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Method to Exclude the Effect of Testing Error 
When Estimating the Percentage Defective of 
a Continuous Normal Population 

RICHARD M. WEED AND WILLIAM E. STRAWDERMAN 

The quality of n product is often characterized by the percentage of the popu­
lation that fall s outside specific limits. Although established methods for esti­
mating this percentage defective are accurate as far as the overall distribution 
of test results Is concerned, part of the variability of this distribution is due to 
the presence of testing error that causes the percentage defective of the prod­
uct itself to be overestimated. A method is developed to overcome this prob­
lem and oomputer simulation is used to demonstrate that it is effective for 
situations in which the testing error is no larger than about one-half of the 
variability associated with the product. The results of several unsuccessful 
attempts to improve o.n this technique are also presented and described briefly. 

Engineers and specification writers have found the 
concept of percentage defective (percentage of the 
total population outside specification limits) to be 
a particularly effective way to describe the quality 
of a variety of construction materials and prod­
ucts. The overall proportion within specification 
limits is believed to be strongly related to a prod­
uct's performance, service life, or a combination of 
these qualities. 

To implement a specification that uses this 
concept, an acceptable quality level (AQL), an 
acceptable level of percentage defective, is defined 
along with a sampling procedure and a means for 
estimating the percentage defective for prescribed 
quantities of product. A graduated pay schedule is 
usually employed to establish the appropriate 
reduction in payment when the production lot is 
found to be of less than AQL. 

Established procedures for estimating percentage 
defective are effective in that they provide 
unbiased estimates of the quality of the populations 
to which they are applied. However, because any 
test result is affected by both product and testing 
variablity, the population to which the estimation 
procedure is applied is somewhat more dispersed and, 
consequently, its apparent percentage defective is 
somewhat larger than the true product percentage 
defective. This is illustrated in Figure 1. 

In some cases, this effect is of little concern. 
If specification writers have defined an AQL that is 
based on historical data that included testing 
error, and the present testing error has not changed 
appreciably, there is no real need to modify the 
acceptance procedure. It will continue to accept 
product of the same quality considered acceptable in 
the past. Also, if the testing error is relatively 
small in comparison to product variability, or if 
the sampling procedure is such that the effect of 
the testing error is reduced by averaging several 
replicate tests together, then the estimate of 
percentage defective will be virtually unaffected. 
However, in other cases a method may be desired to 
estimate the true product percentage defective 
exclusive of the effects of testing error. It is 
toward this end that the efforts of this paper are 
directed. 

DEVELOPMENT OF THE METHOD 

In the discussion that follows, the total sample 
from any given quantity of product that is to be 
evaluated consists of N random samples, each of size 

n. This assumes that the samples are taken from N 
different portions of product and that, within each 
portion, the n individual tests are subject only to 
testing error. A test result is defined as the mean 
of n tests and, therefore, the estimate of the 
percentage defective is based on N test.results. 

The standard deviation method of Military Stan­
dard 414 OJ is generally recognized as the best 
method for estimating the percentage defective of a 
normal population. A quality index (Q) is calcu­
lated by Equation 1 and special tables are consulted 
to convert this to a percentage defective estimate. 
Al though the number of samples (N) does not enter 
into the computation of Q, it is accounted for when 
entering the percentage defective tables. A typical 
table is shown in Figure 2. 

Q = (X - L)/S (1) 

where 

Q quality index (for lower limit in this 
example), 

L lower limit, 
X sample mean (more specifically, an unbiased 

estimate of the population mean), and 
S sample standard deviation (more specifically, 

the square root of the unbiased estimate of 
the population variance). 

A careful look at the definitions of x and S in 
Equation 1 makes it possible to deduce what is 
required to obtain an estimate of the true product 
percentage defective. First, in place of X, an un­
biased estimate of the mean of the product 
distribution will be required. This is an easy 
matter since, assuming there is no testing bias, the 
sample mean is also an unbiased estimate of the 
product mean. Therefore, this term will remain 
unchanged in the method to be developed. 

