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Generalized Procedure for Estimating Single- and 

Two-Regime Traffic-Flow Models 

SAID M. EASA AND ADOLF D. MAY 

Macroscopic traffic-flow models play an important role in the planning, design, 
and operation of transportation facilities. Evaluation of these models is often 
required to select the appropriate model that best represents prevailing operat­
ing conditions. For this purpose, a technique is needed that will enable the 
analyst to easily and quickly estimate model parameters. The technique 
should be easy to understand and use and inexpensive to apply and should 
generate results that reasonably represent actual traffic behavior. The devel­
opment of such a technique is described. The proposed estimation procedure 
is based principally on the theoretical relations between model parameters 
and traffic-flow criteria. Such relations were developed for both single- and 
two-regime approaches. To facilitate use of the procedure, generalized nomo­
graphs were developed to model the complexity of the theoretical aspects 
involved. These nomographs are capable of directly providing the values of 
model parameters that satisfy specified evaluation criteria. This procedure 
significantly reduces the need for regression analysis in estimating model 
parameters and thus appears to be of particular use in a wide range of trans­
portation applications. 

Considerable research has been undertaken to model 
the interrelationships among traffic-flow variables, 
and researchers have developed several models that 
describe the behavior of traffic flow on highways. 
In general, traffic-flow models can be classified 
into two major classes: microscopic and macro­
scopic. Microscopic models consider the spacing and 
speed of individual vehicles as model elements. Mac­
roscopic models, on the other hand, describe the 
operations of traffic flow in terms of the speed, 
flow, and density of the traffic stream. 

The macroscopic models are generally adequate for 
most practical purposes and have been widely used in 
the planning, design, and operation of transporta­
tion facilities, Before any particular macroscopic 
model can be used, however, the analyst should es­
timate model parameters that best represent prevail­
ing traffic characteristics. 

There is a need for a technique that will enable 
the analyst to directly estimate model parameters. 
It is obviously desirable that such a technique ex­
hibit several important features, including ef­
ficiency, flexibility, accuracy, and generality: It 
should be easy to understand and use and be inexpen­
sive to apply, it should allow flexible treatment of 
the various variables and parameters involved and 
generate results that reasonably represent actual 
traffic behavior, and, most important, it should be 
general in nature and allow a wide range of trans­
portation applications. With these features in mind, 
a generalized procedure for estimating single- and 
two-regime models has been developed. 

This paper presents a background of microscopic 
and macroscopic modeling theories and briefly dis­
cusses the concept of the proposed procedure. A de­
tailed description of the evaluation procedure for 
single-regime models is given, and the evaluation 
procedure for the two-regime models is described. 

BACKGROUND 

The general macroscopic theory of traffic flow is 
based principally on the microscopic (car-following) 
theory, These two classes of theories are described 
briefly below. 

l•ticroscopic 'J'heo.ry 

The microscopic description of vehicular traffic 
flow was first formulated by Reuschel (l) and Pipes 
(_~). They formulated the phenomena of pairs of ve­
hicles following each other: 

(I) 

In this formulation, it is assumed that driver 
(n + 1) maintains a separation distance from driver 
n proportional to the speed of his or her vehicle 
(Xn+ll plus a distance L. The factor L is the 
distance headway at standstill (Xn Xn+L 
0) • The constant S has the dimension of time, and 
the differentiation of Equation 1 gives 

(2) 

where Xn+l = the acceleration (or deceleration) 
rate. 

This differential equation is generally referred 
to as the basic equation of the car-following 
theory. This basic stimulus-response relation was 
investigated further by Chandler, Herman, and 
Montroll (].), who formulated a linear mathematical 
model that took the following form: 

(3) 

where T = the time lag of response to the stimulus 
and A = the sensitivity factor. 

This formulation was refined by Gazis and others 
(!,~), and a more general expression of the 
sensitivity factor was proposed: 

(4) 

where a is the constant of proportionality. 
The general expression for the microscopic theory 

thus becomes 

Macroscopic 'rheory 

Gazis, Herman, and Rothery (,?.) have shown that, by 
integrating the generalized microscropic equation 
(Equation 5), the following expression is obtained: 

where 

u steady-state speed of the traffic 
stream, 

s = constant average spacing, and 

(6) 

c and c' some appropriate constants consistent 
with physical restrictions. 

The integration constant c' is related to free-flow 
speed Uf or jam spacing Sj, depending on the 
values of i and m. The jam spacing Sj can be 
transformed to jam density kj by Sj = 1/kj• 
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By using this general solution of Gazis and 
others, May and Keller (1) developed a matrix of the 
steady-state flow equations for different i and m 
values. This matrix was modified by Ceder (7) and 
has been further refined here to properly establish 
some regions of the matrix. The final version is 
shown in Figure 1. 

The matrix shows the speed-density relations for 
different combinations of t and m parameters in 
four "regions". In region l (t ,;; l and m ;;,, 1), 
the boundary conditions are not satisfied. Models in 
region 2 (t,;; land m < 1) have no intercept 
with the speed axis, Uf+ro. Models in region 3 
(t >land m;;,, 1) have no intercept with the 
density axis , kj+ro. Region 4 (t > l and 
m < 1) contains models that have intercepts with 
both axes. 

It should be noted that this paper is concerned 
only with the three specially delineated parts of 
the matrix shown in Figure 1. These include region 4 
and the two portions of regions 2 and 3 that 
correspond to i = l and m = 1, respectively. For 
consistency and ease of reference, models in region 
4 will be referred to throughout as single-regime 
models, those in region 2 as congested-flow models, 
and those in region 3 as non-congested-flow models. 

