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Network Equilibration with Elastic Demands 
NATHAN H. GARTNER 

Elastic-demand equilibration (assignmend is an analytical model for travel 
forecasting in homogeneous and multimodal transpo.rtation networks in 
which the demand for travel between each origin-destination (0-0) pair 
is an elastic function of the service level offered by the network. The 
problem was formulated as a mathematical optimization program in 1956 
and, since that time, a variety of iterative schemes have been proposed 
for its solution. In this paper, the mathematlcel·programming formulation 
of the network-assignment problem (NAP) with elastic demands is ex
amined, an economic rationale for its optimization objective is derived, and 
an efficient method for its solution is presented. The method is based on 
modeling the NAP as an equivalent:assignment problem in an expanded 
network. The variable-demand NAP is thus transformed into a fixed-demand 
NAP that has a trip table that consists of the potential 0-0 travel demands 
and can therefore be solved by any fixed-demand assignment procedure 
available. 

Conventional traffic assignment--the final phase in 
the travel-forecasting procedure--calculates load
ings on a network of transportation facilities given 
the predicted interzonal travel demands. The result 
of the assignment is an estimate of user volumes and 
associated performance measures on each segment of 
the transportation network. The interzonal demands 
are usually assumed to be fixed and are estimated by 
earlier stages of the analysis. In the traditional 
urban transportation planning method, these stages 
consist of trip generation, trip distribution, and 
modal split. The user volumes may be determined by 
the number of vehicles, the number of persons, the 
number of transit riders, or any other measure that 
has an origin, destination, and some quantifiable 
trip-interchange characteristic (ll· 

A large variety of assignment techniques have 
been developed; those most frequently used are based 
on heuristic procedures, such as capacity restraint 
or probabilistic multipath assignment (_£). During 
the last decade, a number of assignment methods have 
been introduced that are based on mathematical 
programming. In general, these methods model the 
assignment problem as a multicommodity convex cost
minimization problem in which each origin-destina
tion (0-D) flow is considered to be a different com
modi~y. Reviews and discussion of the methods may be 
found in papers by Gartner <ll and by Nguyen (,i). 

The main advantage of these methods is that they 
provide access to efficient network-optimization 
techniques that are both mathematically rigorous and 
computationally predictable and therefore offer im
proved analysis capabilities. 

A more-general class of problems in transporta
tion-network analysis (one that has a sounder be
havioral foundation) is to equilibrate (assign) 
traffic with elastic demands. The basic premise is 
that trips are undertaken by persons who (a) have a 
range of choices available to them and (bl are 
motivated by economic considerations in their 
decisions. Thus, the total amount of travel between 
any 0-D pair and the mode chosen for the travel are 
considered to be a function of the perceived benefit 
(or disbenefi t) to the potential travelers between 
this o-o pair. The problem was originally described 
in 1956 in a seminal study on the economics of 
transportation (2_) in which it was also formulated 
as an equivalent mathematical optimization program. 
Over the years, this problem has attracted 
considerable attention, since it was recognized to 
have a wide range of applications in the analysis of 
transportation networks <i>· A number of specialized 
techniques have been proposed for solution of the 

problem, all of which are based on various iterative 
schemes for equilibration of demand and supply in a 
network. I do not dwell in this paper on the various 
possible applications of the problem. Its main 
application recently has been in the development of 
multimodal equilibrium models in which the demand 
for each mode is an elastic function of the service 
levels offered by the mode <l-10). My purpose is to 
encourage use of the models and develop new appli
cations through improved understanding of their for
mulation and the development of more-efficient com
putational techniques for their implementation. 

In this paper, the formulation of the network-as
signment problem (NAP) with elastic demands as a 
mathematical optimization program is reexamined, an 
economic found<1tion for its optimiza tion objective 
is identified , and an eff icient method for its solu
tion is presented. The method is based on reform
ulating the problem as an equivalent-assignment 
problem in a modified network. The variable-demand 
NAP is thus converted into a fixed-demand NAP in 
which there is a trip table given by certain (fixed) 
potential demands. As a consequence, any technique 
available for fixed-demand network assignment be
comes dh:ectly applicable to the more-general NAP 
with elastic dema nds. 

MATHF.MATICAL FORMULATION 

In this section the NAP with elastic demands is 
formulated as a mathematical optimization problem. A 
transportation network is considered that consists 
of N nodes and L links. Some of the nodes represent 
centroids, i.e., origins and destinations of traf
fic. Between each o-o pair (i,k) there exist, in 
general, Pik distinct possible paths. M denotes 
the set of all 0-D trip interchanges (i, k) in the 
network. The following variables are used: 

f· =flow on link j; 
cj (fj1 = average cost of travel (or, in 

general, the level of service) on 
link j; 
marginal cost of travel on link j; 
trip rate from i to k; 
flow on path p; 
average path travel cost from i 
to k; 
demand function for travel from i 
to k, i.e., trip rate as function of 
interchange travel cost; and 
Gik- 1 (Cik) = inverse of demand 
function, i.e., interchange travel cost 
as a function of trip rate. 

