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forecasting has not progressed to the stage at which 
the behavior of individuals can be rationalized. 
Forecasting and modeling is still a crude process. 
It has been said that a forecast model is a muddled 
set of assumptions on an abstract piece of behavior. 

The link model calibrated on the 49 links from 
the seven Maritime Province airports can be 
considered to produce marginally acceptable 
results. The statistical parameters associated with 
the forecasting moael were significant at the 95 
percent level. 

The model, although not recommended for use irt a 
detailed planning function, can be considered an 
acceptable departure point for the development of 
general aviation forecasting techniques for the 
Canadian Air Transport environment. The data 
supplied by Statistics Canada should be made 
available to other researchers so that development 
in this area can continue. The procedures for 
estimating commercial aviation activity are 
reasonably well advanced, and similar planning tools 
must become available for general aviation to enable 
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the total air-transport mode to be evaluated on an 
ongoing basis. 
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Air Traffic Control Network-Planning Model Based on 

Second-Order Markov Chains 

NEIL W. POLHEMUS 

A method designed to assess the impact of increased air traffic demand on flow 
rates in a network of en route air traffic control sectors is described. Given 
projected arrival and departure rates at airports within a given region, a second
order Markov-chain model is employed that has transition probabilities esti
mated from historical data. The technique is designed to serve as a planning 
tool and is demonstrated by using data from the New York Air Route Traffic 
Control Center. 

The primary purpose of air traffic control (ATC) 
systems is to ensure the safe and efficient movement 
of air traffic. Given projected increases in 
traffic levels, it is important that a method be 
developed to predict the impact of additional demand 
on the system. In particular, the need to 
restructure existing sector boundaries depends on 
the distribution of flow in the current system. 

As an example of the structure of ATC networks, 
the New York Air Route Traffic Control Center 
(ARTCC) consists of 32 sectors that cover the entire 
states of New Jersey and Delaware and parts of New 
York, Pennsylvania, Connecticut, and Maryland. The 
center controls en route traffic by dividing the 
low- and high-altitude airspace into sectors, each 
of which is handled by an individual controller who 
has an assigned communications frequency. Figure 1 
shows the orientation of the low-altitude sectors. 
The high-altitude sectors are configured similarly 
and control traffic at or above 24 000 ft. 

This paper describes a method designed to assess 
the impact of specified demand patterns on flow in 
the system. The approach is based on describing the 
sequences of sectors traversed by aircraft as 
second-order Markov chains. Although it is an 
approximation, the model provides a reasonable 
characterization of general system flow patterns 
with a simple-enough structure to allow for adequate 
parameter estimates. The need for a second-order 
Markov chain for terminal areas rather than a 

first-order chain as proposed earlier (!,) is due to 
a lack of unidirectionality in the flow through many 
of the en route sectors. 

The paper begins with a general formulation of 
the ATC system as a directed network and then 
considers characterizations of traffic generation 
and sector sequences. The use of the method in 
predicting system flows is discussed. Throughout, 
the techniques described are applied to the New York 
ARTCC. 

NETWORK STRUCTURE 

To represent an ATC system, let the sectors be rep-

Figure 1. New York ARTCC low-altitude sector control boundaries. 
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resented by the set of nodes { Nj' j = 1,2, ••• , system, it is convenient to construct a super source 
m}. Feasible movement among the sectors is char- (s) and a super sink (t) for the point of entry and 
acterized by a set of arcs (A) between adjacent exit, respectively, for all traffic in the network. 
sectors. If we adopt the notation used by Ford and Arcs are then constructed from s to the sectors in 
Fulkerson (l_), Potts and Oliver (_1), and others, the node N and from N to t. The actual source of 
system is defined as the network G = [NiA]. traffic, however, is one of the airports in the 

For a network containing m sectors, A could region or an en route sector in another center. To 
consist of as many as m(m - 1) arcs. However, for represent the actual sources, we may construct the 
most ATC systems only a very small subset of the set of sources {si, i = 1, 2, ... , ms} and, 
possible arcs ever exists, since most pairs of in a similar manner, a set of sinks for the termini 
sectors are not physically adjacent. To specify {t, k = 1, 2, ... , mt}· This formulation is 

which arcs are present in a network, a node-node illustrated in Figure 3. 

incidence matrix D of dimension (m x m) may be In the New York center, traffic was observed 

defined with element departing from and arriving at 12 separate airports 
in the region. During a 2-h sample, there were (a) 

dij = ~~ 
if flow is possible from node i to node j 253 aircraft departures from airports within the 

region covered by the New York en route sectors, (b) 
otherwise (!) 238 aircraft arrivals at airports within the region, 

and (c) additional en route traffic that had both 

The node-node incidence matrix for the 32-sector New OVU.l."-''C 

__ ... .... ___ .,: -··- -··.a.-.:.:1_ ~'-- region. 
,, __ 

&.k.: .... 
QU\.I \..'CLHU .. UUQ VU'-D.L\.l'C \..U'C ,1.:v.1.. .... U.LD 

York en route system (Figure 2) consists of 152 arcs. system, ms = mt = 13, and there is one source 
To represent arrivals to and departures from the and one terminus for each airport and an additional 

Figure 2. Node-node incidence matrix for New York en route network. 
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1181 0 0 0 0 0 0 0 0 , 

Figure 3. Schematic diagram of en route network 
traffic flow. 

