Q=mq =Pu (!) 

where 

Q allocation of gasoline per day to the area 
under consideration (L), 

P automobile population in area, 
m c number of gasoline stations in area, 
u =use rate per vehicle per day (L), and 
q average allocation per station in the area 

(L) • 

From Equation 1 follows 
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u = (m/P) x q (2) 

The above equation implicitly assumes that owners of 
gasoline stations ration their monthly supplies to a 
daily schedule. 

The demand side is more complex and the following 
demand function is proposed: 

(3) 

where 

C •cost per liter of gasoline ($), 
µ • mean waiting time in line per visit (min), 
n = expected number of visits to gasoline 

stations per day, and 
t • average number of hours per day that gasoline 

stations are open in the area. 

tlor tl1, tl2, 
ficients. Equation 
influence the demand 

Cost of gasoline 
expected. As price 
crease, and tl1 can 
less than zero. 

tl3, and tl4 are coef-
3 assumes that various factors 
for gasoline. 
enters the demand function as 
is increased, demand will de
therefore be expected to be 

It is postulated that waiting time in line to 
purchase gasoline will also influence the demand for 
the gasoline. An increase in waiting time can be 
expected to cause a decrease in demand if everything 
else is kept constant. It is further postulated 
that not only is waiting time important but also the 
number of times a consumer has to wait in line. 
Again, one would expect demand to drop with an in
crease in the number of trips, if everything else is 
kept constant. Therefore, tl2 and tl3 are 
expected to be less than zero. 

The last variable used in the demand function is 
t, the number of hours per day that each gasoline 
station is open. This measure is an indication of 
schedule flexibility available to the consumer. If 
gasoline stations should open only on weekdays 
between 8:00 a.m. and 12:00 p.m., for example, this 
would severely limit the customer's flexibility in 
buying gasoline and, therefore, will also restrict 
his or her ability to make trips. The variable also 
serves to reflect risk aversion by drivers, so it 
can be expected that, as station hours become 
shorter, people will tend to conserve the fuel that 
they have due to the uncertainty of availability 
reflected in the short station hours. As station 
hours decrease, consumption will decrease (given 
that everything else stays constant), and tl4 can 
therefore be expected to be greater than zero. 

In order to link the station hours to the 
shortage of gasoline, we postulated that stations 
only stay open every day until that day's allocation 
is sold. During that period, the service station is 
also constantly busy and people wait in line to be 
served. This means t is equal to the product of the 
vehicles that visit a station per day and the 
average service time per vehicle. Mathematically, 

t = (P x n/m) x (i/X) (4) 

where A = service rate in vehicles per hour. 
In the demand equation there is some interaction 

involved between the left-hand side (u) and the 
right-hand side that is not immediately apparent: 

n = u/x (5) 

where x = number of liters of gasoline purchased per 
visit. 

The measure x is set by each consumer according 
to his or her taste and his or her perception of the 
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gasoline shortage. It is postulated that x is 
influenced by the total time spent waiting in line 
per time period and the hours that gasoline stations 
are open. Mathematically, this relationship is 
presen~ed as follows: 

(6) 

where ao, a1, and a2 are parameters. 
The functional form of this equation was assumed, 

for simplicity, to be linear. Obviously, any other 
functional form might also be appropriate. The 
linear form, with positive parameters a 0 , 
a1, and a2 impl i es a decrease in purchase 
size (x) with a decrease in station opening time and 
an increase in purchasing size with an increase in 
waiting time. This is in accordance with what is 
expected to happen in the real world. As gasoline 
supplies get more and more uncertain (t gets 
smaller), the motorist is expected to "top off" more 
regularly, hence the smaller x. However, for each 
visit the consumer makes to the gasoline station, 
there is a wait time. To minimize the wait time, 
the consumer can be expected to buy more gasoline 
per visit, hence an increase in x. There is also, 
therefore, a trade-off between these variables. 
This trade-off, as well as the fact that lines can 
be avoided altogether by not driving, is represented 
in the demand function. By solving the system of 
equations, the unknown variables t, x, n, and µ 
can be solved for as functions of q, P, m, >-, and 
the parameters. 