Second, an unbiased estimate of the variance of 
the product distribution is required. By using the 
well-known theorem that independent variances are 
additive and then transposing, Equation 2 can be 
written: 

(2) 

where 

ap2 variance of the product population, 
aN• variance of the population of sample means 

(so designated because there are N sample 
means per lot), 

a • n variance associated with the n replicate 
tests for each of the N samples (i.e., the 
testing error), and 

n ~ number of replicate tests (i.e., size of 
each of the N samples). 

For each of the N samples, n replicate tests are 
made. If the variance is calculated for each set of 
n values, this furnishes N independent unbiased esti­
mates of on2 These are pooled to give a single un-
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Figure 1. Illustration of effect of testing error on percentage defective. 
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Table 1. Sample calculations required for the modified method. 

Test Sample Statistics 

Sample 2 3 Mean SD 

1 103 100 103 102.0 1.732 
2 101 103 106 103.3 2.517 
3 102 98 99 99.7 2.082 
4 105 107 104 105.3 1.528 
5 106 105 109 106.7 2.082 
6 103 100 98 100.3 2.517 
7 105 103 106 103.7 1.528 

Note: X of the means= 103.0, SN of the means= 2.541, and 
pooled 8 0 for the standard deviations= 2.036. 

Figure 2. Typical table used to estimate the percentage defective of a normal 
population: standard deviation method (N = 71. 

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.00 0.09 

o .o 50.00 49.63 49.25 48.88 AB.50 48.13 47 .75 47 .38 47 .01 46 . 63 
0 .1 46 .26 45.89 45.51 45.14 44.77 44.40 44.03 43 .65 43.28 42.91 
0 .2 42 .54 42.17 41.80 41.44 41.07 40. 70 40.33 39 .97 39 .60 39.23 
0 .3 38 . 87 38.50 38.14 37. 78 37 .42 37 .06 36.69 36.33 35.98 35.62 
0 .4 35 .26 34.90 34.55 34.19 33.84 33 .49 33.13 32.78 32.43 32.08 

0.5 31.74 31.39 31.04 30.70 30.36 30.0l 29.67 29.33 28.99 28.66 
0.6 2e.32 27 .98 27 .65 27 .32 26.99 26.66 26.33 26.00 25.68 25 .35 
0.7 25.03 24. 71 24.39 24.07 23. 75 23 .44 23.12 22.81 22 .50 22.19 
0.8 21.88 21.58 21.27 20.97 20.67 20.37 20.07 19. 78 19.48 19.19 
0.9 le.9o 18.61 18.33 18.04 17 . 76 17 .48 17 .20 16.92 16.65 16.37 

1.0 16.10 15.€3 15.56 15.30 15.03 14. 77 14.51 14.26 14.00 13.75 
1.1 13 .49 13.25 13.00 12.75 12.51 12 .27 12.03 ll.80 11.56 11.33 
1.2 ll.10 10.87 10.65 10.42 10.20 9.98 9. 77 9.55 9.34 9.13 
1.3 8.53 8. 72 e.52 e.32 8.12 7 .93 7 .73 7 .54 7 .35 7 .17 
1.4 6 .98 6.30 6.62 6.45 6.27 6 .JO 5.93 5.77 5 .60 5.44 

J. 5 5.28 5 .13 4.97 4.82 4.67 4 .52 4.38 4.24 4 .10 3.96 
l.6 3.83 3. 70 3.57 3.44 3.31 J .19 3.07 2.96 2 .84 2.73 
1. 7 2 .62 2 .51 2.41 2.30 2.20 ? .11 2 .01 1.92 1.83 l.74 
l. R l. 66 1.57 1.49 l.41 l.34 l. 26 1.19 1.12 l. 06 0.99 
1. 9 0.93 0 .87 0.81 0.76 0. 70 0 .65 0.61 0.56 0 .Sl 0.47 

2 .o 0.43 0 .39 0.36 0.32 0.29 0.26 0.23 0.21 0.18 0.16 
2 .! 0.14 ~ .!2 0.10 0.08 0.07 0.06 0.05 0.04 0.03 0.02 
2 .2 0.01 0 .01 0.01 0.00 D.00 o.oo 0.00 0.0 o.o o.o 

biased estimate, which will be designated Sn'. Equa-
ti on 3 can then be written in terms of sample stan-
dard deviations to obtain the value being sought, 
the standard deviation of the product distribution, 
which is the square root of the unbiased estimate of 
the product variance. 

