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Economic Analysis of Transportation Pricing, 'fax and 

Investment Policies 
DALE 0. STAHL II 

In response to the ad hoc nature of current transportation user charges and 
cost allocations, a rigorous analytical framework is presented based on eco
nomic welfare theory. A multi modal transportation system model that has ex
plicit price and tax, investment maintenance, service quality, and externality 
variables is formulated; the optimal decision rules of equating marginal social 
benefits and marginal social costs are derived and given operational interpreta
tions. Optimal and administratively feasible aggregate prices by user class and 
mode are derived in terms of aggregate marginal social costs that are not im
practical to estimate. An optimal cost allocation is defined as marginal social
cost pricing followed by general taxation of consumer goods (excluding trans
portation) to cover any deficit. 

Considerable confusion exists about economic princi
ples as they are applied to transportation policy 
analysis. Although a correct operational definition 
of marginal cost is hard to find in the literature, 
it is widely assumed that the marginal-cost pricing 
principle is not relevant to transportation facili
ties for a number of alleged reasons, e.g., there is 
no feasible way to (a) cover full costs or (b) 
implement ideal mai:ginal cost pricing. The princi
ples that find their way to practitioners suggest ad 
hoc rules of thumb rather than deduced results from 
a unified theory. 

The purpose of this paper is to present an inte
grated economic transportation model that will clear 
up some of the confusion and serve as a basis for 
policy analysis. The model is set in the framework 
of welfare economics, and the results can be inter
preted as the well-known principle of equating 

marginal social benefits with marginal social 
costs. Moreover, these concepts and principles are 
brought in touch with reality by the detailed struc
ture of the model. All relevant investment and 
maintenance variables of a multimodal transportation 
system are incorporated in the model; service qual
ity attributes and externalities are made explicit. 

The results reported here are a summary of sev
eral aspects of an extensive working paper <!>· 
Optimal decision rules for investments, maintenance 
programs, and prices are derived and interpreted. 
"Second-best" issues are discussed. An original 
contribution is the derivation of optimal and ad
ministratively feasible aggregate prices by user 
class and mode. Finally, an optimal cost allocation 
is defined as marginal-social-cost pricing followed 
by optimal taxation of consumer goods (which ex
cludes transportation) to cover any deficit. 

INTEGRATED MODEL 

The task of this section is to model the trans
portation system and its effects in a manner that 
facilitates the application of economic welfare 
theory to transportation policy issues. The level 
of detail is sufficient for addressing the issues of 
investment and maintenance policy, service quality 
and externalities, pricing and cost allocation, and 
intermodal effects. 

The welfare optimization prob~em can be stated in 
operations research terms as maximizing a social 

-
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objective function with respect to control variables 
subject to constraints given by the system. The 
direct arguments of the objective function are 
called the impact variables. The role of the system 
model is to relate the impact variables to the 
control variables. 

Description of the Model Variables and Relationships 

Social Objective Function 

The objective is to invest, maintain, and price in 
order to obtain the highest level of net social 
welfare possible. The problem can be formalized by 
let ting W (U) be a Bergson-Samuelson type of social 
welfare function, where U is a vector of individual 
utilities. As is often done, and to keep this 
exposition simple, utility indices in terms of 
dollar values will be assumed, and the social wel
fare function will be the unweighted sum 

(!) 

It should be noted that, although the principles 
developed in this paper are generalizable to other 
social welfare functions, the functional form of 
specific results are critically dependent on this 
distribution-neutral social welfare function. 

The benefits to businesses that use the trans
portation system must also be included. If a com
petitive private sector and the distribution-neutr~l 
social welfare function are assumed, it is suf
ficient to assess these benefits at the stage of the 
businesses as users rather than attempt to trace the 
incidence through to customers and stockholders. To 
keep the notation simple, businesses will be in
cluded in the set of N individuals (or agents) over 
which utilities are summed, with the understanding 
that (for a business) ui denotes initial benefits 
as profits. 