0 
0 
0 
0 
0 
0 
0 , 
0 
0 , 
1 
1 
0 
0 
0 
0 
0 
n 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 0 , 0 
0 0 0 0 
0 0 0 0 
0 0 , 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
1 1 0 0 
0 1 0 0 
0 0 0 0 
n 0 0 1 
0 0 1 0 
0 0 1 1 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 1 1 
0 0 0 0 
1 1 , 0 
1 1 0 0 
0 , 0 0 
0 0 1 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
1 , 0 0 
0 0 0 0 
0 0 0 0 

lnroute ••ctor1 
in other cent ere 

, 0 , 1 
0 0 
0 0 
0 0 
0 0 
0 1 
0 0 
0 0 
0 0 
0 0 
0 0 , 0 , 0 
0 0 
n 1 
0 , 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
1 0 
0 0 
n 1 
0 0 , 0 
n 0 
0 0 
0 0 
0 0 

Super· 
source 

s 

0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 , 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
1 
0 

Departure controller• at 
•irport• la "·'· reaion 

0 0 0 
0 0 0 
0 0 0 , 0 0 
0 0 0 
0 0 0 , 0 0 
0 0 0 
1 0 0 
0 0 1 
0 0 0 
0 0 1 
0 1 0 
0 1 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 D 1 
·o 1 0 
0 1 1 
0 0 1 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 .o 
0 0 1 
0 0 0 
0 0 0 , 0 0 

0 0 0 0 
0 0 0 0 , 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 , 1 0 
0 0 0 0 
1 1 0 0 
0 1 0 0 
0 , 0 0 , 0 0 1 
0 0 0 0 
0 0 'O 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
1 0 0 0 
1 , 0 0 
0 , 0 , 
1 , 1 0 
0 1 0 0 
1 0 0 1 
0 0 0 0 
0 0 0 0 
0 0 0 , 
0 0 0 1 , 1 0 , 
0 0 1 0 
0 0 0 0 
0 0 0 0 

Hi9h oltitude 

HI 

Low ollitude 
LT,LE 

Enroute sectors 

0 
0 
0 
0 , 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 , 
0 
0 
0 
0 
0 
0 

0 n , 
0 0 , 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
1 0 0 
0 0 0 
0 0 0 
0 1 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
1 0 0 
1 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 1 1 
1 0 0 
0 0 , 
0 0 0 
0 1 1 
0 0 0 
0 0 n 
0 0 0 
1 0 0 

0 0 
n 0 
0 0 
0 0 
0 0 
0 0 
0 0 
1 0 
0 0 
0 0 
0 0 
1 0 , 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 , 0 
1 0 
0 , , , 
1 0 
0 0 
0 0 
0 0 
0 0 
0 1 , 0 
0 0 
0 0 

Super
sink 

t 

0 0 
0 0 
0 0 
0 0 
0 0 
0 0 , , 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 , 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 , 0 
0 , 
0 0 
0 0 
0 0 
0 , 
0 , 
0 0 

lnroute aector• 
in other c1at1r1 

Arrival controll•r• at 
airport• in l.T. r111on 



Transportation Research Record 768 

Table 1. Traffic to and from airports within New York region. 

Airport Code 

Newark EWR 
John F. Kennedy JFK 
LaGuardia LGA 
Philadelphia PHL 
Atlantic City ACY 
Wilmington ILG 
Wilkes-Barre AVP 
Binghamton BGM 
Harrisburg HAR 
Allentown ABE 
Elmira ELM 
Westchester HPN 
Total 

a Aircraft per 2-h sample. 

Traffic Through En Route 
Network" 

Departures Arrivals 

53 40 
52 64 
58 56 
36 40 

9 5 
5 9 
3 2 
3 5 

12 0 
8 3 
7 3 

_i 11 
253 238 

source and terminus for en route sectors outside the 
New York center. Table l is a summary of traffic to 
and from airports within the region. 

To characterize flow through the network, we then 
need to determine the following: 

1. The manner in which aircraft are generated at 
the various sources, 

2. The arcs over which they enter the en route 
network, 

3. The sequence of sectors through which they 
proceed, and 

4. Their final termini. 

Given a finite set of data, achievement of such a 
characterization in a meaningful and consistent 
fashion raises various problems. In particular, one 
must ensure that the flow-conservation equations are 
satisfied yet allow for manipulation of system input 
at a sufficiently macroscopic level to provide a 
usable tool for the decision maker. The technique 
described below is designed to generate meaningful 
predictions of system flows in a manner suitable for 
planning purposes. 