Sp =y'S;2:-{S-;;2fn) (3) 

where 

Sp estimated standard deviation of the product 
population, 

SN computed standard deviation of the N sample 
means, 

Sn pooled estimate of testing error, and 
n size of each of the N samples. 
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The next step is to substitute these results into 
Equation 1 to develop a modified Q-statistic for use 
in estimating the percentage defective of the 
product distribution only. This modified value, 
designated Q' to distinguish it from the standard Q 

value, is given by Equation 4. 

(4) 

Sample Calculatio.n 

For this example, there are N = 7 samples, each of 
size n = 3, and the lower limit is 100.0. The test 
results and calculations given in Table 1 are 
substituted into the appropriate equations to give 
the following results. 

By using Equation 3 and the results from Table 1, 

Sp= /2.541 2 - (2.036 1 /3) = 2.253. 

By using Equation 4 and the results from Table 1, 

Q' (103.0 - 100.0)/2.253 = 1.33. 

From Figure 2, the estimated percentage defective by 
the modified method = 6.32. 

By using Equation 1, 

Q = (103.0 - 100.0)/2.541 = 1.16. 

From Figure 2, the estimated percentage defective by 
the standard method = 11.56. 

Although the difference in the results obtained 
by the two methods is not great in this example, 
there are situations in which this difference may be 
important. If the AQL were defined to be 10 
percent, the modified method would produce a clearly 
acceptable result, but the standard approach would 
not. If a graduated pay schedule were in effect, a 
difference of a few percent might correspond to a 
substantial reduction in payment. 

A Minor Problem 

A problem that occasionally turns up in analysis of 
variance applications may occur with this proce­
dure. When a variance component is estimated from 
the difference between two other estimates, on rare 
occasions this difference will be negative. This 
occurs because the two estimates are independent 
random variables and it is possible for two extreme 
values to combine to produce a negative result. If 
this should occur in the expression for Sp in 
Equation 3, the appropriate remedy is to set Sp 
equal to zero. This produces a zero denominator in 
the Q'-statistic in Equation 4, which is handled in 
the same manner as it is for a conventional Q-sta­
tistic. If the sample mean is greater than or equal 
to the lower limit, the percentage defective is con­
sidered to be zero. If the sample mean is less than 
the lower limit, the percentage defective is esti­
mated to be 100 percent. 

Computer Simulation Tes t s 

In order to demonstrate the effectiveness of the 
modified Q-statistic given by Equation 4, a computer 
simulation program was written that permitted the 
testing of this approach with various combinations 
of product and testing variability, sample size, and 
percentage defective. Each simulation run involved 
5000 replications of the sampling and testing 
procedure with a lower limit of L = 3000. 0. The 
other values of interest are presented along with 
the simulation results in Table 2. 

It can be seen from the results in this table 
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Table 2. Typical results of computer 
Average Estimated simulation tests. 
Percentage Defective 

Product 
Sample Product Testing Product Percentage Standard Modified 

Samples Size SD SD Mean Defective Method Method 

3 4 400.0 0.0 3658.08 5.0 5.06 5.06 
3 4 400.0 0.0 3512.69 10.0 10.12 10.12 
3 4 400.0 0.0 3336.58 20.0 20.06 20.06 
3 4 400.0 0.0 3101.17 40.0 39.96 39.96 
3 4 400.0 200.0 3658.08 5.0 5.59 5.29 
3 4 400.0 200.0 3512.69 10.0 11.12 10.61 
3 4 400.0 200.0 3336.58 20.0 20.60 19.79 
3 4 400.0 200.0 3101.17 40.0 40.86 40.44 
5 3 400.0 100.0 3658.08 5.0 5.35 5.21 
5 3 400.0 100.0 3512.69 10.0 10.52 10.31 
5 3 400.0 100.0 3336.58 20.0 20.07 19.79 
5 3 400.0 100.0 3101.17 40.0 39.80 39.64 
5 3 400.0 300.0 3658.08 5.0 6.38 5.29 
5 3 400.0 300.0 3512.69 10.0 12.24 10.40 
5 3 400.0 300.0 3336.58 20.0 22.35 20.00 
5 3 400.0 300.0 3101.17 40.0 40.71 39.39 
7 2 400.0 200.0 3658.08 5.0 5.95 5.11 
7 2 400.0 200.0 3512.69 10.0 11.40 10.12 
7 2 400.0 200.0 3336.58 20.0 21.04 19.38 
7 2 400.0 200.0 3101.17 40.0 40.71 39.88 
7 2 400.0 400.0 3658.08 5.0 8.81 5.83 
7 2 400.0 400.0 3512.69 10.0 14.69 10.48 
7 2 400.0 400.0 3336.58 20.0 24.24 18.71 
7 2 400.0 400.0 3101.17 40.0 42.02 39.55 