Two major complicating features of an economic 
analysis of the transportation system are that the 
transportation "good" has multiple characteristics 
and that consumption of transportation services 
generates numerous externalities. Lancaster's 
formulation of consumer theory (l) is well suited to 
handle the multiple-characteristic aspects, and it 
can easily accommodate the incorporation of ex
ternalities. Suppose individual utility (and busi
ness profits) can be represented as an explicit 
function of two sets of variables: U(q,E). Let q be 
a vector of trip and service-quality characteristics 
such as trip destination benefits, travel time, 
operating expenses, safety, comfort, and aes
thetics. Let E be a matrix of nonuser externalities 
such as pollution and noise, with one column for 
each link in the transportation network. Since 
these public-good-type externalities depend more on 
the total traffic level than on any one individual's 
travel, it is reasonable to view such externalities 
as impinging on the individual in his or her capac
ity as a nonuser. In contrast, the trip and ser
vice-quality characteristics affect the individual 
only when the individual makes a trip. This repre
sentation admits the possibility that total travel 
level affects the service-quality level: the poten
tial inter user externalities will be made explicit 
later. 

In the manner of Lancaster, suppose there is a 
simple linear relation between trips taken and the 
amount of trip and service-quality characteristics 
derived from travel. In particular, suppose that 
X't is the amount of trip and service quality d) derived from one trip mile on link ( t) of the 
transportation network. (Throughout this paper, a 
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"link of the transportation system" will denote a 
link of the transportation network, a structure, or 
a terminal.) Then q = Zx', where x is the row 
vector of trip miles by link and Z is the cor
responding matrix [Zjtl. Thus, individual 
utility can be written as Ui(Zxi' ,E), where the 
subscripts denote individual (i). 

From the representation of the social objective 
function, it is clear that the pertinent impact 
variables are Z and E. Further, from the point of 
view of the individual, xi is a control variable. 
Let X be the matrix of trips by all individuals--one 
row for each individual. 

The typical welfare optimization problem is to 
maximize the social welfare function subject to a 
number of constraints, among which is the technology 
constraint--the mathematical description of all 
technologically feasible combinations of all goods. 
In a market economy, a convenient way to represent 
this technology constraint is to require that the 
total cost of production of all goods equal a fixed 
nominal gross national product (GNP): TC(X) = M, 
where M is the fixed nominal GNP and TC( ) is the 
total (private and public) cost of production of all 
goods in the economy. TC(X) should be understood to 
be the total cost of producing transportation 
services plus the total cost (net of transportation) 
of producing all final (or consumer) goods, where 
the final goods are understood to be implicit in 
this notation. For convenience of exposition, the 
total cost function is divided into public 
transportation costs, which are denoted by C( ), and 
all other public and private costs, which are 
denoted by c ( ) : hence TC ( ) = C ( ) + c ( ) . If 
public costs are expressed as gross costs before tax 
and fee receipts, then private costs clearly should 
not include taxes and fees. 

For the social welfare function 
paper, in which the social value of 
to anybody is $1.00, maximizing this 
function subject to the technology 
equivalent to maximizing 

W(U) + [M - TC(X)] 

used in this 
$1. 00 accruing 
social welfare 
constraint is 

(2) 

Time is implicit in the expression of the social 
objective function. It should be understood that 
Ui represents the discounted present value of the 
stream of dollar-value utilities and that the cost 
functions represent the discounted present value of 
the stream of costs, both computed at the same 
social discount rate. 

Control Variables 

A control variable is some quantity that the 
transportation agency has direct control over, e.g., 
resurfacing intervals and thickness, but not 
bumpiness. Although there may be a deterministic 
relation between transportation agency activities 
and the bumpiness of the road, it is best to define 
bumpiness as an intermediate state variable and to 
specify the engineering relationship between control 
variables proper and the intermediate state 
variables. 