TRAFFIC SOURCES 

To characterize sources 
let Ai be the rate 
source si • If 

of traffic in the network, 
of traffic generated at 

Pi= prob (aircraft enters network over arc (s,Nj)] 

where prob represents probability and if 

Pili =prob [aircraft enters network over arc 
(s,Nj) given generation at source i] 

then 

(2) 

(3) 

(4) 

For specified flow rates Ai• estimation of the 
entry-arc ~low rates f(s,Nj). requires estimation 
of the condi'tlonal entry probabilities P j 1 i • 

To estimate these probabilities from a finite set 
of data, define a source-node entry count matrix C 
of dimension (m8 x m) with elements 

Cij = number of aircraft generated at source s; that entered 

sector Ni (5) 

Then the total number of aircraft generated at 
source si is given by 
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m 

ci. =j~l Cij i::;; 1, 2, ... , m8 (6) 

and the number of aircraft that enter the network 
over arc (s,Nj) is given by 

m, 
c.i =;~ c;i j = I, 2, . .. , m (7) 

The top 13 rows of Figure 4 show part of a matrix 
determined from the New York sample period in which 
000 indicates entry from en route sectors in another 
center. The totals ci. and c.j are given in the 
last column and row of the figure. 

If the selection of entry sector Nj for the 
arrivals from source i is independent, the prob
abilities Pjii are parameters of a multinomial 
distribution. The maximum-likel ihood es timates are 
given by 

(8) 

and the estimated entry-arc flow rates by 

(9) 

To test the assumption of independence in selec
tion of entry sector, the selections of consecutive 
departures from the four major airports in the re
gion were examined. By using a technique described 
by Anderson and Goodman (.!), x'-test statistics 
indicated significant violation of the assumption 
only at LGA, at which successive departures tended 
to alternate between sectors 461 and 462. 

Entry of aircraft to the network is completely 
deter~ined by the set {Pjii1 i = 1, ~· ••. , 
m8 , J = 1, 2, ••• , m}. The movement of aircraft 
after they enter the initial sector is the subject 
of the next section. 

CHARACTERIZING SECTOR SEQUENCES 

As aircraft move through an ATC system, they pass 
from sector to sector (from node to node) in 
sequences affected by their origin and destination. 
In a network of many sectors, the number of possible 
sequences is enormous, which makes the specification 
of the relative frequencies of all such sequences 
prohibitive. In order to reduce the complexity of 
the problem and still maintain the general patterns 
of network flow, an approach based on Markov chains 
will be presented. 

To state the problem formally, consider a Markov 
chain with M = m8 + m + mt states, where the 
states represent the m8 -sources, m-en route sec
tors, and mt-sinks, numbered in that order. Fur
ther, let {sn(h), h = O, 1, 2, ••• } be the se
quence of sectors through which the nth aircraft 
passes, in which 

s.,(0) = i if nth aircraft is departure from i th source 

s.,(h) = m, + j if h th sector entered by 

nth aircraft is sector j I < h .; m 0 

s0 (h) = m, + m + k if nth aircraft is 

arrival at k th sink h > m0 

where IBn is the number of network sectors 
sequence for the nth aircraft. Then 
is a realization from a Markov chain of 
order. 

(10) 

(11) 

(12) 

in the 
{Sn (')} 
unknown 

In the above formulation, the nodes and sources 
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Figure 4 . Counts of departures, arrivals, and transitions in New EWR JPK LGA P HL lCJ ILG AVP BG ft HAR ~BE l'!Lft HPN QOO 451 453 TOTAL 