Note: The lower limit= 3000.0 and there were 5000 replications per run. 

that, when the testing error is zero (or relatively 
small compared to product variability), the two 
methods both produce very accurate estimates of the 
product percentage defective. As the testing error 
becomes larger, the standard method begins to 
overestimate the product percentage defectivei 
however, the modified method continues to be 
accurate within the degree of precision expected of 
the simulation experiment. 

Limitations of the Modified Method 

Although it would be very unusual in actual practice 
for the testing standard deviation to equal or 
exceed the product standard deviation, additional 
simulation tests were made to determine whether the 
modified method would produce accurate estimates 
under such extreme conditions. The results of these 
tests are presented in Table 3. 

The tables used for estimating percentage 
defective do not exist for fewer than N = 3 samples 
and the modified approach requires a minimum sample 
size of n = 2 so that testing error can be 
distinguished from product variability. Therefore, 
the first group of results in Table 3 represents the 
smallest total sample and the most severe test of 
the modified method. Within this group, the results 
appear to be quite satisfactory up to and including 
a testing error equal to about one-half of the 
product standard deviation. As the testing error 
increases above this level, even the modified method 
begins to overestimate the product percentage 
defective, apparently the result of the occurrence 
of too many negative variance estimates. 

The second group of tests in Table 3 demonstrates 
the mitigating effect of an increased sample size. 
This reduces the frequency of occurrence of negative 
variance estimates and lessens the tendency to 
overestimate the product percentage defective. In 
this case, the modified method may remain accurate 
for testing errors somewhat greater than one-half of 
the product standard deviation. 

The inability of the modified method to remain 
unbiased for extremely large values of testing error 
is not considered to be a serious drawback. For 
most practical applications, the component of 
variability due to testing will be substantially 

less than the variability associated with the 
product, a condition under which the modified method 
is accurate. Furthermore, for those rare cases in 
which the modified method may exhibit some bias, •t 
is still considerably less biased than the standard 
method. 

In addition to accuracy (lack of bias), another 
important characteristic of any statistical esti­
mator is its degree of precision (repeatability). 
Several tests were made that indicated that the pre­
cision of the modified method is essentially the 
same as that of the standard method. 

Attempts to Improve the Modified Method 

Several attempts were made to improve the modified 
method. Al though none of these proved to be 
fruitful, each will be discussed briefly in the 
belief that this may be of some use to other 
researchers. 

Table 4 presents typical results obtained when a 
total of six methods were applied with increasing 
levels of testing standard deviation. The first 
method (Standard Q) refers to the standard method 
based on Equation 1 and the second method (Q, Sp) 
is the modified method based on the estimate of the 
product standard deviation (Sp) from Equation 3 
and the modified Q-statistic in Equation 4. 

The third method (Q, Sp, EQUIV N) is based on 
the well-known facts that the variance of a sample 
drawn from a normal population is a x2 -distributed 
variable and that the difference between two x 2 -

distributed variables is not distributed as x2
• 

Therefore, the value of Sp 2 derived in this 
paper is not distributed as x 2 and, consequently, 
the modified Q-statistic given by Equation 4 must be 
distributed somewhat differently from the standard 
Q-statistic in Equation 1. However, if Sp2 can 
be assumed to be approximately x2 distributed, it 
is possible to derive an expression that gives the 
equivalent degrees of freedom in much the same way 
that this is done for the approximate F-test <1, p. 
247). Then, if we assume that the equivalent sample 

size (N) is one more than the degrees of freedom, 
Equation 5 can be written. The estimate of percent-
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Table 3. Tests that demonstrate the limitations of the modified method. 