To avoid undue complications of notation, one 
variable label (s) will be used for two groups of 
control variables. The first group consists of 
changes that are determined by investment decisions 
(such as construction, widening, and resurfacing) 
and are fixed in the short run. For example, on a 
given road segment of the highway network, these 
would include changes in length in miles, number of 
lanes, width, pavement type and base, shoulder type, 
signs and signals, geometric design features, sce
nery, and speed limit. Variables for structures and 
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terminals can also be included. The second group 
consists of variables that can be adjusted on a 
day-to-day basis--essentially maintenance activi
ties. These two groups of control variables will be 
represented by the vector s.11,, which will be 
referred to as the transportation program strategy 
for a specific link (.IL). Let S be the matrix of 
transportation program strategies--one column for 
each link of the transportation system. Then, the 
entire transportation construction, rehabilitation, 
and maintenance work program over time can be repre
sented by S(t). 

Intermediate State Variables and Relationships 

Let Y.11, be a vector of aggregate load on a link 
(.IL)--for highways, specifically, the number of 
equivalent vehicles per hour and the equivalent 
18-kip axle loads per hour. Let Y(t) be the matrix 
of aggregate load flows on the transportation system 
as a function of time. 

Assume a simple linear relationship between trip 
demand by individuals and aggregate load: 

(3a) 

Y(t) = BX(t) (3b) 

where B is a matrix whose elements are equal to the 
contribution to aggregate load of one trip by a 
specific individual. 

Let r .IL be a vector of pertinent service
ability attributes on a link (.IL). There are two 
groups of pertinent serviceability variables that 
correspond to the two groups of control variables. 
The first group consists of the state variables that 
result from cumulative past investment decisions and 
are fixed in the short run; for highways, state 
variables include length of miles, number of lanes, 
width, pavement type and base, shoulder type, signs 
and signals, geometric design features, and sce
nery. The second group includes state variables 
affected by maintenance activities and traffic; for 
highways, state variables include bumpiness, skid 
resistance, hazards, condition of signs and signals, 
litter, and condition of rest areas. The American 
Association of State Highway Officials (AASHO) 
present serviceability index is a composite of some 
of these serviceability variables. Let R(t) be the 
matrix extension of r .11, for all links as a func
tion of time. 

The state of the system depends on the history of 
transportation activities and aggregate load flows 
on the system. One way to represent this relation
ship is by the differential equation: 

R(t) = F [Y(t), S(t), R(t), t] (4) 

where the dot over the variable denotes the deriva
tive with respect to t and where F( ) is a general 
vector function that specifies the rate of change in 
serviceability as a function of instantaneous load, 
program strategy, serviceability, and time; F( ) can 
accommodate any interaction among the variables, 
including weather (through time). 

To complete the model, a relationship is needed 
between the serviceability variables and the impact 
variables that has perhaps some dependency on the 
aggregate load. Specifically, assume that such 
relationships can be represented in the following 
forms: 

Z = G(R,Y) (Sa) 

E = H(R,Y) (Sb) 
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where, as usual, the capital letters denote the 
matrix extensions of the vectors to the entire 
transportation system and time is implicit. An 
approach similar to that of the Manual on User 
Benefit Analysis (l_) can be employed to determine 
these relationships. 

In summary, the control variables of the model 
are travel (X), which determines aggregate load (Y), 
and the transportation-program strategy (S). The 
serviceability of the system is related to the 
control variables by a dynamic equation. Service
ability and aggregate load determine the impact 
variables, which directly affect individual utili
ties. 

Formal Statement of the Optimization Problem and 
First-Order Conditions for Optimality 

A two-state optimization procedure is chosen because 
it handles the dynamics in a simple manner and is 
easier to interpret. The first stage is to solve 
the following public-cost-minimization problem, 
given a desired serviceability of the system, R(t), 
and actual loading, Y(t). 

l. Minimize C(S) with respect to S(t) subject to 
R = F(Y,S,R,t). 