The following integral functions are defined: 

f f· 

Zi = 

0 

J ci(z)dz 

If, for convenience, a link-path formulation is 
used, the elastic-demand NAP consists of the follow
ing equivalent mathematical optimization program. 
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Determine link flows fj and 0-0 trip rates 
gik so that 

(J) 

is subject to 

(2) 

The link flows are related to the path flows by 
means of 

(3) 

where ajp.= 1 if link j is on path p, or 0 otherwise. 
Accora1ng to the theory of mathematical 

programming, an optimal solution to the NAP 
(indicated by an asterisk) is characterized by the 
Kuhn-Tucker necessary conditions: 

(4) 

(5) 

Equation 4 represents the network-equilibrium 
condition that corresponds to Wardrop• s first 
principle: i.e., travel costs on all routes used 
between any o-o pair are equa l to o r l ess tha n t hose 
on unused routes . Wik* is t he c os t (leve l of 
service ) that generates the demand 9ik* that , at 
optimality, has to be equal to the a verage path 
costs. When the objective function is convex, the 
necessary conditions are also sufficient. Commonly 
used link performance functions (such as the Bureau 
of Public Roads volume-delay function) and 0-0 
demand functions (such as those of the simple 

Figure 1. Market equilibrium paradigm. 
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gravity type) are, in general, convex with respect 
to cost. 

If demand is inelastic (i.e., if it is given by a 
fixed value rather than by a function), the first 
term in expression l is a fixed quantity and can be 
eliminated from the optimization objective. The 
fixed-demand NAP objective is then simply 
minEjZj• The term "user optimization" has been 
coined for this problem (11). 

INTERPRETATION OF OPTIMIZATION OBJECTIVE 

Several economists have studied the effects of 
transportation costs on equilibrium prices in 
spatially separated markets in the early 1950s, 
notably Nobel laureates Koopmans and Samuelson. 
However, Beekmann, McGuire, and Winsten (BMW) (~l 

adapted their results to the travel market" by 
considering trip making itself as the commodity that 
is traded. They discuss the computational aspects 
of their mathematical formulation but neglect to 
furnish an economic justification for the 
optimization objective. This has led some analysts 
to argue that there is no such justification and 
that the formulation is an artificial construct 
(12), whereas other analysts (l0,!11 14) believe that 
the equilibrium-NAP objective implies the 
maximization of consumer surplus. BMW specifically 
warn against the adoption of this simple 
interpretation, which is valid only in capacity-free 
networks, i.e., when link costs are independent of 
volumes, a rather restrictive assumption that is of 
little practical value. In this section, the BMW 
formulation is reexamined and it is shown that its 
optimization objective can be rationalized on the 
basis of accepted economic criteria. 

Market EgUilibrium 

The equilibrium market price is where the demand 
(d-d) and supply (s-s) curves intersect (point E, 
Figure la). At this point, consumers buy and 
producers supply quantity OM at price ON. If we 
assume that money provides a firm measuring rod of 
utility, the areas in Figure l represent the 
following values: 

OMEN = total revenue paid by consumers to 
producers, 

OMER = total use to consumers, 
OMEF = total cost to producers, 

NER = OMER - OMEN = consumer surplus, 
NEF = OMEN - OMEF = producer surplus • 

economic rent, and 
OMER - OMEF NER + NEF = social surplus. 

It is easy to verify that, at equilibrium, 

Social surplus = consumer surplus + producer 
surplus = consumer utility - producer cost, 

which is maximized with respect to the rate of 
consumption (see Figure lb). 

An analogy is now drawn in a transportation 
system with d ue consideration for the i nherent 
differences bet ween the consumer-product market and 
the distribution of trips among given facilities of 
a transportation system. A major difference is that 
traffic routing is a short-term problem that has an 
objective of optimal use of facilities that already 
exist and not a long-term one that has an objective 
of optimal investment. (Therefore, the notion of 
performance rather than supply should be used.) 
Travel costs are presumed to include only those 
short-term costs that users perceive in deciding 
whether or not to transport, when and how to do so, 



58 

which mode and route to use, and so forth. Those 
costs paid by users but considered by them only on 
some longer-term basis are not included. The period 
considered is also a short one, e.g., a typical 
daily peak period. Thus, the operators of the system 
do not expect to recover investments by affecting 
routing, and fixed costs can be disregarded in the 
analysis. 