York network. UR 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 53 
Jn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 52 
LGA 0 J 0 0 0 0 0 0 0 0 0 0 0 0 0 SB 
PRL 0 0 0 0 0 0 0 0 0 0 0 0 0 22 1 36 
lCY 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 
JLG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 5 
IV P 0 ~ 0 0 0 0 0 0 0 0 0 0 0 0 0 J 
BG ft 0 0 0 0 0 0 0 0 0 0 0 0 c 0 0 3 
Rl~ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 
&BE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 
EL ft 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 
BP~ 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 7 
000 0 0 0 0 0 0 0 0 0 0 o. 0 0 6 28 373 
451 0 0 0 0 0 1 1 0 0 0 0 0 24 0 ) 55 
45] 0 0 0 5 1 1 0 0 0 0 0 0 6 2 0 55 
454 , 0 18 7 0 0 0 0 0 0 0 0 ) 20 0 55 
455 JO 0 3 0 0 0 0 0 0 0 0 0 4 3 0 42 
456 0 1a 0 0 0 0 0 0 0 0 0 0 ] 2 0 42 
q57 0 6 16 0 0 0 0 0 0 0 0 0 l 0 0 26 
458 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 50 
459 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 32 
460 0 29 0 0 0 0 0 0 0 0 0 0 15 0 0 47 
461 4 J 0 0 0 0 0 0 0 0 0 0 1 0 0 SJ 
Q~2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 
463 I) 0 0 0 0 0 0 0 0 0 0 0 , 0 0 52 
116~ 0 u 0 0 0 0 0 0 0 2 0 0 4 1 0 72 
465 0 0 0 0 0 0 0 0 0 0 0 0 17 0 0 31 
466 0 0 0 20 0 1 0 0 0 0 0 0 18 l 0 56 
467 0 0 0 8 3 5 0 0 0 0 0 0 18 0 9 56 
468 0 0 0 0 1 1 0 0 0 0 0 0 24 0 1 40 
469 0 0 0 0 0 0 0 0 0 0 0 0 15 0 0 2A 
Q70 0 0 0 0 0 0 , 0 0 0 2 0 18 0 0 42 
qi 1 0 0 0 0 0 0 0 5 0 0 1 0 11 0 0 38 
q72 5 0 0 0 0 0 0 0 0 , 0 0 3 0 0 65 
Pl 0 0 1 0 0 0 0 0 0 0 0 6 1l 0 0 65 
., 4 0 0 0 0 0 0 0 0 0 0 0 ] 21 0 0 43 
'75 0 0 0 0 0 0 0 0 0 0 0 0 11 0 0 65 
476 0 0 0 0 0 0 0 0 0 0 0 0 ] 0 12 36 
477 0 0 0 0 0 0 0 0 0 0 0 0 16 0 0 52 
478 0 0 0 0 0 0 0 0 0 0 0 0 H 0 0 36 
'79 0 0 0 0 0 0 0 0 0 0 0 0 27 0 0 48 
'80 0 0 0 0 0 0 0 0 0 0 0 0 41 0 0 75 
481 0 0 18 0 0 0 0 0 0 0 0 2 5 0 0 56 
482 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 18 
'83 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 29 

TOTAL 40 64 56 40 5 2 5 0 3 J 11 373 59 56 2126 

are transient states, whereas the sinks are Piik = prob[sn(h) = kls0 (h - I)= j , s0 (h - 2) =ii (18) 
absorbing. Further, the nodes form a communicating 
class that is accessible from the sources, but the Then, if the sequences are zero-order Markov chains, 
sources (non return states) are not accessible from 
any states in the chain. The characterization of Pk = Pik = Piik (19) 
the sequences will thus involve state transition 
matrices of very special form. Although all For first-order Markov chains, 
sequences begin in one of the source states, the 
probability of ever returning to those states is Pk * Pik = Piik (20) 
zero. In describing the sequences, we state first 
the initial distribution of sn(O) and then discuss For second-order chains, 
the state-transition probabilities. 

The initial distribution of Sn (0) has parameter Pk *Pik *Piik (21) 

set 
The extension to higher orders is direct. 

9 = p,1 /X, , A. 2 /A,, ... , Xm ,/X,} (13) In studying sequences of sectors, it is therefore 
necessary to determine both the order of the chain 

where and all relevant transition probabilities. This is 
most easily handled by defining a series of 

prob[s0 (0) =ii = XJX, (14) transition matrices P(l), p(2), where P(q), the ... , 
q-step transition matrix, has element 

ms 
i~I A;= }.., (15) PW)= prob (sn(h) = kls0 (h-q) =ii (22) 

Thus the relative generation rates at the sources For a zero-order Markov chain, 
determine the probability distribution for Sn(O) 
in a natural way. p(q) = [P;kl Pik =Pk (23) 

To determine the movement of aircraft through the 
network, suppose that the sector sequences For first-order Markov chains, 
{Sn(•)} can be regarded as realizations of a 
Markov chain of order q. Then the distribution of p(q) = [p(l)lq (24) 
Sn(h) depends on the history of the sequence only 
through Sn(h - 1), Sn(h - 2), ... , and Of particular interest are both the limiting matrix, 
Sn (h - q). To be more expl.ic i t, let 

Pk= prob[s0 (h) =kl (16) 
P~ =JimP(q) (25) 

q•~ 

Pik = prob(sn(h) = klsn(h - I)= ii (17) which can be used to determine the distribution of 
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Figure 5. TransitiQll-count inatrix for seetor 451. 
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Figure 6. Plot of conditional uncertllinti~s in sector ~ equvnces. 
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exits from the system, given the entry sector, and 
the total-flow matrix 

q 

F(q) = k ;>.,p(r) 1 

r= 1 __. (26) 

which measures the 
sectors throughout 

impact of 
the network 

entries on 
given flow 

vector ·>- ~ (>. 1, >- 21 o, o, 
... , 0) of dimension (1 x. M). 