MODEL ESTIMATION, BEHAVIOR, ANO SENSITIVITY ANALYSIS 

Since no data were available to econometrically 
estimate the a's and a•s, the model parameters 
could not be estimated by conventional techniques, 
and a method of judgmental estimation was adopted. 
In such situations, a combination of previously 
reported conclusions, a priori expectations, and 
intuition are combined. This procedure, although 
far from ideal, can provide useful insights into the 
process under study. It should be further noted 
that frequently data are not available when 
real-world policy decisions need to be made and, by 
using judgment to estimate a model, some structure 
may be imposed on an otherwise unstructured 
decision-making process. 

Returning to Equation 3, one is able to treat the 
coefficients a1 through a4 as elasticities 
of consumption with respect to their respective 
variables. Initially, signs and expected ranges can 
be assumed for their values as follows. 

l. There is a considerable literature that 
attempts to estimate the elasticity of gasoline 
consumption with respect to price. Available 
estimates range from 0 to -0.9 with the figure of 
-0.15 most often cited in the literature [Charles 
River Associates (2)). 

2. As stated - earlier, a2 and a3 are 
expected to be negative, and it is now further 
assumed that they are set such that the elasticity 
with respect to mean waiting time and with respect 
to number of trips made are greater in absolute 
value than the elasticity with respect to price. 
This assumption is based largely on inferences from 
various mode-choice studies [e.g., Lisee, Lave, and 
McGillivray (_l-i)J. 

3. It was also felt that consumers are more 
sensitive to mean waiting time than to number of 
trips. Hence the a2 and a3 coefficients 
were assumed to be in the range of -o .15 to -0. 20, 
with a3 closer to the more negative extreme of 
the range than a2. 
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4. Finally, the elasticity of consumption with 
respect to hours that a station is opened was 
assumed to be relatively low and would be in the 
area of +0.10. 

In order to set ao, a point on the demand 
curve was selected that was assumed to simulate the 
non-gasoline-crisis situation. This value is 
denoted by an asterisk. Hence mean waiting time 
(µ*) was set to 6 min, x* to 30 L/visit, u* to 7.5 
L/vehicle per day, (P/m) * to 1000 vehicles/station, 
C* to $0. 26/L, and >- to 20 vehicles/h. This leads 
to a value for t* of 12.5 h/day and a a0 of 3.19. 

Similarly, in Equation 6 one can interpret a 0 
as approximately the average amount of gasoline a 
consumer would typically purchase if there were no 
crisis, and this could range from 19 to 38 L/visit. 
The remaining coefficients, a1 and a 2 , can 
both be expected to be positive. Remember that for 
the base-case (existing) conditions the number of 
hours the station is open (t*) is large and the 
expected waiting time in line (µ*) is small. A 
decrease in station hours would therefore be 
expected to lead to a decrease in refill level (x), 
mostly due to the uncertainty and schedule 
inflexibility that accompany reduced station hours. 
This requires a positive a1. 

However, as station hours decrease, waiting time 
increases and one would expect the amount purchased 
to increase, since the consumer would rather make 
fewer visits to the gasoline station to prevent 
waiting. This requires a positive a2. 

It is difficult to predict exactly what the 
values of a1 and a2 should be and, as a 
starting point, values were obtained subjectively. 
This was done by (a) constructing typical cases for 
the independent variables, (b) hypothesizing the 
likely response in x, and (c) fitting a1 and 
a 2 to those hypothesized responses. Note that 
subsequent sensitivity analysis on the values of the 
a' s indicated the model to be very insensitive to 
the chosen values. 

In order to arrive at final values for exogenous 
variables and the coefficients, each coefficient was 
varied iteratively, and the effects on the model 
were observed. Coefficients were selected such that 
a priori decisions regarding model behavior were not 
violated. (Given the exploratory nature of this 
model, the actual predicted values are not as 
important as the qualitative behavior of the model 
as a whole.) The final selection of coefficient 
values is shown in the list below. 

ao • 
a1 m 

a2 
a3 

3.19, 
-0.15, 
-0.18, 
-0.20, 

a4 m +0.07, 
19.00, ao 

a1 0.95, and 
a2 • 22.80. 