This stage of the optimization process contains most 
of the complications, in that it contains the dy
namics of the serviceability of the system. One 
could take the Hamiltonian-Lagrangian approach to 
solving this problem, but a heuristic approach 
provides more insight. Given R(t) and Y(t), there 
may be only a few or only one compatible strategy, 
S (t), i.e., a solution to the constraint equation. 
Once a set of compatible strategies has been found, 
it is a simple matter to pick the least costly 
strategy. Let S* (R, Y) be the least costly strategy 
compatible with Y(t) and R(t). Note that for some 
(R,Y) there may be no compatible strategy, in which 
case the cost is set equal to + •. The result of 
stage one is the minimum cost function 

C(R,Y) = c [S*(R, Y)] (6) 

2. The second stage problem is to maximize 
N 

ihui (Zxi_,El - C(R,BX) - c(X) + M with respect to 

X,R subject to z = G(R,BX) and E = H(R,BX), recall
ing that Y = BX. 

Assuming that the set of feasible control vari
ables (that satisfy the constraints) is compact and 
convex and that the net social objective function is 
quasi-concave, the solution to this stage amounts to 
equating marginal benefits to marginal costs. The 
solution (R*,X*) can be substituted into the solu
tion of the first stage to obtain the optimal trans
portation-program strategy S* (R* ,BX*). The choice 
of R* can be viewed as the choice of a set of ser
viceability standards by which the transportation 
agency can evaluate its performance and needs; A 
subset of the standards will provide guidelines for 
maintenance activities; the other standards will 
provide guidelines for the planning of new construc
tion, improvements, and rehabilitation. 

For the concepts of total cost and marginal costs 
of a good to be well defined, the good must be 
specified in terms of relevant characteristics, and 
these characteristics must remain fixed. This is 
precisely what C(R,Y) does. Given R and Y, all the 
service-quality characteristics are determined, so 
C(R,Y) can be interpreted as the minimum public cost 
of providing the transportation good defined by 
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(R,Y) or, equivalently, as the economic cost of 
providing the good, 

For the purpose of writing the first-order condi
tions for optimality, it is convenient to introduce 
a number of simplifying assumptions and defini-
tions. As an intermediate step, let x JI. 
fXiJI. be the aggregate travel on link (Ji.) and 

let ahJI. = (l/xJI.) CfxiJl.aui/aqh) be the weighted social 
value of quality characteristic h, and assume that 
it is constant. In other words, assume a constant 
weighted average value of travel time, etc. Define a 
serviceability value index to be VJI. _ 
~ahJl.zhJI.' which has the flavor of the 

imputed social value of a link per trip. In a simi
lar fashion, let whJI. pui/aEhJI. be 

the aggregate social value of nonuser externali ty 
attribute h, assume it to be constant, and let 
Ell. - ~whJl.EhJI. be an index of nonuser 

externalities of a link. 
By using these definitions, the first-order 

conditions can be written as 

for all (k,JI.), and 

f(aU;-/aqh)zh 2 = [ac(X)/ax;-2] + T { [aC(R,Y)/aYi2] 

- x2(aV2/aYj2)-(aE2/aYj2)~ bw 

for all (i', JI.). 

(7) 

(8) 

The left-hand side of Equation 7 is the marginal 
social benefit (including externalities) from a 
change in the serviceability of the system, and the 
right-hand side is the marginal public cost of such 
a change. The left-hand side of Equation 8 is the 
marginal private benefit of a trip, and the 
right-hand side is the marginal social cost 
(including externalities) of a trip by individual 
(i') on link (JI.). 

OPTIMAL DECISION RULES 

The framework developed in the previous section can 
be used as the basis for deriving optimal decision 
rules. First, the conditions for the optimal 
transportation-program strategy and serviceability 
standards are interpreted and discussed, Next, 
optimal ideal and aggregate pricing rules are 
derived. In addition, second-best issues are 
briefly discussed. 