Average Estimated Relative 
Percentage Defective Frequency 

of Negative 
Sample Testing Standard Modified Variance 

Samples Size SD Method Method Estimates 

3 2 100.0 10.38 10.12 0.029 
3 2 200.0 11.29 10.36 0.106 
3 2 300.0 13.25 11.29 0.178 
3 2 400.0 14.87 11.96 0.259 
3 2 500.0 16.37 12.55 0.319 
3 2 600.0 19.12 14.67 0.369 
3 2 700.0 20.70 15 .36 0.405 
3 2 800.0 22.99 17.71 0.424 
3 4 100.0 10.12 9.85 0.012 
3 4 200.0 10.38 9.86 0.054 
3 4 300.0 11.48 10.24 0.117 
3 4 400.0 12.33 10.57 0.180 
3 4 500.0 13.89 11.20 0.236 
3 4 600.0 15.00 11.47 0.287 
3 4 700.0 17.00 12.61 0.358 
3 4 800.0 17.86 13.13 0.371 

Note: Lower limit= 3000.0; product mean= 3512 .69; product SD= 400.0; 
product percentage defective= 10.0;replications per run= 5000. 

Table 4. Results of attempts to improve the modified method. 

Estimated Percentage 
Defective 

Relative 
Frequency 
of Negative 
Variance 

Method 
Testing 
SD Mean Min/Max SD Estimates 

Standard Q 
Q, Sp 
Q, Sp, EQUIV N 
Q, Sp, NEG VAR 
STD NML, SP,N-1 
STD NML, SP,N 
Standard Q 
Q, Sp 
Q, Sp, EQUIV N 
Q, Sp, NEG VAR 
STD NML, SP,N-1 
STD NML, Sr,N 
Standard Q 
Q, Sp 
Q, Sp, EQUIV N 
Q, Sp, NEG VAR 
STD NML, Sr,N-1 
STD NML, Sp N 
Standard Q ' 
Q, Sp 
Q, Sp, EQUIV N 
Q, Sp, NEG VAR 
STD NML, Sr,N-1 
STD NML, Sp,N 
Standard Q 
Q, Sp 
Q, Sp, EQUIV N 
Q, Sp, NEG VAR 
STD NML, Sr,N-1 
STD NML, Sr,N 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
200.0 
200.0 
200.0 
200.0 
200.0 
200.0 
300.0 
300.0 
300.0 
300.0 
300.0 
300.0 
400.0 
400.0 
400.0 
400.0 
400.0 
400.0 

10.04 
10.04 
10.04 
10.04 
10.60 
9.27 

10.38 
10.04 
9.93 

10.04 
10.60 
9.41 

11.49 
10.22 
9.73 

10.22 
10.72 
9.91 

12 .93 
10.28 
9.25 

10.25 
10.69 
10.47 
14.83 
10.55 
9.14 

10.30 
10.86 
11.31 

0.0/ 57 .5 
0.0/ 57.5 
0.0/ 57.5 
0.0/ 57.5 
0.0/ 58.0 
0.0/ 58.6 
0.0/ 57.8 
0.0/ 57.9 
0.0/ 57.9 
0.0/ 57 .9 
0.0/ 58.4 
0.0/ 59.0 
0.0/ 56.0 
0.0/ 56.1 

-11.7/ 56.1 
-0.1/ 56.1 

0.0/ 56.5 
0.0/ 57.0 
0.0/ 53.I 
0.0/ 54.1 

-15.7/ 52.4 
-34.1/ 54.1 

0.0/ 54.4 
0.0/ 54.l 
0.0/ 65.4 
0.0/100.0 

-18.6/100.0 
-39.8/1 38.5 

0.0/100.0 
0.0/ 68.9 

9.3 
9.3 
9.3 
9.3 
8.5 
8.2 
9.4 
9.4 
9.5 
9.4 
8.6 
8.3 
9.9 
9.9 

10.4 
9.9 
9.2 
8.8 

10.4 
10.4 
11.6 
10.5 
9.7 
9.4 

I I.I 
11.2 
13.1 
11.8 
10.7 
10.3 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.008 
0.008 
0.008 
0.008 
0.002 
0.0 
0.042 
0.042 
0.042 
0.042 
0.009 
0.0 
0.101 
0.101 
0.101 
0.101 
0.031 