When they are set as in this list, the model behaves 
as follows: As allocations per station (q) decrease 
from the base-case values of 7600 L/day, 

1. The amount of gasoline purchased (x) initially 
drops, as the number of hours that stations are 
opened decreases; when supply (q) is low, there is 
some topping off and consequently x will be small 
but, as q becomes even smaller, people will want to 
buy more per visit in order to minimize the number 
of visits in all as the waiting time for each visit 
becomes excessive; 

2. The hours that stations are open (t) also 
decreases; 
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Figure 1. Wait time and purchase size 11 allocation varies for the do-nothing 
scenario. 
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Figure 2. Purchase size, station hours, and visits per week as allocation varies 
for the do-nothing scenario. 
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3. Mean waiting time (µ) increases; and 
4. The number of visits (n) decreases. 

Also, as cost increases, 

1. µ and x decrease and 
2. t increases slightly. 

POLICY ANALYSIS 

The model was designed so that it could be used to 
test the relative effects of various gasoline-supply 
policies, some of which were in effect during the 
gasoline crisis of spring 1979. Specifically, the 
tests include 

1. The raising of the price of gasoline, 
2. Minimum and maximum purchase plans, and 
3. Odd-even rationing. 

Other types of rationing (for example, coupon 
rationing) could not be tested due to their 
complexity. 

First, it is necessary to analyze what happens as 
the allocation per station (q) varies, particularly 
when no policy is in effect. Essentially, this is 
what happened during the recent crisis, before 
government intervention and, therefore, this can be 
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figure 3. Wait time per visit and purchase size as a function of station 
allocation for different prices per gallon. 
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Figures 1 and 2 depict what occurs as q 
decreases. As stated earlier, allocations of abOut 
7600 L/station per day are assumed to be the 
base-case or noncrisis situation. 

In Figure 1, as q decreases, mean waiting time 
per visit and total waiting time both begin to 
rise. At the same time, the amount of gasoline 
purchased drops, and in Figure 2 the number of 
visits and hours that a station is open both fall. 
Here, less gasoline is being purchased, less is 
being used, and waiting time increases. This seems 
to indicate that the topping-off phenomenon is 
simulated in this model. 

As supplies of gasoline become much lower, 
waiting time begins to increase drastically; hence, 
for every visit, consumers will want to buy as much 
gasoline as they can. Because less gasoline is 
being sold, the hours that a station is open 
continue to be less than in the base case. 
Conversely, as allocations per station increase over 
the base case, mean waiting time falls, more 
gasoline is used, and more is purchased per visit. 

Incre asing Pr ice o f Gasoline. 

One would expect that, as the price of gasoline 
increases, waiting time (µ) and the amount of 
gasoline purchased per visit (x) would decrease. 
This is indeed the case, as shown in Figure 3. If 
one examines the base-case situation where 7600 L 
are allocated per station, µ drops quickly as 
price increases. Gasoline purchases per visit do 
fall but not dramatically. Not shown in Figure 3 
for this example is that the number of visits per 
week and hours that stations are open bath increase 
but not enough to have a significant impact on the 
results. 

Also shown in Figure 3 is the impact of ~th 

changing price and allocation per station. As 
allocations decrease, the differences between the 
variables at different prices appear to diverge. In 
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Figure 4 . Wait time per visit and purchase size as a function of allocation and 
maximum and minimum purchase policies. 
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Figure 5. Wait time per week as allocation varies for maximum and minimum 
purchase policies. 
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other words, as 
decrease, µ and x 
is not entirely 
allocations fall, 

price increases and allocations 
become increasingly small. This 
intuitively obvious, but, as 

less gasoline is used, so this 

Figure 6. Visits per week as allocation varies for maximum and minimum 
purchase policies. 
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Figure 7. Time stations are open as q varies for maximum and minimum 
purchase policies. 
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fact combined with smaller purchases per visit .and 
increasing price cause µ to fall more than it 
would otherwise. 

Minimum and Maximum Purchase Policies 

During the recent gasoline crisis, numerous 
retailers and several governments instituted one 
form or another of maximum or minimum purchase plans 
in hopes that gasoline lines would become shorter. 
Such policies can be simulated by this model and 
compared with the do-nothing policy results. 
Figures 4-7 describe various aspects of this 
simulation for a maximum purchase plan of 19 L and 
minimum purchase plans of 30 and 38 L. 

Figure 4, which graphs the effects of this 
policy, is presented for later comparison with 
similar graphs for other policies. It shows that, 
at a given q, the least waiting time per visit is 
when a maximum plan of 19 L is in effect. This is 
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Figure 8. Wait time per week and purc:ha&e as allocation varies for the odd-even 
plan. 
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immediately counterintuitive, because one would 
expect that lines would be long because consumers 
would return frequently for more gasoline. On the 
contrary, one would expect the minimum purchase plan 
of 38 L to be the best. 