Optimal Strategies and Serviceability Standards 

The optimal serviceability standards are determined 
by the condition in Equation 7, which is in the 
familiar form of the Samuelsonian conditions for 
optimal production of a public good. The marginal 
social benefits (user and nonuser externalities) are 
summed over all individuals and equated to the 
marginal social costs, which is reasonable since 
serviceability has the character of a public good-
all users of a particular link enjoy the same 
serviceability and all nonusers bear the same exter
nalities. Marginal social benefits are equal to the 
sum of (a) the marginal effect of a particular 
serviceability attribute on the serviceability value 
index times the traffic volume and (b) the marginal 
effect of the particular serviceability attribute on 
total nonuser externalities. Marginal social costs 
are determined by first minimizing total costs 
(given hypothetical serviceability levels and aggre
gate loads) and then computing the marginal effect 
of a change in a particular serviceability attribute 
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on the economic costs, given the same aggregate 
load. Given the optimal serviceability standards, 
the optimum program strategy is the minimum cost 
strategy given by the solution to the stage-one 
problem: S*(R,Y). The optimality conditions are 
valid if and only if either the aggregate load is 
also optimal or the aggregate load is independent of 
the serviceability. Deviations from these condi
tions will be discussed under second-best issues. 

In general, investment and maintenance strategies 
are not separable. Moreover, in general, 'it is not 
possible to arrive at the optimum system solution by 
seeking a link-by-link solution. In practice, 
however, it may be reasonable to assume that the 
network spillover effects are confined to a man
ageable subnetwork. 

Optimal Pricing Rules 

First, the ideal optimal pricing rule is derived 
from the optimality conditions. Second, an aggrega
tion assumption is made that leads to more feasible, 
but optimal, aggregate pricing rules. Finally, the 
issue of cost recovery from optimal pricing revenues 
is briefly addressed. 

Ideal Optimal Pricing Rules 

The condition in Equation 8 is the basis for ideal 
optimal pricing rules. Assume that the individual 
maximizes a utility function subject to a fixed
price budget constraint, where Pi'JI. is the price 
that individual (i') must pay for a trip on link 
(JI.). Then Equation 8 can be rewritten as 

Pn = [ac(X)/ax;-2 l + ~ {[ac(R,Y)/ayi2l - x2 (aV2/ayid 
J 

- (aE2/aYj2)~ bw (9) 

for all (i', JI.) [see Stahl Cl ) for a detailed 
derivation). At this price, the individual would 
freely choose the amount of travel required by the 
social optimum. 

The optimal pricing rule can be stated as a 
marginal-social-cost pricing rule. The first term 
on the right-hand side 0£ Equation 9 is the private 
out-of-pocket cost of a trip, e.g., gasoline, oil, 
and fares. The second term is composed of three 
components. The first component is the marginal 
public cost of providing a fixed transportation 
serviceability level with respect to different 
traffic loads. The second and third components are 
the marginal externality costs of travel. The 
second term captures the effects of travel on the 
value of serviceability, such as travel time and 
accident rates; thus, this term includes the famil
iar congestion and safety externalities that users 
face. The third term is the marginal externali ty 
effect on nonusers; it includes such effects as 
pollution and noise. These three components are 
multiplied by the contribution of the individual 
(i') to aggregate loads. 

Moreover, the optimal pricing rule can be stated 
as a short-run marginal-social-cost pricing rule in 
the sense that the serviceability characteristics 
(which it will be recalled include such items as the 
number of lanes) are held constant in Equation 9. 
One of the clearest arguments for short-run marginal 
cost pricing of highways was given by Walters (4). 
This short-run marginal-social-cost pricing rule - is 
strictly valid if and only if either (a) the total 
transportation program strategy, all serviceability 
standards, and all other variables in the economy 
are optimal or (b) all suboptimal strategies, sub
optimal serviceability standards, and other sub
optimal variables in the economy are independent of 
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travel demand. Deviations from this rule will be 
discussed further under second-best issues. 