Figure 1. Matrix of steady-state flow equations for different values of Q and m. 

,. 
t m < 1 111 • 1 

£ < 1 where 

c = a. 1=; and £ > m 
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Sin9le- and Two-Regime Approaches 

There are generally two approaches to representing 
traffic-flow relations: single-regime and two-re­
gime. In the single-regime approach, the entire 
range of operations is represented by a single model 
(normally from region 4) as shown in Figure 2 (a), 
but one could represent the regimes of noncongested 
and congested flow by separate models, as shown in 
Figure 2(b). This two-regime representation, first 
proposed by Edie (..!!.l, provides a theory that 
accounts for the discontinuity often observed in 
traffic-flow data. As defined in this paper, in the 
two-regime approach the non-congested-flow regime 
can be represented by a model from region 3 or 
region 4, and the congested-flow regime can be 
represented by a model from region 2 or region 4. 

CONCEPT OF THE PROPOSED PROCEDURE 

An illustration of the proposed estimation concept 
is shown in Figure 3. The procedure is based 
principally on the theoretical relations between 
traffic-flow criteria and model parameters. The 
traffic-flow criteria include free-flow speed 
(uf), optimum speed (u0 ), jam density (kjl, 

m > 1 

1-m 1-m £-1 
u =al-£ k + d3 

(boundary conditions not satisfied) 

£ = 1 1-m 
u (1-m)a £n(k/k) 

t > 1 

Figure 2. Single-regime and two-regime approaches . \I 
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(b) Two Regime 
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Figure 3. Concept of proposed estimation procedure. 

Theoretical 
Relationships 

optimum density (k0 ), and maximum flow (qml. 
These five criteria, shown in Figure 2(a), represent 
the critical points of the traffic-flow relations. 
In addition, model parameters include a, m, and 
t , which are contained in the matrix of the 
general macroscopic models. To make the procedure 
easier and more flexible to use, the theoretical 
relations are translated into a generalized 
nomograph that can be used to directly determine (or 
output) model parameters that satisfy specified (or 
input) traffic-flow criteria. 

This concept has been proposed and applied to the 
estimation of single-regime models by Easa (~) and 
is further extended in this paper to the estimation 
of two-regime models. The basic principles of the 
single-regime approach will be repeated here for 
purposes of integrity and because the single-regime 
approach is complementary to the two-regime 
approach, as will be discussed later in this paper. 

SINGLE-REGIME APPROACH 

As mentioned previously, the single-regime approach, 
as defined in this paper, is limited to models in 
r egion 4 of Figure 1. The generalized procedure for 
the estimation of models in this region is described 
here in four parts: 

1 . Establishment of t he theoretical relations 
between model parameters and t raffic - flow criteria, 

2 . Development of the nomograph, 
3. Description of the procedure for establishing 

the feasible region of model parameters, and 
4 . A sensitivity analysis of various aspects 

involved in the procedure. 

Theoretical Development 

The steady-state flow equation for region 4, shown 
in the matrix in Figure 1, is as follows: 

ul ·m = u} ·m [! -(k/k/·1) (7) 

where u and steady- state and free-flow 
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speeds, r e spectively; and k and kj = dens i ty and 
jam densi ty, respectively. This equation represents 
a single-regime model that has an x intercept (jam 
density) and a y intercept (free-flow speed) and 
corresponds to combinations of m and t values so 
that m < 1 amd t > 1. 

Ceder and May (1.Q.) have shown that a relation 
between m and t parameters and traffic-flow 
characteristics can be obtained. Such a relation 
includes kj a nd Uf and optimum variables u0 

and k0 of spee d and dens ity, respec t i vely . From 
Equation 7, one can obtain the following relations, 
in which q is expressed as a function of k a nd u, 
respectively: 

q=urk[l -(k/k/· lJJ / (1 -m) (8) 

At maximum flow, dq/dk = O. Therefore, by 
differentia t i ng Equa t ion 8 with res pect to k a nd 
equating the de r ivative to zero, one obta i ns: 

(k0 /kj)2· 1 =(! - m)((Q-m) (10) 

In addition, at maximum flow, dq/du = 0. Therefore, 
by differentiating Equation 9 with respect to u and 
equating the deri vative to zero, one obtains : 

(uo /u r) 1-m = (Q - 1)/ (Q - m) ( I I) 

Equations 1 0 and 11 are related as follows : 

(uo/ur) 1-m = I - (k0 /kJ·1 (I~) 

Rear ranging t o obt ain m as a function of t , 
(u0 /uf), and (k0 /kjl gives 

m = I -in[i -(k0 /k/· 1 J/ln(u 0 /ur ) ( 13) 

Substituting Equation 13 in to Equation 10 gives 

ln(u0 /ur)= [ 1/2 - l)J {ll /(k0 /k;/· 1 1·1} In JI -(k0 /k/· 1 ] (14) 

The 
relate 

reader 
model 

can see 
parameters 

that 
t 

Equations 
and m to 

criteria kj , Uf, k0 , 

the max imum flow gm is 
as follow s : 

and u0 • 

related to 

13 and 14 
traffic - flow 
Furthermore, 
k0 and u0 , 

(IS) 

Equations 13-15 now relate model parameters t 
and m to the five traffic-f l ow crite r ia, kJ, k9 , 
uf, u0 , and gm . By establishing t hese criteria 
f r om traffic-flow data , o ne can use these equations 
to determi ne the corresponding parameter values. A 
generalized nomograph developed to simplify this 
process is described below . 