By comparing total waiting time and number of 
visits per week (Figures 5 and 6), the issue becomes 
more clear. Although there is little difference in 
the total waiting times for a given q, the maximum 
plan is worse than the minimum plans or the 
do-nothing approach. Although not graphed, this 
observation is more pronounced at extremely low 
allocations of gasoline. 

The final piece of evidence that places this 
issue in perspective is the hours per day that 
stations are open (Figure 7). It seems that waiting 
time per visit can be so low for the maximum 
purchase plan because drivers must make more visits 
per period than for other options. 

Of the three policies presented, the minimum 
purchase plan of 38 L seems to be most appropriate 
because it limits total waiting time and the hours 
stations must be open to a reasonable level under 
all allocation levels. 

Odd -Even Ration i ng 

Odd-even rationing is a method by which consumers 
may be barred from purchasing gasoline on a given 
day depending on a digit of their vehicle's license 
plate. Essentially, this means that, for any given 
consumer, stations are perceived to be open only 
half the total hours per day. This decrease in t 
(as perceived by each individual) induces smaller 
purchases per individual but also reduces queues at 
the station needed to reduce demand to the available 
supply. Given the parameters chosen for the model, 
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the net effect is a reduction of total wait time per 
week. 

The results of the model for different allocation 
levels are presented in Figure 8. 

Compa r ison of Policies 

Even though this model was estimated judgmentally, 
some guarded statements can be made with regard to 
the relative merits of the various policies tested. 

It is clear that the higher the price of 
gasoline, the shorter gasoline lines will be, but 
there is evidence from European experiences and from 
activity during the American gasoline crises that 
indicate that, in the short run, higher gasoline 
pr ices may not curtail consumption as much as was 
previously believed. In other words, the population 
does not necessarily have a constant elasticity of 
consumption with respect to price, as is assumed by 
this model. Therefore, the results of the price 
simulations must be examined with this thought in 
mind. 

If a policymaker were forced to choose among 
maximum or minimum purchase plans or odd-even 
rationing, the results of these simulations imply 
that odd-even rationing yields lower total waiting 
time. Given the political infeasibility of enormous 
short-run price changes and all else considered, the 
odd-even plan seems to be relatively better than the 
others tested with this model. 

FUTURE DIRECTIONS 

The model developed in this paper is a first attempt 
to represent the formation of gasoline lines as a 
result of the supply-demand interaction. Given the 
paucity of existing data, the first priority in 
improving the model is the collection of information 
on traveler behavior both before and during serious, 
short-run gasoline shortages. Such data, in the 
form of vehicle logs or traveler diaries, have been 
collected in the past under normal circumstances. 
Other information, such as measurements of q in the 
model, is easily collected. The key to obtaining 
such data during periods of shortage is to prepare 
for the data collection in anticipation of a future 
shortage and to implement the plan immediately on 
occurrence of a shortage. Such data would provide 
the basis for rigorous estimation of the demand 
function and the equation for x and would provide 
some greater assurance regarding the appropriateness 
of the chosen functional forms. 

A second area for potential extension of the 
model is disaggregation of the population. 
Different socioeconomic groups will be affected 
quite differently by various policies. The current 
model provides no insight into the incidence of the 
impacts. By either estimating different demand 
functions for different socioeconomic groups or 
incorporating socioeconomic variables (particularly 
income) into the demand equations, the relevant 
impacts could easily be forecast for different 
segments of the population. 

A third potential area for further work is the 
incorporation of dynamic effects into the model. In 
a situation that occurs as quickly as the formation 
of a gasoline line, people adjust dynamically to a 
rapidly changing environment. It is quite possible 
that some of the lines are the result of drivers' 
increasing the amount of gasoline they carry i n 
their tanks to levels greater than normal, thereby, 
in the short run, reducing dealers' inventories. 
Such effects would obviously be transitory, since 
each individual's shortage capacity is limited. It 
would be useful to be able to predict such responses 
over time and to better understand how they 
influence the length of queues. 
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Review of Analytical Models of Gasoline Demand During 