Transport Network Equilibrium 

A simple transportation system is considered below 
that consists of one link (j l and a single 0-D pair 
(i,k); it is related to the paradigm described 
above. Complex networks can be similarly analyzed 
when the summations over links and 0-D pairs are 
restored. As stated in the section on mathematical 
formulation, Yik represents the total utility to 
travelers between i and k measured by the maximal 
cost they are willing to expend for making the trip. 

Figure 2. Demand-performance equilibration in a transportation system. 
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Figure 3. Surplus maximization in a two-route network. 
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The user surplus (which replaces consumer surplus) 
aggregates the excess of this utility over the 
actual costs incurred in making the trips. The 
notion of social surplus is also replaced by system 
surplus, while the optimized quantity that 
corresponds to producer surplus will be given a new 
interpretation. In analogy to market equilibrium, 
the NAP objective corresponds to the maximization 
(with respect to flow) of 

SS (system surplus)= US (user surplus)+ Q (6) 

where Q is given by 

Q = fc(f) ~ r c(z)dz (7) 

The marginal travel cost is defined as follows: 

m(f) = (d/df) [fc(f)] = c(f) + fc'(f) (8) 

i.e., it is equal to the average (private) cost plus 
the increment in cost to all other users imposed by 
an additional user, which is termed the marginal 
social cost (MSC). When Equations 7 and 8 are 
combined, the following results: 

Q =i f m(z)dz -i r c(z)dz =i f zc' (z)dz (9) 

Economists believe that economic efficiency is 
achieved when every user pays the full social cost 
of his or her travel. Therefore, the cost increment 
fc' (f) should be charged as a toll by the operators 
of the transportation system. This argument is 
critical to this analysis; however, I shall not 
elaborate on it here, since it has been discussed 
extensively in the literature (_?.,15). By using the 
terms of economists, Equation 9 aggregates the 
difference between the social costs and the private 
costs when flows are considered incrementally, i.e., 
the summation of the MSC. If no tolls are charged, 
the value of Q represents an undercharge to the 
users or, equivalently, a lost revenue for the 
operators. The assigned flow pattern maximizes this 
quantity together with US, as indicated by Equation 
6. Economists also suggest another meaning for Q: 
Since the existence of congestion creates an 
obligation to pay, the failure to price the social 
costs of congestion amounts to an outright subsidy 
to motorists (16, p. 49). This reinforces the notion 
of user optimization for describing equilibrium 
flows in a transportation network. 

The concepts discussed here are illustrated in 
Figure 2 for the single link. The Q-value is 
represented by area AEF, which (according to 
Equation 9) is equal to area AEH, the congestion 
undercharge. Since area AEK is common to both 
quantities, the two triangular areas AFK and HEK are 
equal. 

Example 

Consider a system of two parallel links a and b that 
have flows fa and fb and connect one o-o pair 
(illustrated in Figure 3). Total demand is 
represented by the baseline OO' (assumed to be of 
variable length). At user equilibrium the flow 
distribution is determined by the intersection of 
the two average link-cost functions at point E. 
Average travel cost on each link is then ME (Figure 
Jal and the system surplus is maximal at M (Figure 
3bl. US is calculated as the difference between the 
total utility (a fixed quantity) and the travel cost 
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and is not maximized in this pattern. Its maximum 
occurs at N, the nonequilibrium situation in which 
marginal costs are equalized (]]). 

EFFICIENT TECHNIQUE FOR SOLUTION 

The first computational attempt at predicting flows 
in a network by means of elastic demands was made by 
BMW (i). They proposed a heuristic procedure 
conceived to emulate user behavior: Given existing 
(nonoptimal) traffic conditions, a fraction of the 
users (who have or can obtain adequate knowledge of 
these conditions) will divert during the upcoming 
period to a route that is optimal at the present 
transportation cost and will set their demand for 
transportation at levels that correspond to the 
present average trip costs. The responsive fraction 
of road users in each period is regarded as an 
independent random sample drawn from the total 
population of users: its size is assumed to decrease 
as time proceeds. Martin and Manheim (18) developed 
an iterative assignment procedure based on a 
different heuristic. Assuming an unloaded 
transportation network at the outset, they 
incrementally assign fractions of the potential 0-D 
demands onto current shortest routes until 
equilibrium is approached. This, too, is believed to 
emulate user choices as they gradually load up the 
network. The procedure was later incorporated into 
the DODOTRANS analysis package (!2_). Bruynooghe, 
Gilbert, and Sakarovitch (1.Q_) use a technique in 
which shortest and longest routes between each 0-D 
pair need to be calculated. Flows and demands are 
iteratively adjusted until they converge. Wigan (21) 
uses a simple iterative procedure in which the 
variable-demand functions are simply looped with a 
fixed-demand traffic-assignment algorithm (20). 
Wilkie and Stefanek (ll) present a constrained-gra
dient algorithm and a modified Newton-Raphson proce
dure for the same problem. Although these algorithms 
can (potentially) provide rigorous solutions, they 
fail to exploit the specialized structure of the 
transportation network problem and are computa
tionally unwieldy. Florian and Nguyen (13) developed 
an iterative scheme based on interlacing the vari
able-demand function with a fixed-demand traffic-as-