Note: Number of samples= 7; sample size= 2: Lower limit= 3000.0; product SD = 400.0; 
product percentage defective= 10.0; replications per run = 5000. 

age defective can then be obtained by using N to in­
terpolate between appropriate tables of the type 
shown in Figure 2. 

(5) 

Bounds for N can readily be deri,red and are given 

by F.quation 6. Because N can take on values as low 
as one, but the tables for estimating percentage 
defective do not exist for N less than three, it is 
sometimes necessary to extrapolate to obtain the 
estimate of percentage defective. Unfortunately, 
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this often produces negative values of percentage 
defective, as can be observed from the results in 
Table 4. 

l < N < Max(N,n) (6) 

Although the concept of a negative value of 
percentage defective has no physical interpretation, 
it concei.vably could have practical value if the 
distribution from which it came provided an unbiased 
estimate of the true percentage defective of the 
population being sampled. However, as can be seen 
in Table 4, this appears not to be the case. For 
this particular series of tests, the method of using 
an equivalent value of N is negatively biased to a 
slightly greater degree than the positive bias of 
the original modified method. 

The fourth method (Q, Sp, NEG VAR) was planned 
to occasionally produce estimates of percentage de­
fective outside the normal range of 0-100 percent. 
This procedure did not set negative variance esti­
mates equal to 0 as was done with the previous meth­
ods. In this case, Sp was calculated as the 
square root of the absolute value of the variance. 
Then, if the variance was negative, a minus sign was 
attached to the estimate of percentage defective. 
It was clear that this approach would tend to reduce 
the positive bias, but to what extent was not 
known. As seen from the results in Table 4, the re­
duction was too slight to be of value. 

Two additional methods were included, both of 
which involved the use of the standard normal 
distribution. For the fifth method (STD NML, 
Sp N-1>, a z-score was computed by using the value 
of' Sp obtained from F.quation 3. The final method 
(STD NML, Sp N) was identical except that all 
standard deviations were computed by using N instead 
of N-1 in the denominator under the radical. For 
both procedures, the percentage defective estimate 
was the area under the standard normal distribution 
that corresponds to the computed z-score. As can be 
observed from the results in Table 4, these two 
methods were no more successful than the others. 

Although the distributions of percentage 
defective estimates are extremely skewed for all of 
these methods, the standard deviations have been 
included in Table 4 as an indicator of precision. 
Since the standard deviations for all methods are 
about the same and the original modified method (Q, 
Sp) exhibits less bias while producing no 
percentage defective estimates outside the range of 
0-100 percent, it is judged to be the best of the 
methods that were tested . 

SUMMARY AND CLOSING RF.MARKS 

The standard method for estimating the percentage 
defective is unbiased, but the population to which 
it is applied includes the component of variability 
due to the testing process and this causes the 
percentage defective of the actual product to be 
overestimated. For those situations in which it is 
deemed desirable to overcome this inaccuracy, a 
method based on analysis of variance techniques is 
presented that makes it possible to estimate the 
actual percentage defective of a continuous normal 
population exclusive of testing error. 

An extensive series of computer simulation tests 
was conducted to demonstrate that the method is ef­
fective, provided the testing error does not exceed 
about one-half the product standard deviation--a 
condition that is easily met in most practical situ­
ations. Even for those cases in which the testing 
error is larger than this, the modified method is 
still considerably less biased than is the standard 
method. 
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Stratified Random Sampling from a Discrete Population 
RICHARD M. WEED 

In the development of statistical acceptance procedures for products whose 
quantity is measured on a continuous scale by using units such as length, area, 
volume, or weight, quality-assurance engineers usually specify stratified ran­
dom sampling plans to ensure a more uniform coverage of the product than is 
often achieved by pure random sampling. Stratified plans divide the total 
quantity of the product into an appropriate number of equal-sized sublots and 
require that a single random sample be taken from each. Not only is it desirable 
to develop an equivalent procedure for products that are measured in discrete 
units, but in many cases, such a procedure will prove to be more convenient 
for continuous products that are produced or delivered in discrete units such 
as batches or truckloads. However, the development of such a procedure is not 
as straightforward as might be expected. Weaknesses of some of the more obvi­
ous approaches are discussed and then a method is presented that achieves the 
desired result. 