an Energy Emergency 

WILLIAM B. TYE 

This paper provides a framework for evaluating various proposals for reducing 
the costs of queueing for gasoline during energy shortages. Two types of 
proposals have been offered to address the problem: queue-management 
techniques, such as minimum or maximum purchase requirements, and 
demand-managment techniques, such as improved transit service or bans on 
weekend sales of gasoline. The paper starts with the presumption that three 
bodies of literature are relevant to the problem: (a) literature on wartime 
hoarding and speculative demand, (b) literature on congestion pricing, and (c) 
literature on inventory managment and transport cost trade-offs. Which of 
these bodies of literature is the dominant determinant of public behavior during 
gasoline shortages to a large degree determines the success of any proposed 
policy recommendation. For example, if the congestion cost imposed by wait· 
ing in line is necessary to equilibrate the total supply and demand for gasoline, 
queue-management techniques will be self-defeating, because reduced congas· 
tion costs only encourage more demand and reestablishment of the equilibrium. 
If speculative demand is a large facto~ in explaining shortages, controls on 
purchase size could reduce total demand, free up inventories in tanks for con· 
sumption, and reduce the length of queues. If the inventory cost-transport 
cost model prevails, lengthy queues will discourage speculative demand and 
lead to recommendations for demand management such as carpooling incen
tives and improved transit service. Without an adequate time-series data base 
to monitor the public's behavior during a crisis, a definitive policy recommen
dation is not possible and the debate will not be resolved. Based on the 
present state of knowledge, a combination of minimum purchase requirement 
and demand suppression (especially of the "carrot" variety through improved 
transit service and carpooling) is recommended. Even-odd plans do not have 
a sufficiently plausible conceptual rationale to make it likely that they will 
improve queueing costs materially. 

The paper first identifies behavioral principles 
that are relevant to the issue. It concludes with 
suggestions for future research. 

BEHAVIORAL PRINCIPLES RELEVANT TO EXPLAINING 
CONSUMER BEHAVIOR DURING AN ENERGY 
EMERGENCY 

Literature on the economics of demand provides three 
precedents for understanding how automobile drivers 
will respond to gasoline shortages. Before this 
literature is reviewed, however, note that the gaso
line queueing that we are examining is a relatively 
temporary phenomenon. Lines result from the domes
tic pr ice controls that prevent suppliers from tak
ing advantage of the shortage to raise prices. How
ever, the price at the pump is a weighted average 
price from various suppliers, designed to spread the 
effects of price controls evenly over suppliers and 

consumers. However, the consequence is that gaso
line lines are a signal to the Organization of Pe
troleum Exporting Countries (OPEC) that prices are 
too low. Experience has shown that world oil prices 
and domestic pump prices rise after a relatively 
short lag, and eventually prices are raised to elim
inate the queues. Any proposals to eliminate queues 
must recognize, therefore, that the cost will be 
large but temporary under current regulatory mecha
nisms. 

The first body of literature relevant to the is
sue is that on wartime hoarding and speculation. 
Keynes identified speculative demand as a major ele
ment of instability in a market economy OJ. The 
current price of a commodity and the history of 
pr i"ce changes create destabilizing expectations of 
further price changes. Where there is great uncer
tainty regarding the future terms on which a com
modity is available, this speculative demand leads 
to boom and bust cycles. 

However, in the case of gasoline demand, there is 
a limit to the magnitude of speculative demand 
caused by the size of a gasoline tank. Speculative 
demand can be affected by "topping off," but a limit 
is imposed by the size of the tank and the increase 
in waiting time per gallon caused by more frequent 
fill-ups. Once such demand is satisfied, there may 
be a tendency for lines and expectations to stabi
lize, which will lead to tank inventory reductions 
and actual decreases in lines. Any theory of demand 
must, therefore, distinguish between gasoline demand 
for consumption and demand for hoarding and between 
purchase decisions and consumption decisions. 

The second body of relevant literature is that on 
congestion pricing (2,3). An external economy is 
imposed by congestio-;;-, - which arises from the fact 
that each individual who joins a queue does not take 
into account the fact that service for that individ
ual imposes costs on other users. Depending on the 
circumstances, an extra individual who joins a con
gested facility may impose additional waiting time 
on other users that is many times more than his or 
her own waiting time. This additional waiting time 
is a social cost, or deadweight loss, not offset by 
benefits to any users. Therefore, any proposals to 
discourage use of congested facilities must account 
for the benefits of reduced congestion on other 