Higher-step transition Ola trices determine the 
accessibility · of sectors in the network. Since all 
flow originates at a source ~d ends at a sink, the 
only elements of the matrix that do not converge to 
zero as q bec0111es large are those that cor~espond to 
the source rows and sink columns. Let the limiting 
values of these elements be given by 

e·k=limp!ql k-m,-m i=l,2, ... ,m, 
I q~oo I 

Then the sink-attraction rates µ1 , µ2, 
µm are related to the source-generation rates by 

t 
ms 

µk = ~ ?ieik k = I~ 2, . . ., m, (28) 

This link between entry artd exit rates is an 
important consideration in attempting to esti mate 
system flows, given proje~ted levels of both 
arrivals and departures at airports in the region. 
It is discussed more fully in the next section. 

The problem of estimating transition 
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probabilities in Markov chains has been studied by 
several authors (!-~). Suppose that there are 
available records of c independent sector sequences, 
each of which is assumed to be a random observation 
from a qth-order Markov chain with M states. Let 
njk be t he number o f t imes an aircraft enters 
state k fr om state j , " ij k be the. number o f times 
an aircraft enters state k from state j after it has 
entered state j from state i, and so forth. If we 
assume stationary transition probabilities, n · k 
forms a set of statistics sufficient for t~e 
state-transition probabilities. For a second-order 
Markov chain , nijk is sufficient . The results can 
be generalized to highe r-or der chains. 

The maximum-likelihood estimates of the transi
tion probabilities depend on the order of the Markov 
chain. For a second-order chain, sn(O) and 
sn(l) are assumed to be nonrandom, whereas 
sn (kl, k ~ 2, are assumed to be random vari
ables. Then the maximum-likelihood estimates of the 
transition probabilities in Equations 16-18 are 
given by 

M 

Piik = nijk/~ 1%1 (29) 

(30) 

MM MM M 

P- = k 1: n .. k/k L L n··1 
k i=l j=I IJ i=l j=l l=l tj 

(3 1) 

Note that, since sn(O) and sn(l) are assumed to 
be nonrandom, the estimates of the 
probabili t ies involve summations over 
than the direct us e of njk and nk 
are not eq uiva lent) . 

transition 
nijk rather 

(the results 

For the New York en route network, transition
count matrices · t hat use nijk were obtained for 
each of the 32 s ec tors. Figure 5 is the matrix ob
tained for one of the sectors. The sector shown was 
evidently handling traffic that departed from Phila
delphia (PHL) • 

To determine the order of Markov chain ap
propriate for a given set of data, a likelihood
ratio test was derived by Anderson and Goodman (!). 
The technique, however, can be applied effectively 
to ATC sector sequences only if the number of 
sectors is small and the number of observed sector 
sequences is quite large. For other situations, a 
graphical technique based on information theory 
given by Chatfield (5) (which can be related to the 
likelihood-ratio test) is all that the data will 
support. The technique involves plotting the 
conditional uncertainties about the next sector that 
an aircraft will enter if we are only given knowl
edge of its cur rent sector, of the previous sector, 
of the two previous sectors, and so forth. The re
duction in conditional uncertainties as more and 
more of the past is known helps to indicate the 
order of Markov chain necessary to characterize the 
sequences. 

Figure 6 is a plot of the estimated conditional 
uncertainties in the sector sequences made by using 
all observed quadruplets in the sample. From the 
New York data, N4 = 777 quadruplets were 
tabulated. The following formulas were used to 
calculate the conditional uncertainties: 

Ho = log44 ( 44 states in chain) 

H1 = logN4 - N41 
kni. • . logni. . . 

H2 = N;j' (4 ni ... logni ... - ~ nii .. log Ojj . .) 
I 1,J 

(32) 

(33) 

(34) 
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Table 2. Specified source·generation rates and sink·attraction rates observed 
and computed by model, for airports. 

Sink-Attraction Rate• 
Specified Source-

Airport Generation Rate• Computed Observed 

EWR 26.5 20.6 20.0 
JFK 26.0 38.5 32.0 
LGA 29.0 29.8 28.0 
PHL 18.0 20.8 20.0 
ACY 4.5 2.8 2.5 
JLG 2.5 5.3 4.5 
AVP 1.5 I.I 1.0 
BGM 1.5 3.3 2.5 
HAR 6.0 0.0 0.0 
ABE 4.0 1.6 1.5 
ELM 3.5 1.6 1.5 
HPN 3.5 5.3 5.5 
000 ~~ 182.3 !_il_l!_,_~ 
'T' -~~ 1 'Jt')I'\ 313.C -;,nc c 
•VHll .J.1.J,V 

8Aircraft per hour. 

Table 3. Observed and computed sector·flow rates computed by model, for 
sectors. 