The expression for the optimal price given by 
Equation 9 is deceptively simple. Notwithstanding 
the practical difficulties of estimating the terms 
on the right-hand side, it should not be overlooked 
that the optimal price for an individual is a func
tion of time and the particular link of the trans
portation system. For example, the optimal price on 
an urban road during rush hour may be quite high, 
whereas the optimal price on a rural road at 3:00 
a.m. may be zero. Furthermore, the optimal prices 
are in uni ts such as vehicle miles of travel and 
passages over structures, which suggests a different 
tax base than is currently used. The next topic is 
concerned with devising feasible prices and taxes. 

Feasible Optimal Pricing Rules 

Considering the infeasibility of the optimal pricing 
system derived above, it is imperative that a more 
feasible system be found that also has some 
optimality properties. The approach is to use 
prices explicitly as the control variables in lieu 
of the travel variables (X). Travel demand can be 
expressed as a function of prices, xi1<.E.lr with 
all other variables implicit and perceived to be 
fixed. These demand functions can be substituted 
into the formal statement of the optimization 
problems. Since these results are an original 
contribution of this paper, the essentials of the 
derivation will be given. 

In optimizing the stage-two problem with respect 
to transportation prices, the condition in Equation 
B is replaced by 

(10) 

for all (i,1), where MSCi1 11 is equal to the 
right-hand side of Equation 9, i.e., the marginal 
social costs of a trip by individual (i') on link 
(1'). Let x be the vector of travel demands 
formed by stacking the columns of x, let p be the 
corresponding price vector and MSC the corresponding 
marginal-social-cost vector, and let H be the 

Hessian matrix of partial derivatives [axi' 1•] for all 

apu J 
(i', I.') and (i, I.). Equation 10 can then be 
written compactly as HE_ = H MSC. The second-order 
conditions on individual utility maximization ensure 
that H is invertible, so the optimum prices can be 
solved for explicitly as ~ = MSC, which is identical 
to the result of Equation 9, as should have been 
expected. 

Unfortunately, this "ideal" price system is 
impractical. More-useful results are obtainable by 
imposing administrative feasibility constraints on 
the price system, such as a single aggregate price 
for a user class and mode. 

Let v denote a particular user class (or vehicle 
class), and let m denote a particular mode (or 
subsystem of links). For each user in class v (i 
E v) that takes a trip via a link of mode m (I. E 

m), we want a common price, Pvmr i.e., Pit 
= Pvm for all i E v and I. E m. In addition, 
let Xvm= i~v t~mxi I. be the aggregate travel by user 

class (v) on mode (m), and let MCSvm i~v l.~m 

MSCit (fvm) be the average marginal social cost 
of a trip by user class (v) on mode (m), where (fvm) 
is an abbreviation for the number of individuals in 
user class (v) times the number of links of mode 
(m). By using these definitions, Equation 10 can be 
rewritten as 
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(11) 

where the summations over v' and m' mean all user 
classes and all modes. The second equality holds 
under the reasonable assumption that the deviations 
of MSCiJ!. and axi tf 3Pvm from their 
means are independent across a1l individuals and all 
links (I.). In the manner used for the ideal price 
system, aggregate vector notation can be introduced, 
and the aggregate Hessian matrix can be inverted to 
derive the optimal aggregate marginal-social-cost 
pricing rule: 

Pvm = MSCvm (12) 

for all user classes (v) and modes (m) • [Aggre
gation by peak and off-peak periods can be handled 
in a similar way <.±.l .) 

Cost Recovery 

Suppose optimal pricing is implemented. ls there 
any hope that full costs can be recovered? Under 
the assumption that the private cost function [c(X)) 
is homogeneous of degree one (i.e., constant returns 
to scale), full private costs would be recovered by 
marginal cost pricing. Thus, the issue is whether 
full public costs can be recovered. At the global 
optimum (R*,X*), sufficient conditions for full cost 
recovery are that C (R, Y) be homogeneous of degree 
one, that V(R,Y) be homogeneous of degree zero, and 
that E (R, Y) be homogeneous of degree zero. Under 
these conditions, the short-run marginal-cost pric
ing rule would generate a full cost allocation with
out worry about imputing any common capital costs to 
users. 