Nomograph Development and Use 

The mathematical r elations of Equations 13- 15 were 
represented by the nomograph shown in Figure 4 (_~), 
which incorporates contour lines for the five 
traffic-flow criteria and for model parameters i 
and m. In the lower r ig h t-hand portion of the 
nomograph, values for jam density (kj), r anging 
from 180 to 260 vehicles/ mi le, are provided. In 
addition, contour lines for optimum density (k0 ) 

are provided for values ranging from 40 to 150 
vehicles/mile. In the upper left - hand portion, 
values for free - flow speed (uf), ranging f r om 30 
to 70 miles/h , are given, and contour lines for 
optimum speed (u0 ) are estblished for values 
rangi ng from 5 to 45 mi l es/h. 
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Figure 4. Generalized nomograph for single-regime models (Q > 1, m < 1 ). 
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Contour lines for t and m parameters were 
established by using these values of the 
traffic-flow criteria. Values of t ranging from 
1.1 to 4. O are included. In addition, the t 
contour corresponding to a value of 1.01 is provided 
and represents the limit after which the models 
would have no intercept with the y axis (uf•~l 
and would belong to region 2 of Figure 1. The m 
values range from 0.0 to 0.9, and a value of 
m = 0. 99 is included to represent the limit after 
which models would have no intercept with the x axis 
(kj•~l and would belong to region 3. The thick 
line shown in the middle of the nomograph 
corresponds to a value of m = O and represents a 
lower limit of the m values. The negative values of 
m were considered undesirable, because such values 
have the effect of shifting the speed variable in 
the sensitivity term of Equation 4 from the 
numerator to the denominator, they were not included 
in the nomograph. 

The final set of contours provided in Figure 4 is 
the set related to the maximum flow (qml. Clearly, 
contours for qm cannot be established in Figure 4, 
since this variable depends on k0 and u0 , which 
are provided as contours. To solve this problem, a 
variable DI was introduced . DI is defined as follows: 
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DI • 0.40 

DI• 0.15 

DI • O.JO 

DI • o. 25 

DI • 0.20 

DI • 0.15 

DI• 0 . lQ 

0 

0 

260 

240 1 
~~ 

220 ,.. 
~ 
i:i 

200 " 
~ 

180 
0.4 0.5 0.6 

(16) 

By using this definition, contour lines for DI 
were constructed in Figure 4 for values ranging from 
0.05 to 0.40. These contours are used to establish 
the maximum flow criteria, which will be described 
later. It should be noted that the Greenshields 
model (11) is a special case or single-regime models 
and corresponds tot= 2.0 and m = o. 

To illustrate the use of the nomograph, let us 
consider an example. Suppose that the traffic-flow 
criteria are established as k · • 190 vehicles/ 
mile, Uf • 55 miles/h, k0 = !fo vehicles/mile, 
and u0 c 30 miles/h . The corresponding values of 
model parameters t and m must be determined. To do 
this, the following steps are performed (Figure 4) : 

1. Enter at kj = 190 veh icles/mile and draw a 
horizontal line that intersec t s with the contour 
corresponding to k0 = 50 vehicles/mile. 

2 . From that point draw a vertical line. 
3. Enter at Uf • 55 miles/h and draw a 

vertical line that intersects with the contour 
corresponding to u0 = 30 miles/h . 

4 . From that point draw a horizontal line. 
s. The intersection point of the vertical and 
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Figure 5. Establishing the feasible region for the single-regime approach (Q > 1, m < 1). 
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horizontal lines established in steps 2 and 4, 
respectively, defines the required values of model 
parameters. It can be seen that this point 
corresponds to i = 2.55 and m = 0.78. 

6. Check the maximum flow value by reading the 
value of DI at the intersection point and 
multiplying it by kj and Uf to determine <1m• 
From the diagram, DI= 0.14 and, therefore, 
qm • 1463 vehicles/h (55 x 190 x 0.14). Obviously, 
in this simple example, ~ can be directly 
calculated from input values of k0 and u0 • 1500 
vehicles/h. 

With the values of i = 2.55 and m = o. 78, the 
steady-state flow equations can now be defined. For 
example, the speed-density relation (Equation 7) can 
be described as follows: 

(17) 

Es tablishing t he Feasible Region 

It should be noted that the procedure described 
above is intended for use when the traffic-flow 
criteria are specified as single values. In many 
situations, however, the analyst might be interested 
in information on the feasible range of model 
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parameters that satisfy specified ranges (rather 
than single values) of the traffic-flow criteria. 
The estimation procedure for such cases can be 
described as follows, by using a hypothetical 
example. 

Suppose that, based on a given set of traffic­
flow data, one has established the following values 
of the traffic-flow criteria: kj = 220 vehicles/ 
mile, Uf = 55 miles/h, k0 • 55-65 vehicles/mile, 
u0 = 25-30 miles/h, and qm = 1700-1800 ve­
hicles/h. One must determine the feasible region of 
i and m values that satisfy the above evaluation 
criteria. The estimation procedure, shown in Figure 
5, consists of the following four basic steps: 

L Draw a horizontal line corresponding to the 
kj value and two contour lines corresponding to 
the limits of the k0 range. The intersection of 
these lines defines two points. 

2. Draw a vertical line corresponding to the 
Uf value and two contour lines corresponding to 
the limits of the u0 range. The intersection of 
these lines defines two points, 

3. From the two points defined in step l, draw 
two vertical lines and, similarly, draw two 
horizontal lines from the two points defined in step 
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2. The rectangular region defined by these lines 
includes the values of model parameters that satisfy 
the traffic-flow criteria kj, k0 , Uf, and u0 • 

4. Finally, establish the appropriate DI con­
tours that correspond to the criteria range of kj, 
uf, and qm· Since k · and Uf can be expressed 
as ranges , Equation 1i is used with special con­
siderations. Specifically, the lower and upper 
limits of DI are generally calculated as follows: 

DI (lower)= qm(lower)/u,(upper) kj(upper) 

DI (upper)= qm(upper)/u,(lower) kJ(lower) 

{18) 

{19) 

where lower and upper on the right-hand side refer 
to the limits of the established ranges of the 
traffic-flow criteria kj, Uf, and~- (Note 
that, in this example, Uf and kj are established 
as single values; the upper and lower limits are 
equal.) 