Sector-Flow Rate• Sector-Flow Rate' 

Sector Computed Observed Sector Computed Observed 

451 29.5 27.5 469 13.9 !4.0 
453 28. l 27.5 470 22.7 21.0 
454 29.3 27.5 471 24.3 19.0 
455 20.l 21.0 472 34.3 32.5 
456 21.9 21.0 473 32.0 32.5 
457 12.8 13.0 474 21.3 21.5 
458 23.5 25.0 475 33.5 32.5 
459 15.2 16.0 476 19.4 18.0 
460 25.1 23.5 477 24.8 26.0 
461 25.5 26.5 478 18.l 18.0 
462 20.8 20.0 479 26.0 24.0 
463 25.6 26.0 480 38.0 37.5 
464 36.9 36.0 481 26.7 28.0 
465 13.4 15.5 482 7.8 9.0 
466 31.0 28.0 483 17. l 14.5 
467 28.4 28.0 Total 765.9 750.0 
468 18.9 20.0 

8 Aircraft per hour. 

HJ= N41 (~"ii·. logn;j .. --~kniik . logn;jk.) 
1,J 1,J, 

(35) 

(36) 

The sharp drop from Ho to H2 shows the 
importance of knowing the current sector when 
determining the next. The drop from H2 t.o H3 is 
almost as sharp, which indicates significant 
information in the previous sector. The drop from 
H3 to H4 may or may not be significant, but it 
does not appear to be so important as the earlier 
drops. No rigorous statistical tests were performed 
because of the large number of states in the chain 
and the consequently small number of counts for all 
observed pairs, triplets, and higher sequences 
during the 2-h sample period. 

On the basis of the above analysis, it appears 
that second-order Markov chains are sufficient to 
describe the patterns observed in the sector 
sequences. The maximum-likelihood estimates of 
Pijk can thus all be developed from the 
transition-count matrices by means of 

0 

Piik = n;jk/1~1 n;j1 (37) 
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where c is the number of columns in the matrix. 
Traffic in the network is then completely 

described by arrival rates Ai' conditional entry 
probabilities Pj ii • and t r a nsition probabi lities 
Pi · k. The next section conside rs the use of such 
a ~ormulation in pred icting network flow patterns. 

APPLICATION OF MODEL 

To use the above method to predict sector flows, the 
arrival-rate parameters Ai are specified and an 

arc-flow matrix F(l)° of dimension (M x M) is formed 
from Equation 26 with M = ms + m + mt· The 
elements of the matrix are 

~ p· . A· {i = I, 2, .. ., m 
~I)= J-m,11 • i=m, +l,m,+2,. . .,m,+m 

, 0 othctwi~e (38) 

After q transitions, the arc flows are given by 

fW>=~1 ·fft 1 >Piik j=l,2, .. .,M 

k= 1,2, .. ., M (39) 

After many transitions, 

lim rfi'!) = { µk-m s _ m j = k = m5 + m + I , m, + m + 2, . . ., m, + m + m1 
q.~ J 0 otherwise ( 40) 

In other words, all flow eventually reaches and 
remains in one of the sinks. Further, total sector 
flows are given by 

q M 
f. = lim ~ ~ fir> form,< j .; m5 + m (41) 
J q .. oo r=l i=l IJ 

Tables 2 and 3 show the observed sink-attraction 
and sector-flow rates computed by the above method 
with source-generation rates Ai set equal to 
that estimated from the sample data . Good 
correspondence between the observed and computed 
rates resulted. After q • 10 iterations, 99.99 
percent of the flow had reached a sink and there was 
little change in computed rates beyond that point. 
Any of various stopping criteria could be used to 
stop the iterative process. 

To demonstrate the use of the model as a planning 
tool, the rate of traffic that departed from Newark 
(EWR) was increased by 50 percent, which yielded the 
computed flow rates shown in Tables 4 and 5. 
Increases in sector-flow rates of more than 10 
percent occurred in sectors 454, 472, and 4BO. 
Although most of the additional traffic terminated 
in the en route sink, a certain proportion became 

Table 4. Flow rates for EWR departures increased by 50 percent, for airports. 

Specified Source- Computed Sink· Percentage 
Airport Generation Rate8 Attraction Rate" ofChangeb 

EWR 39.75 20.6 0.2 
JFK 26.0 38.6 0.3 
LGA 29.0 29.9 0.5 
PHL 18.0 21.4 2.7 
ACY 4.5 2.9 4 .2 
ILG 2.5 5.3 0.1 
AVP 1.5 I.I 0.0 
BGM 1.5 3.6 8.2 
HAR 6.0 0.0 0.0 
ABE 4.0 1.6 4.6 
ELM 3.5 1.6 0.0 
HPN 3.5 5.6 4.7 
000 186.6 194.1 6.4 
Total 326.3 326.3 4 .2 

a Aircraft per hour. bCompered with computed rates in Table 2. 
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Table 5. Flow rates for EWR departures increased by 50 percent, for sectors. 