However, there is evidence that suggests these 
homogeneity conditions are not likely to be satis
fied. For example, there is evidence of substantial 
increasing returns to scale in highway pavement 
thickness. [As an example of how to estimate a 
component of marginal social costs, the appendix in 
Stahl (1) estimates the marginal pavement cost of 
highways-by axle-weight class. It is concluded that 
the component of marginal cost pricing due to pave
ment wear is not likely to recover more than 10 
percent of the cost of pavement rehabilitation.) 
Also, there appear to be increasing returns to scale 
in air pollution that are not offset by design con
siderations. In general, if the homogeneity condi
tions do not hold, then marginal cost pricing will 
not recover full costs. With the increasing returns 
to scale suggested, there will be a deficit. (This 
result applies equally to the ideal optimal prices 
and to the optimal aggregate prices.) 

Second-Best Issues 

The implications of second-best considerations on 
optimal decision rules have been addressed in detail 
by Stahl (1) i space permits only a brief summary 
here. The- deviation of second-best rules from 
first-best rules depends on the suboptimality of the 
investment and pricing rules actually used by the 
transportation agency. Sound policy advice consists 
of advocating both optimal investment rules and 
optimal pricing. If the transportation agency makes 
a sincere effort to design its program optimally, 
then even if the existing system is suboptimal and 
even if the agency makes (uncorrelated) mistakes, 
the optimal rules are still the marginal-social-cost 
rules given by Equations 7-9 and 12. 

On the other hand, if the transportation agency 
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has a tendency to persist, for example, in 
overbuilding the highway system and underbuilding 
the mass transit system, then the optimal prices are 
higher for highways and lower for transit than the 
short-run marginal social costs. As another 
example, if urban roads are consistently underpriced 
and mass transit overpriced with respect to the 
marginal social costs, then, based on actual travel 
demand, urban roads should be underbuilt and transit 
should be overbuilt to compensate for the suboptimal 
prices. 

A more recent second-best issue concerns optimal 
deviations from marginal cost pricing to cover 
nonallocable costs. The issue arises from the 
realization that the marginal-cost pricing rules 
generally require lump-sum taxes to cover deficits 
and that in reality there exists no such thing as a 
lump-sum tax (i.e., a tax that does not affect the 
relative prices of goods). The problem of devising 
a system of taxes on commodities that covers the 
deficit and causes the least loss in social welfare 
has been recently addressed in the economics litera
ture; for an excellent survey, see Sandmo (5). A 
widely popularized result is the "inverse elasticity 
rule" i this rule states that, if all cross-price 
elasticities are zero, then the optimal deviation 
from marginal cost pricing is proportional to the 
inverse of the own-price elasticity for each com
modity. This result has been loosely applied to the 
problem of highway cost allocation (2_). However, 
the application of this rule to transportation is 
invalid for the following reason. 

A fundamental result of the theory of optimal 
taxation is that production efficiency is always 
desirable. Production efficiency requires that all 
producers face the true marginal social costs of all 
inputs; therefore, intermediate goods should not be 
taxed. Optimality calls for taxes on final goods or 
primary factors, not both, and not on intermediate 
goods. For the most part, transportation is an 
intermediate good. Certainly, all business uses of 
transportation qualify as intermediate goods, and 
all work commutes should also be considered 
intermediate goods. Whether to count shopping trips 
and recreation-destination trips as intermediate or 
final is debatable. Perhaps only the classic Sunday 
drive is unambiguously a final good. Thus, it 
appears that all but a small and perhaps 
insignificant portion of travel would be exempt from 
optimal taxes. Thus, a feasible optimal tax system 
to cover the deficit of the transportation agency 
would call for no user taxes. (It is necessary to 
emphasize that "tax" here means any additional 
payment above the marginal social cost, not to be 
confused with the optimal price charged by the 
government. ) 

Notwithstanding these remarks, if the government 
should decide on a user-only tax scheme for 
transportation, the best scheme (in terms of least 
welfare loss) could be determined by methods 
analogous to those used in optimal taxation theory. 
Optimal taxation of intermediate goods is an 
unsolved problem because of the complex ways such a 
tax works through the economy and affects final-good 
prices. Research on this problem is needed and 
would have important policy implications. 