By using Equations 18 and 19, it can be found 
that DI (lower) = 0.14 and DI (upper) = 0.15. The DI 
contours that correspond to these values are shown 
in Figure 5. The area between these contours that 
overlaps with the previously determined rectangular 
region defines the feasible region of model 
parameters. Clearly, values of ll and m within that 
region satisfy all of the traffic-flow criteria. It 
should be noted that the area below the DI (lower) 
contour includes all points with ~ < 1700 
vehicles/h. Similarly, the area above the DI (upper) 
contour includes all points with qm > 1800 
vehicles/h. 

The feasible region of model parameters 
determined above provides a range of models that 
satisfy specified ranges of the traffic-flow 
criteria and, consequently, confine the traffic-flow 
data from which these criteria are established. For 
this reason, the feasible region would be useful for 
a variety of transportation applications in which 
sensitivity to changes in the traffic-flow relations 
is of particular concern. It is also important to 
note that, for any model in the feasible region, the 
associated traffic-flow criteria are immediately 
defined. For example, for the model that corresponds 
toll= 2.3 and m = 0.7, it can be determined that 
k0 = 61 vehicles/mile and Uo = 28 miles/h. 
Noting that Uf = 55 miles/h and kj 220 
vehicles/mile , the speed-density relation, for 
instance, can be described as follows: 

u = 55 [l - (k/220)1.3] 3· 33 (20) 

It is important to note that, in establishing the 
feasible region, both Uf and kj were specified 
as single values. However, these two cri teria can 
also be established as ranges, in which case 
additional computations are needed to establish the 
traffic-flow criteria associated with any selected 
model (2). 

Sensitivity Analysis 

In the estimation procedure previously described, a 
feasible region of model parameters was defined that 
includes all models that satisfy the established 
traffic-flow criteria. To investigate the likely 
variations among models of the feasible region, 
boundary models were investigated. Figure 6 shows 
three models in the previously defined feasible 
region that approximately bound other models in the 
region. Obviously, other models in the feasible 
region would lie somewhere within the band of models 
shown in Figure 6. It is interesting that, if the 
regression analysis technique !,~) had been used to 
determine model parameters, the selected model with 
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that technique would have lain within that band. 
This is essentially true, since such a model should 
fulfill the specified traffic-flow criteria. It is 
noted in Figure 6 that the expected maximum 
variations among models are relatively small and do 
not generally exceed the length of the speed 
criteria range (5 miles/h in this example). 

Another important point related to the 
sensitivity of model parameters is worthy of note. 
The shape of model-parameter contours shown previ­
ously in Figure 4 clearly exhibits the sensitivity 
of ll and m values to variations in the traffic­
flow criteria. To further illustrate the sensitivity 
of model parameters to these criteria, contours for 
kofkj and uofuf were established on an ll 
versus m diagram for the region of greater interest 
(ll = 1.8 to 2.8, m = o.o to 0.9), as shown in Fig­
ure 7. It is noted that the ll parameter is con­
siderably more sensitive to uofuf than to kof 
kj, and this parameter tends to be almost in­
sensitive to ko/kj at higher values of t. On 
the other hand, the m parameter is slightly more 
sensitive to kofkj than to uofuf• These 
characteristics appear to be useful as guidelines 
for the relative effort to be expended in establish­
ing the traffic-flow criteria. Figure 7 also shows 
the relative locations of high- and low-design 
facilities and the region of models that correspond 
to actual traffic-flow data analyzed in previous 
research work (12). 

TWO-REGIME APPROACH 

It should be remembered that models in region 4, 
(the region for which the generalized nomograph 
described above was developed) have intercepts with 
both speed and density axes and are designated as 
single-regime models. In the single-regime approach, 
the model determined by the nomograph is used to 
represent .the entire range of operations. In addi­
tion to its use for the single-regime approach, the 
nomograph presented above can be used for the two­
regime representation in which two models would be 
established--one for the non-congested-flow regime 
and the other for the congested-flow regime. In this 
case, the nomograph is used twice by using the 
traffic-flow criteria that correspond to each of the 
two regimes. Such a process is a straightforward 
application of the procedure described previously 
and will not be elaborated on further here. 

In the two-regime approach, one can represent the 
non-congested-flow regime by a model from the region 
(ll > 1, m = 1) and the congested-flow regime by 
a model from the region (ll = 1, m < 1). The 
purpose of this section is to describe the 
generalized estimation procedure for the two-regime 
approach by using models from these two regions. 
This description is presented in three parts: 

1. Development of the theoretical relations be­
tween model parameters and the traffic-flow criteria 
for the non-congested-flow and congested-flow re­
gimes, 

2. Presentation of nomographs for both regimes 
as well as a brief description of their intended 
use, and 

3. Description of the procedure for establishing 
the feasible region of model parameters. 

Theoretical Developmen t 

For the non-congested-flow 
m = 1), the steady-state flow 
Figure 1, is as follows: 

In u = In ur + [a/1 - Q)] kR-l 

region 
equation, 

(/l > 1, 
shown in 

(21) 



30 

where 

k • density, 
a= constant of proportionality, and 
t • model parameter. 