With pure random sampling, all possible sample 
combinations are equally probable. Although the 
theory associated with most statistical acceptance 
procedures is based on the concept of pure random 
sampling, this approach has the disadvantage that, 
an occasion, the samples may tend to be clustered 
within a small segment of the population. In the 
development of acceptance procedures for products 
whose quantity is measured in continuous units such 
as length, area, volume, or weight, it has become 
common practice to avoid this drawback by specifying 
stratified random sampling plans. These plans 
divide the total quantity of the product into an 
appropriate number of equal-sized sublots and 
require that a single random sample be taken from 
each. 

Some construction products are measured only in 
discrete uni ts such as pieces, and others that are 
measured in continuous uni ts are produced or 
delivered in discrete units such as batches or 
truckloads. For both of these cases, it will be 
desirable to develop a stratified sampling procedure 
suitable for discrete populations. However, the 
stratification method described in the preceding 
paragraph cannot be applied directly unless the 
sample size happens to be an exact divisor of the 
lot size. Since this occurs only rarely, a 
modification of this procedure is required that will 
spread the samples throughout the entire population 
in a manner that produces the same degree of 
randomness as that provided by continuous stratified 
plans. 

Whereas all possible combinations of individual 
samples may occur with pure random sampling, this 
obviously is not the case with stratified sampling 
since only one portion of the population is selected 
from each subgroup. However, computation of the 
probability of any particular portion being included 
in the sample is not difficult, and it can be shown 
that this probability is equal for all portions. It 
follows that the degree of randomness achieved by 
stratified random sampling is such that each item of 

the population has an equal chance of appearing in 
the sample. 

This is a necessary but insufficient condition 
for pure random sampling and emphasizes that 
stratified random sampling produces a more 
restricted degree of randomness. Since the theory 
associated with statistical acceptance procedures is 
based primarily on pure random sampling, one might 
wonder about the extent to which the validity of 
these procedures is compromised by stratified 
sampling. By their silence on this subject, most 
authors have implied that there is no serious 
problem. Based on a few brief tests with computer 
simulation, this appears to be a correct assumption, 
although this is an area that might warrant further 
study. For purposes of this paper, however, assume 
that stratified sampling is a valid and practical 
approach, and attention will now be directed toward 
the development of a method for selecting stratified 
random samples from discrete populations. 

UNSATISFACTORY METHODS 

The objectives of the method to be developed are to 
guarantee that the samples will be distributed 
throughout the entire population and to do this in a 
manner that produces the same degree of randomness 
as that provided by continuous stratified plans. It 
is a simple matter to accomplish the first 
objective, but care must be exercised to ensure that 
the second objective is achieved. In several of the 
more obvious approaches, the probability of being 
included in the sample is not equal for all items of 
the population. 

One method that produces an imperfect result 
consists of stratification by quantity, selection of 
the sample location by quantity, determination of 
the discrete batch or load within which this random 
location occurs, and then random sampling from that 
batch or load. For example, if a construction 
material is normally measured in tons, a lot could 
be defined as 1000 tons, each lot could be divided 
into five sublots of 200 tons each, and specific 
tonnage values would designate the random sampling 
locations within each sublot. The discrete sampling 
locations would then be the particular trucks within 
which these random tonnage values occur. Although 
this method works reasonably well when the total 
number of trucks represented by each sublot is 
large, it has a minor flaw that can become 
pronounced when the number of trucks is small. If 
the random sampling locations for two successive 
sublots both fall close to the boundary between 
these two sublots, they may both occur within the 
same truckload. When this happens, the 
theoretically correct approach is to take two 
samples from the same truck. However, from a 
practical standpoint, it is usually considered to be 