Computed 
Sector-Flow 

Sector Rate• 

451 31.7 
453 28.3 
454 33.9 
455 20.2 
456 23.0 
457 12.8 
458 23.6 
459 15.2 
460 25.2 
461 28.0 
462 21.3 
463 26.4 
464 38.0 
465 14.0 
466 32.0 
467 28.6 

Percentage 
of 
Changeb 

7.6 
0.9 

15.6 
0.2 
5.1 
0.0 
0.2 
0.0 
0.4 
9.8 
2.4 
3.1 
2.8 
5.1 
3.3 
0.7 

Sector 

468 
469 
470 
471 
472 
473 
474 
475 
476 
477 
478 
479 
480 
481 
482 
483 

Computed Percentage 
Sector-Flow of 
Rate• Changeb 

18.9 0.0 
14.2 2.3 
23.6 4.1 
24.7 I. 7 
41.3 20.4 
33.5 4.7 
21.8 2.3 
36.8 9.7 
20.5 5.8 
25.4 2.6 
19.7 8.5 
26.1 0.5 
42.2 11.2 
26.9 0.5 

7.8 0.0 
17.6 2.5 

a Aircraft per hour. bCompared with computed rates in Table 3. 

Table 6. Results of combined forward and backward analyses, for airports . 

Target Rate• Model-Specified Rate• 
Source 
and Source Sink Source Sink 
Sink Generation Attraction Generation Attraction 

EWR 26.5 20.0 13.11 19.53 
JFK 26.0 32.0 12.22 12.28 
LGA 29.0 28.0 14.04 12.77 
PHL 18.0 20.0 9.62 9.39 
ACY 4.5 2.5 2.43 1.06 
ILG 2.5 4.5 1.42 1.81 
AVP 1.5 1.0 0.65 0.45 
BGM 1.5 2.5 0.79 0.83 
HAR 6.0 0.0 3.24 0.00 
ABE 4.0 1.5 1.54 0.69 
ELM 3.5 1.5 1.79 0.68 
HPN 3.5 5.5 1.71 2.80 
000 179.0 186.5 95.69 95.00 
Total 305.5 305.5 158.25 147.29 

6 Aircraft per hour. 

arrivals at other airports in the region. Although 
this is consistent with the observed behavior of the 
system, it points out the interdependencies between 
source-generation rates and sink-attraction rates. 

Although departure rates from airports can be 
easily manipulated, given the above formulation, 
arrival rates cannot. Given a single source for all 
entries from outside the region, it is not possible 
to set the arrival rate at each of the airports. 
However, if the role of sources and sinks is 
reversed and the network is run backward, the 
sink-attraction rates (µ k) can be set as desired 
and the source-generation rates determined from the 
analysis. 

To perform a backward analysis, the following 
adjustments are necessary. Conditional exit 
probabilities must be estimated by 

(42) 

where cjk is the number of aircraft attracted to 
sink tk directly from sector Nj. Transition 
probabilities must be estimated by 

c 

Piik = n1jk/~1 n1jk 

where c is the number of 
count matrix for sector j. 
must be estimated by 

(43) 

rows in the transition
The initial flow vector 
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Table 7. Results of combined forward and backward analyses, for sectors. 

Sector-Flow Rate• Sector-Flow Rate• 

Sector Computed Observed Sector Computed Observed 

451 29.1 27.5 468 19.3 20.0 
443 27.3 27.5 469 14.4 14.0 
454 27.6 27.5 470 21.6 21.0 
455 20.6 21.0 471 21.1 19.0 
456 19.7 21.0 472 34.1 32.5 
457 12.4 13.0 473 30.9 32.5 
458 24.1 25.0 474 20.5 21.5 
459 16.5 16.0 475 32.7 32.5 
460 22.9 23.5 476 17.6 18.0 
461 25.5 26.5 477 24.6 26.0 
462 19.4 20.0 478 16.4 18.0 
463 24.8 26.0 479 25.3 24.0 
464 36.0 36.0 480 37.0 37.5 
465 14.4 15.5 481 26.0 28.0 
466 29.4 28.0 482 6.8 9.0 
467 28.0 28.0 483 14.7 14.5 

a Aircraft per hour~ 

PJ·ms/k {j :m, + 1,m, + 2, ... ,m, +m 
fR) = k - I, 2, ... , m1 

0 otherwise (44) 

(45) 

In practice, a decision maker who wishes to 
predict sector flows will most likely want to 
specify both arrival rates and departure rates. To 
do so, the forward and backward analyses may be 
combined. Suppose the desired (target) 
source-generation and sink-attraction rates are 
{;>.. ~t~ (t) 

l. i=l,2, ••• ,1\}, and {µk, k=l, 

2, ••• ,mt}· Then the total generations and 
attractions that result from the sum of the forward 
and backward analyses will equal their targeted 

values if the model analysis rates A (s) and µ (s) 
i k 

are set to satisfy 

m I 

µ~) + ~>f•) eik (forward)= µ~t) k =I, 2, ... , m1 

m, 
>!s) + .., ,,, e· (backward)=' (I) 1· - I 2 m 
., k.0:{"" ·~ "• - ' ' ... , s 

(46) 

(47) 

in which eik is determined from Equation 27 for 
the forward analysis and in a similar manner for the 
backward analysis. Note that, since the above set 
of equations does not have a unique solution, only 
ms + mt - 1 rates can be specified separately; 
the other rate is determined by the fact that the 
sum of the source-generation rates must equal the 
sum of the sink-attraction rates. 