Equation 21 represents a model that has no 
intercept with the density axis (kj+~). This 
relation can be used to establish the relations 
between traffic-flow criteria and model parameters. 
Such relations include free-flow speed Uf, optimum 
speed u0 , and optimum density k0 , as well as 
model parameters 1 and a (note that a is 
referred to as model parameter). 

From Equation 21, one can obtain the following 
relations, in which q is expressed as a function of 
k and as a function of u, respectively: 

q = ke1n ur + (a/(! - Q)] k2-1 

Figure 6. Variations of models within the feasible 
region. 

(22) 

70 

60 
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q2-1 = [( I - Q)/a] u2- 1 Jn (u/ur) (23) 

where e is the base of the natural logarithm. 
At maximum flow, dq/dk = 0. Therefore, by 

differentiating Equation 22 with respect to k and 
equating the derivative to zero, one obtains 

°' = l/k/- 1 (24) 

In addition, at maximum flow, dq/du o. 
Therefore, by differentiating Equation 23 with 
respect to u and equating the derivative to zero, 
one obtains 

uo/ur = e- l l /(2- 1 l I (25) 

It is 
also be 

interesting 
obtained 

to note that Equation 25 
from Equation 11 for 

I, m 
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Figure 7. Sensitivity of model parameters to traffic­
flow criteria. 
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single-regime approach. When m approaches l in 
Equation 11, uofuf becomes 

Jim (u0/ur)= Jim [(Q-l)/Q-m)J 1/(l-m)= lim [{I +{Ii[(Q 
m-1 m-1 m- 1 

-m)/(m- J)J}J<Q-m/m-l)J·ll/(Q-m)I 

= e·ll/(Q-t)J (26) 

which is the same as Equation 25. This f e atur e 
indicates the continuity of the uofuf ratio 
between the single-regime models and the 
non-congested-flow models. Now, rearranging Equation 
25 to obtain JI. as a function of uofuf, one 
obtains 

Q = I - [ l/ln(u0 /ur)] (27) 

Furthermore, the maximum 
be expressed as follows: 

can 

(28) 

Equations 24, 27, and 28 
JI. and a to the traffic­
k0, and gm (note that 

It can be seen that 
relate model parameters 
flow criteria Uf, u0 , 

kj does not ex ist) . 
For the c ongested-flow region (JI. = 1, m < 1), 

the steady-state flow equation, shown previously in 
Figure 1, is as follows : 

u1 · m = a(l - m) ln (k;/k) (29) 

where kj = jam density and m = model pa rameter. 
Equation 29 represents a mode l ~hat has no 

intercept with the speed axis (Uf+m). By 
following a procedure similar to that described for 
the non-congested-flow regime, the relations between 
the traffic-flow criteria kj, k0 , and u0 and 
model parameters m and a can be established. From 
Equation 29, one can express q as a function of k 
and as a function of u, as follows: 

q = k [a(! - m) ln(k;/k)J 1/(l-m) 

q - uk; exp {-[u 1·m /a(! - m)J} 

(30) 

(31) 

In addition, a and ko/kj can be expressed 
as follows: 

Q = Uo 1-rn 

ko/k; = e·I 1/(1-m)I 

(32) 

(33) 

It is worthy of note that, by taking the limit of 
kofk · in Eq ua t ion 10 (presented for the 
single-regime approach) when JI. approaches 1, one 
would obtain Equation 33. This can be proved in a 
way similar to that described earlier for the 
non-congested-flow models. Similarly, this feature 
indicates the continuity of the ko/kj ratio 
between the single-regime models and the 
congested-flow models. Now, rearranging Equation 33 
to obtain mas a function of ko/kj, one obtains: 

m = I + [ l / ln (k0 /k;)] (34) 

The maximum flow gm( • u0 k0 ) is expressed as 
follows: 

It can be seen that 
relate model parameters 
flow criteria kj, u0 , 

Uf does not exist). 

(35) 

Equations 32, 34, and 35 
m and a to the traffic­
k0, and ~ (note that 

It is important to note that existing macroscopic 
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Figure 8. Locations of generalized and existing two-regime models on Q-versus­
m matrix . 
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models are special cases of the formulations 
generalized above. Figure 8 shows the locations of 
the generalized and existing two-regime models. As 
seen, the three models developed by Drew (13), 
Underwood (14), and Drake and others (15) correspond 
to JI. = 1.5, JI. = 2, and JI. = 3, respectively, on 
the general non-congested-flow models. In addition, 
the model developed by Greenberg (16) is a special 
case of the general congested-flow models when 
m = o. The key elements of both the general and 
existing two-regime models are summarized in Figure 
9. Clearly, the generalized formulations presented 
in Figure 9 provide a wider range of models and 
effect a more flexible treatment in the estimation 
process for two-regime models. 

D~velopmen t and Use of Nomogra phs 

Once the theoretical relations between model 
parameters and traffic-flow criteria were estab­
lished, as described above, these relations were 
translated into a practical tool, and generalized 
nornographs for non-congested-flow and congested-flow 
regimes were developed to graphically represent the 
theoretical aspects involved. 

For the non-congested-flow regime (JI. > 1, 
m = 1), Figure 10 shows a generalized nomograph that 
relates model parameters JI. and a to the 
traffic-flow criteria Uf, u0 , k0 , and qm• 
The nomograph encompasses the basic relation between 
JI. and uofuf (thick curve) and th.ree sets of 
contours for u0 , a, and qm. The basic relation 
(Equation 27) was established for values of 
u0 /uf ranging from 0.02 to 0.78, which 
car respond to t values of approximately 1. 2-5. The 
locations of existing non-congested-flow models are 
shown on the curve. Note also that the curve has an 
inflection point at uofuf • 1/e• , which 
corresponds to JI. • 1.5 [Drew model (13)]. The 
contour lines for optimum speed Uo were 
established for values ranging from 10 to 40 
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Figure 9. Characteristics of generalized and existing two-regime models. 
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Figure 10. Generalized nomograph for non-congested-flow regime (Q > 1, m = 1 ). 
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miles/h. As shown, the free-flow speed Uf 
associated with these contours ranges from 30 to 70 
miles/h. 