decom
also 

by 

signment algorithm via generalized Benders 
position. Dantzig, Maier, and Lansdowne (~) 

proposed use of fixed-demand assignment 
introducing an additional slack variable for each 
commodity. A more-detailed review of these 
algorithms may be found elsewhere (.!.§_,~). 

The technique for solution described in this 
section is based on representing the 0-D 
variable-demand function by an auxiliary link that 

Figure 4. Travel cost versus demand representation. 
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augments the network model of the physical 
transportation system. This artificial link is 
termed a demand link (as opposed to the ordinary 
supply links). The resulting formulation, called the 
excess-demand formulation, is discussed below. 

Consider expression 1, the objective function of 
the elastic-demand NAP. The first term in this 
expression is given by the integral of the 
inverse-demand function. Heferring to Figure 4, it 
may be seen that this integral may be decomposed as 
follows: 

(10) 

where Gikm is a fixed upper bound. The first term 

on the right-hand side of Equation 10 is a constant 
(say, Jik) and is unaffected by the optimization 
procedure. The maximizing objective of expression l 
may therefore be replaced by a minimizing objective: 

Defining the excess-demand eik = Gikm - gik• 

following is obtained for expression 11: 

[

eik 

min ~ W;k(z)dz 
i ,k 0 

(I I) 

the 

(12) 

The new 
wik(gikl 
about a 

function [Wik (eik) I is obtained from 
by flipping the inverse-demand function 

vertical axis that passes through 

gik = Gikm. It may easily be seen that this func

tion is similar in shape to the average link-travel
cost functions (Figure 3a) and the elastic-demand 
NAP can now be restated as follows: 

(13) 

subject to 

(14) 

where 

(15) 

The elastic-demand NAP now becomes a fixed-demand 
NAP on a network that is modified by forward-demand 
links that connect each 0-D pair (i,k) and carry the 
excess -demand eik • The cost associated with the 
link is Wik(eik). The resulting configuration is 
illustrated in Figure 5. 'l'he fixed o-o demands are 

Gikm, which are termed the potential demands. Thus, 

after the modified network has been created, there 
need not be a distinction between demand links and 
ordinary links and any fixed-demand network-assign
ment algorithm can be used to solve this problem. It 

is important to choose Gikm large enough to prevent 

binding the solution too low and so that there will 
always be (at optimality) a positive excess demand . 

CONCLUSION 

This paper derives an economic rationale for the NAP 
with elastic demands and presents an efficient 
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Figura 6. Equivalent network for excess-demand formulation. 
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method for its solution. The optimization objective 
of the NAP implies the maximization of user surplus 
+ Q, in which Q represents an undercharge to the 
users due to the social costs of congestion. The 
method of solution is based on modeling the problem 
as an equivalent network in which the elastic-demand 
functions are represented by appropriate demand 
links. This transforms the variable-demand NAP into 
an equivalent fixed-demand NAP that has the (fixed) 
0-D trip table given by the potential 0-D demands. 

The equivalent network model has the obvious 
advantages of convenient representation and 
efficiency in data handling, which thereby renders 
unnecessary the specialized iterative schemes 
inherent in all other methods of solution. The model 
is amenable to solution by efficient fixed-demand 
network-assignment algorithms without modification 
to those algorithms. Most important, in terms of 
computation, the model requires no additional nodes 
in the expanded network. Since network-assignment 
algorithms, which are based on the calculation of 
shortest-path trees, are more sensitive to the 
nwnber of nodes in the network than to the number of 
links (25) , this model requires only a moderately 
larger computational effort than that for a 
fixed-demand assignment on the same physical 
network. This effort is estimated to be only 25-75 
percent larger than a comparable fixed-demand 
assignment. The most important conclusion, however, 
is that there are no inherent computational 
differences between fixed-demand and elastic-demand 
network-assignment problems, and the same algorithms 
can be used in both cases. 

As noted above, the method described in this 
paper can be extended to consider more-general 
demand (cost) functions and is also applicable to 
other transportation analysis problems that involve 
choice situations that can be modeled as an equiva
lent-assignment (path-choice) problem in an expanded 
network. Such problems include, for example, the 
combined distribution-assignment problem (which in
volves origin or destination choice) and assignment 
in multimodal transportation networks (which may 
also include simultaneous modal choice). 
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