Tables 6 and 7 summarize the results of applying 
the above procedure to the New York center at the 
observed source-generation and sink-attraction rates 
(the en route source rate has been adjusted down to 

make the sum of the source and sink rates equal) • 
Again, close agreement with observed sector flows is 
evident. To predict sector flows under projected 
increased traffic rates in and out of the region, 
the decision maker need only select new target 
values and repeat the above procedure. 

CONCLUSION 

The characterization of ATC network flows by using 
second-order Markov chains provides a technique for 
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predicting sector flows that, although it is 
relatively easy to apply, can readily indicate 
potential areas of excess traffic loading. Based on 
empirical data, the method preserves general 
patterns of network flow without specifying the 
actual geometry of each aircraft's flight. For ATC 
network planners, such a method for predicting 
traffic distribution could provide a useful tool for 
ensuring safe and efficient movement of air traffic. 
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Analyzing Ticket-Choice Decisions of Air Travelers 

SCOTT D. NASON 

This paper examines the nature of the problem that faces air travelers con· 
fronted with choosing from among a variety of air fares, each associated with 
different service characteristics, and the problem of forecasting these decisions. 
A theoretical framework is developed that views the problem at the level of 
the individual traveler; the ticket-type choice is expressed in terms of the in
dividual's socioeconomic characteristics, the characteristics of the trip in ques
tion, and the level of service associated with each available alternative. Logit 
models are suggested as the preferable functional form on the basis of theoreti
cal and computational grounds, and the properties of logit models are briefly 
described. A pilot application of the method is presented for a two-alternative 
situation (full fare versus standby) by using a small sample of interview data 
collected from departing passengers at Boston's Logan Airport. A calibrated 
model is presented that demonstrates a statistically significant relationship 
between the ticket-type choice and the fare, fare differential, trip purpose, 
automobile ownership (as a proxy for income), and the passenger's perception 
of the delays that may be expected if flying standby. This application merely 
demonstrates a method and could easily be improved by using the airlines' on
board surveys for estimation. 

Events during the last few years have substantially 
altered the air-travel-demand forecaRting require
ments of the individual airlines. Until recently, 
the number of different fares available was quite 
limited, and differences among the fare packages 
available from individual airlines were almost 
nonexistent. In this environment, the crucial 
requirements were for an aggregate estimate of the 
size of an individual city-pair market, which may or 
may not have been based on the level of service 
available in that market, and a carrier's share of 
the total, based on a measure of that carrier's 
frequency share (or a more-sophisticated model that 
took into account the timing of those flights). 

With the advent of deregulation, pricing freedom 
has emerged as a major factor that influences air
travel-demand decisions. Discount fares have 
stimulated new travel. Just as important to airline 
marketing departments is the impact on the yield per 
passenger or per passenger mile, which is affected 
by the passenger's choice of ticket type, as well as 

the impact of discount fares on the passenger's 
carrier-choice decisions. Passengers have always 
made minor distinctions between carriers on the 
basis of food, cabin attendants, or advertisements, 
but more and more there is a tangib

0

le economic 
incentive to choose one carrier over another. 
Examples include the unlimited-mileage tickets 
available on Eastern and Alleghenyi the straight 
price reductions offered in some markets by 
National, Braniff, Texas International, World, and 
Transamerica (among others) i and half-price coupon 
offers from United and American. 

This paper examines the nature of these new de
cisions that face air travelers and proposes a tech
nique that should prove useful in analyzing the 
passenger's ticket-choice decisions. The ticket
type choice is viewed within the context of the 
entire trip-planning process. Each individual's 
decision is based on that person's characteristics 
and the characteristics of each available alterna
tive--travel time, price, reservation, length
of-stay restrictions, etc. This type of problem has 
exact parallels in other decision-making pr<>eesses, 
and the modeling of· personal preferences, which is 
well developed elsewhere, is adapted to the problem 
at hand. 

TRIP-PLANNING PROCESS 

There are several decisions involved in planning a 
trip by air i these include (a) a decision to travel 
somewhere, (b) a choice of destination or 
destinations and departure and return times, (c) a 
decision to fly in preference to other modes of 
travel, and (d) a selection of the least-expensive 
and most-convenient flight, and ticket combination. 
For many trips, some of . these decisions may be 
trivial or made simultaneously with other 
decisions. The first three (or even all four) are 
likely to be made simultaneously and without much 