Contours for the constant of proportionality a 
were established based on Equation 24, which relates 
a to both t and k0 (k0 ranges from 40 to 100 
vehicles/mile). As noted, values of a contours 
range from 10·• to 0.5. The final set of contours 
are those related to qm· To establish contours 
representing qm, a variable Dln was introduced 
(based on Equation 28). This variable is defined as 
follows: 

(36) 

From Equation 36, it should be noted that Dln 
is a function of t and k0 • By using this 
equation, contours for Dln were established for 
values ranging from 5 to 60. As will be described 
later, these contours are used to ensure that the 
criteria range for qm is satisfied. 

To illustrate the use of the nomograph, let us 
consider an example. Given that Uf = 55 miles/h, 
u0 = 30 miles/h, and k0 • 70 vehicles/mile, one 
must determine the corresponding model parameter t 
and constant of proportionality a by performing 
the following steps (Figure 9): 

Figure 11. Generalized nomograph for congested-flow regime jQ = 1, m < 1 ). 
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1. Enter at Uf • 55 miles/h and draw a 
horizontal line that i ntersects with the contour 
corresponding to u0 • 30 miles/h. 

2. From that point, draw a vertical line that 
intersects with the basic (thick) curve. 

3. At the intersection point, draw a horizontal 
line (to the left) and read the value of t • 2. 6. 
Extend this horizontal line to the right. 

4. Enter at k0 • 70 vehicles/mile and draw a 
vertical line that intersects with the horizontal 
line in step 3 above. At the intersection point, 
read the value of a• 0.9 x 10·•. 

5. Check the maximum flow value by reading the 
value of Dln at the intersection point and 
multiplying it by Uf to determine c;Jm• From the 
diagram, Dln = 39; therefore, ~ = 2145 ve­
hicles/h (39 x 55). Obviously, in this simple ex­
ample qm can be directly calculated from input 
values of k0 and u0 as k0 u0 = 2100 ve­
hicles/h. 

Having determined the values of t = 2.6 and 
a= 0.9 x 10·•, one can now define the steady­
state flow equations. For example, the speed-density 
relation (Equation 21) can be described as follows : 

u = 55 exp (-0.56 x 10·3 kl. 6 ) (37) 
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A similar nomograph was developed for the 
congested-flow regime (t = 1, m < ll and is 
shown in Figure 11. The nomograph represents the 
relations between model parameters m and a and 
traffic-flow criteria kj, u0 , k0 , and qm and 
encompasses the basic relation of m and k0 /kj 
and three sets of contours for k0 , a, and qm. 
The basic relation (thick curve) is based on 
Equation 34. The curve has an inflection point at 
kofk · = l/e2 , which corresponds to m = 0. 5. In 
addi£ion, the Greenberg model is located at a point 
corresponding to m • 0. It should be noted that the 
curve is not extended beyond the Greenberg model for 
values of m < 0. This was used because such 
negative values have the effect of shifting the 
speed variable in the sensitivity term of Equation 4 
from the numerator to the denominator, which is 
considered undesirable. 

Contours for k0 and a for the congested-flow 
regime were established in a way similar to that 
for the non-congested-flow regime. In addition, to 
establish contours representing %ii• a variable 
Dlc was introduced (based on Equation 35). This 
variable is defined as follows : 

(38) 

Dlc, which is similar to Dln for the non-con­
gested-flow regime, is used to ensure that the cri­
teria range for qm is satisfied. The use of the 
nomograph is similar to that for the non-con­
gested-flow regime. Figure 11 furthe r illustrates 
the use of the nomograph. In this example , the input 
values of the traff ic-flow criteria are kj = 240 
vehicles/mile, k0 = 60 vehicles/mile, and 
u0 = 25 miles/h. By using these values, the reader 
can ascertain the value of m = O. 28 and a = 10. 5. 
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Substituting these values into the speed-density 
equation (Equation 29), for example, yields 

u = 16.60 [ln (240/kJ] l.3 9 (39) 

Establishing the Feasible Reg i on 

To this point, the procedures outlined above are 
intended for use in cases where the traffic-flow 
criteria are established as single values. Knowledge 
of the feasible region of model parameters is 
important for two-regime, as for single-regime, 
models. Such a feasible region is obtained when the 
traffic-flow criteria are established as ranges. The 
procedure for such cases can be described as follows. 

The use of the various steps involved in 
establishing the feasible regions for the 
non-congested-flow and congested-flow regimes can be 
illustrated by means of an example. Suppose that, 
based on a given set of traffic-flow data, one has 
established the ranges of the traffic-flow criteria 
for the non-congested-flow anJ congested-flow 
regimes as follows (kj a nd Uf are established as 
single values): 

Criterion 
kj (vehicles/mile) 
Uf (miles/ hi 
k0 (vehicles/mile) 
u0 (miles/hl 
qm (vehicles/h) 

Non-Congested­
Flow Regime 

46 
80-90 
15-25 
1450-1550 

One mus t now dete rmine model parameters 
these criteria. 