CONCLUSIONS 

The integrated economic transportation model is well 
suited for considering investment, maintenance, 
pricing, and tax policies. (Cost allocation will 
also be discussed.) Optimal decision rules were 
derived in terms of the marginal social cost of 
travel. Marginal social costs include the marginal 
private costs, the marginal public costs defined to 
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be the "economic" costs of providing a given quality 
of service, and the marginal externality costs, such 
as congestion and pollution. 

To operationalize the optimal prices, the 
marginal social cost can be broken down into the 
marginal private cost (e.g., gasoline and oil) and 
the marginal public cost (government agencies and 
externalities). It is reasonable to assume constant 
returns to scale in the private sector, so full 
private costs will be recovered by marginal
private-cost pricing. The government prices can be 
set equal to the appropriately defined aggregate 
marginal public and externality costs. The units of 
the prices could be chosen to be, for example, 
vehicle miles by vehicle weight class. Prices based 
on these units could be assessed as part of the 
annual registration process. The practical issue of 
how to cover any deficit will be discussed next. 

The common notion of a cost allocation is 
probably best described by a private-sector 
accountant's spread sheet in which several products 
are listed across the top and the customers are 
listed down the left-hand side. The costs of 
production are allocated to each customer so that 
the sum of each column is equal to the total cost of 
production for each product. The sum of each row is 
equal to the total charges for each customer. The 
spread sheet balances when the sum of all the 
columns (costs) equals the sum of all the rows 
(charges) i then, one has a full cost allocation. In 
a competitive economy, a full cost allocation can be 
obtained by simply charging each customer the market 
price for each product, because price is equal to 
marginal cost, which is also equal to average cost. 

Cost allocation is considerably more complex for 
public-sector activities because they usually 
involve public good aspects, externalities, and 
increasing returns to scale. In the presence of 
these complications, allocation by price is not 
likely to give a full cost allocation, and one must 
devise ways to apportion the deficit. The lack of a 
solid theoretical basis for a cost allocation 
underlies the criticisms of previous highway cost 
allocation (7,8). 

The major -intention behind a cost-allocation 
study is to provide information relevant to the 
formation of pr ice and tax policy. But this 
objective can be met by the direct approach of 
determining the optimal price and tax policy. Then 
if one wants the information presented in a 
cost-allocation format, it can easily be done 
because any given price and tax policy implies a de 
facto cost allocation. 

The optimal cost allocation is defined as the de 
facto cost allocation that corresponds to the 
optimal price and tax policy. The optimal cost 
allocation can be determined in two stepi;. First, 
allocate by pricing at marginal social cost and 
calculate the revenues and any deficit. Second, 
apportion the deficit by the principles of optimal 
taxation. 

With a bit of imagination and study, it should be 
possible to devise an administratively feasible 
approximation to the optimal price and tax policy 
and cost allocation that would be superior to the ad 
hoc methods currently employed. Since this optimal 
tax system would exempt transportation as an 
intermediate good, the deficit would in essence be 
allocated among agents in their role as nonusers. 
This is really the only valid argument for nonuser 
taxes to help finance transportation. It arises not 
from arguing unsoundly that nonusers should help pay 
because they benefit from transportation but, 
rather, from arguing that the deficit should be 
allocated in such a way as not to distort the 
efficient use of productive resources. A critical 
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review of the incremental-cost method, the benefit 
principle, and the newest congressionally mandated 
highway-cost-allocation study is given in Stahl 
<.!l • Before the principles advocated in this paper 
could be implemented, considerably more research is 
required to estimate properly defined marginal 
social costs. 
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