For the non-congested-flow regime, 
region of model parameters t and a 

Congested­
Flow Regime 
250 

70-80 
15-20 
1300-1400 

that s atisfy 

the feasible 
that satisfy 

Figure 12. Establishing the feasible 
region for the non-congested-flow regime 
(Q > 1, m = 1). 
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given traffic-flow criteria can be established as 
shown in Figure 12. The procedure consists of the 
following basic steps: 

L Draw a horizontal line corresponding to 
Uf ~ 46 vehicles/mile. This line intersects with 
the two contour lines that correspond to the range 
of u0 (15 and 25 miles/h). 

2. From the intersection points, draw two 
vertical lines that intersect with the basic ( thick 
solid) curve at two points. 

3. From these points, draw two horizontal lines 
to the right. 

4. At the limits of the k0 range (80 and 90 
vehicles/mile), draw two vertical lines that 
intersect with the two horizontal lines drawn in 
step 3 above. The rectangular region defined by 
these lines contains model parameters that satisfy 
traffic-flow criteria Uf, u0 , and k0 • 

5. Finally, establish the appropriate Din 
contours that correspond to the criteria range of 
Uf and qm· In general, the lower and upper 
limits of Din can be c alculated (based on Equation 
36) as follows: 

Dln(Iower) = qm(lower)/ur(upper) 

Dln(upper) = qm(upper)/ur(Iower) 

where "lower" and "upper" on the right-hand 
refer to the limits of established ranges of 
traffic-flow criteria qm and Uf• 

(40) 

(41) 

side 
the 

35 

By using Equations 40 and 41 and noting that uf 
(lower) = uf (upper)= 46 miles/ h, it can be found 
that Dln (lower) = 32 and Dln (upper) = 34. The 
Dln contours corresponding to these values are 
drawn in Figure 11. The area between these contours 
that overlaps with the previously determined rect­
angular region defines the feasible region of model 
parameters. Clearly, values of ~ and a within 
that reg ion satisfy all four traffic-flow criteria: 
Uf, u0 , k0 , and qm. It should be noted that 
the area below the Din (lower) contour contains 
models with qm < 1450 vehicles/ h, whereas the 
area above the Dln (upper ) contour contains models 
with qm > 1550 vehicles/h . In addition, for any 
model in the feasible region, one can immediately 
define the associated traffic-flow criteria. As an 
example, for the model corresponding to i = 2.05 
and a = 10- 2 , the associated criteria of k0 

and u0 are determined as 85 vehicles/mile and 18 
miles/h, respectively. For these values, the speed­
density relation (Equation 21), for example, can be 
described as follows: 

(42) 

For the congested-flow regime, the feasible 
region is established in a way similar to that for 
the non-congested-flow regime. The feasible region 
is established as shown in Figure 13 by using the 
traffic-flow criteria given in the in-text table 
above. It should be noted that contours for 010 

Figure 13. Establishing the feasible region LO ,-----------------,--------------------, 
for the congested-flow regime (Q = 1, m < 11. 
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are generally established (based on Equation 39) as 
follows: 

Dl c(I owe1) = CJmOower)/k;(upper) 

Dle(upper) = CJm(uppe1)/kj(lowe1) 

(43) 

{44) 

By using these. equations and noting that kj 
(lower) = kj (upper) = 250 vehicles/mi l e, one can 
find that Dic (lower) = 5.2 and Ole (upper) 
5.6. It should be noted that, for any model in the 
feasible region, the associated traffic-flow 
criteria can be immediately defined. For example, 
for the model corresponding to m = 0.19 and 
a = 10.5, the associated traffic-flow criteria are 
u0 = 18 miles/h, k0 = 75 vehicles/mile, and 
kJ = 250 vehicles/mile. For these values, the 
speed-density relation (Equation 29), for example, 
can be described as follows: 

u = 14.03 fln (250/kJ] l. 24 (45) 

It should be remembered that the feasible regions 
of model parameters established for the non-con­
gested-flow and congested-flow regimes are intended 
for use in cases in which a range of models repre­
senting the traffic-flow data is of interest. In 
addition, Uf and kj were specified as single 
values in an attempt to simplify the procedure. How­
ever, these criteria can be specified as ranges, in 
which case the estimation procedure would involve 
some additional computations to determine the as­
sociated traffic-flow criteria. 

CONCLUSIONS 

This paper presents a generalized procedure for 
estimating single- and two-regime traffic-flow 
models. The procedure is based principally on the 
theoretical relations between model parameters and 
traffic-flow criteria. Emphasis has been given to 
translating the theoretical aspects into practical 
analysis tools. Generalized nomographs developed for 
both modeling approaches are capable of directly 
providing the user with the values, or the feasible 
region, of model parameters that satisfy specified 
traffic-flow criteria. 

Based on this research work, a few important 
observations can be made: 

1. The input to the nomograph procedure is 
rather simple. It includes the traffic-flow 
criteria, which can be established from traffic-flow 
data for a particular facility. The output of the 
nomograph includes model parameters that satisfy 
these criteria. Clearly, if the traffic-flow 
criteria are carefully selected, the resulting model 
is likely to provide a reasonable representation of 
the data. Similarly, a good selection of the 
criteria ranges would result in a feasible region of 
model parameters that is more representative of the 
data characteristics. 

2. The nomograph procedure should be viewed as 
complementary to rather than as a substitute for the 
existing regression analysis procedure for model 
estimation. The nomograph procedure is intended for 
use in situations in which a reasonable estimation 
of model parameters would suffice. When a relatively 
high degree of accuracy is required, the regression 
analysis procedure should be used. 

3. The nomograph procedure appears to represent 
a powerful and flexible estimation tool that enables 
the analyst to adjust the evaluation criteria and to 
directly determine their effect on the evaluation 
results. 

4. It should be emphasized that the nomograph 
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procedure is based solely on theoretical aspects and 
so is general in naturei it is not a site-specific 
procedure. As a consequence, it appears to be of 
particular value for a wide range of transportation 
applications. 

Future research work should be devoted to the 
following areas: 

1. The nomograph procedure appears to provide a 
basis for the development of a facility design index 
for various highway types. Such an index would 
characterize highway facilities by specific 
combinations of model parameters. To this end, the 
variables DI, Din, and Dic used in this paper 
could be further investigated by using real 
traffic-flow data. 

2. Guidelines for the selection of single- or 
two-regime approaches under varying operating 
conditions should be developed. Future work to 
investigate alternative methods of modeling the 
two-regime approach is required. 

3. A similar nomograph procedure for the 
rema1n1ng portions of the matrix of macroscopic 
models should be developed. 
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Projected Vehicle Characteristics Through 199 5 
WILLIAM D. GLAUZ, DOUGLAS W. HARWOOD, AND ANDREW D. ST. JOHN 

The U.S. Department of Transportation has established fuel-consumption stan­
dards for passenger vehicles and light trucks that will result in increasingly fuel­
efficient vehicles in the future. Projections of characteristics of the mix of ve­
hicles on the road that can be expected to change as a result of industry com­
pliance with the standards are presented through 1995, based on a variety of 
government and industry publications. The average mass (weight), power, and 
engine size of passenger vehicles-including light trucks with a maximum gross 
vehicle weight of 3860 kg (8500 lb)-will obviously decrease during this period. 
Fuel economy will continue to improve steadily, and average acceleration per­
formance will not decline appreciably after the 1983-1985 period. The charac­
teristics of recreational vehicles will change, mostly in the next few years. All 
of these changes in on-the-highway averages will be brought about through 
"replacement" of heavy and high-performance vehicles by others of more 
modest weights and powers rather than through the introduction of very small 
or low-performance vehicles, which will lead to a more homogeneous vehicle 
population. 

The fuel embargo of 1973 and 1974 and the spot fuel 
shortages of the summer of 1979 have aroused wide 
public reaction and contributed to a change in 
consumer buying habits. Vehicle purchasers are, on 
the average, seeking more fuel-conserving cars. In 
response to this demand and to U.S. Department of 
Transportation (DOT) mandates, the automobile 
industry is gradually changing its fleet mix to 
produce vehicles that generally have better 
fuel-consumption characteristics. This is being 
accomplished primarily through size and weight 
reductions as well as a shift to smaller engines 
(with accompanying performance impacts) . To improve 
overall efficiency, other changes in vehicle 
technology are also being introduced. 

It is of interest to project the long-range 
impact of these changes on vehicle operations, 
traffic safety, and overall fuel consumption. To do 
this, it is first necessary to predict the distribu­
tions of the characteristics of vehicles that will 
be on the road in future years. This prediction pro­
cess and the results obtained are the subject of 
this paper. The process assumes an orderly progres­
sion of changes based on present rule making and 
associated projections. It does not consider pos­
sible catastrophic events, such as curtailment of 
automobile production, cessation of fuel imports, or 
imposition of fuel rationing. The projected char­
acteristics can then be used in analyses or models 
to estimate impacts of interest. 

This paper deals with two basic vehicle cate­
gories: passenger and recreational vehicles. The 
first category includes American and imported 
automobiles as well as all light trucks (e.g., pick­
ups and vans) with a gross vehicle weight (GVW) of 
as much as 3860 kg (8500 lb). Recreational vehicles 
include motor homes, pickup campers, and pas­
senger~vehicle/trailer combinations. 

POPULATIONS OF PASSENGER VEHICLES 

The aim of this study was to estimate the average 
characteristics of vehicles that will be on the road 
in future years as well as the distributions around 
the averages. The estimation process required, 
first, breaking down each year's sales into 
identifiable vehicle categories, each described in 
terms of such factors as weight, engine size and 
power, and production. Then all of the sales over 
the 15-year period prior to the year of interest 
were accumulated. This accumulation process 
accounted for the scrappage rates of the vehicles as 
well as the decreasing annual mileage with age. 
Finally, averages and other quantities were 
determined on a travel-weighted basis (that is, 
vehicles driven more kilometers in the year of 
interest counted more heavily in the averaging 
process). Thus, the averages and distributions 
should be representative of what one would find by 
measuring all vehicles passing a given location. The 
assembly process, which involved summing over 
3000-4000 identifiable vehicle categories, was made 
feasible by using specially written computer 
programs. 

For convenience, passenger vehicles were 
generally divided into three groups: American cars, 
foreign cars, and light trucks. Then detailed 
vehicle characteristics were assembled only for 
selected model years (because of the rather 
painstaking process required). The characteristics 
for intervening years were estimated by the computer 
program, by use of interpolation. The following 
subsections provide more detail about the assembly 
process. 

Data on Vehicle Characteristics 

The most important determinant of acceleration 
performance is the ratio of a vehicle's net engine 
power to its mass [commonly, but imprecisely (from a 
technical viewpoint), called its weight]. Other 
characteristics, such as transmission and axle 
ratios, frontal areas, and aerodynamic drag 
coefficient, also have an effect. Unfortunately, 
these latter characteristics are not generally 
available other than on a special-case basis. 
Therefore, performance capability was estimated 
solely on the basis of power-to-mass ratio. More 
specifically, for each vehicle model identified, the 
maximum net power of the engine and an appropriate 
vehicle mass (weight) were recorded. For 
automobiles, this was taken as the curb weight 
(empty vehicle weight plus fuel and coolant) plus a 




