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Decentralized Control of Congested Street Networks 

RUDOLF F. DRENICK, SAMIRA. AHMED, AND WILLIAM R. McSHANE 

A mathematical model for traffic flow in city streets and its control is presented. 
The model is thought to be appropriate to the kind of control systems antici
pated over the next 10-20 years. These systems are expected to rely to a con
siderable extent on communications that are less binding on driver behavior 
than the traffic signals that are now virtually the sole communication-control 
devices. The model is accordingly probabilistic. It is not limited to the prob
lem of optimal signalization. On the contrary, optimal as well as satisfactory 
traffic control can be based on it. In either case, the problem develops into 
one of a special kind oi nonlinear programming and oi very large scale. A 
scheme is described for its decomposition into decentralized control, and several 
algorithms for its computational execution are outlined. 

The most important technological development during 
the past decade may have been that of the very
large-scale-integration (VLSI) circuit chip. By all 
present indications, its impact will be widespread 
and profound. The control of traffic in city 
streets is likely to be affected. One can perhaps 
anticipate that current control systems will be 
supplemented and perhaps even supplanted by others 
that use the new technology. The new generation of 
such systems might seek to induce desirable traffic 
patterns by greater flexibility in its adjustment of 
red-green splits and in its use of turn signals at 
intersections. It might also combine the conven
tional signals with traffic advisories broadcast 
over general, citizens band, and perhaps even dedi
cated radio transmission channels, all in an effort 
to create a more satisfactory traffic-flow pattern. 

The common characteristic of most of these strat
egies is that they are not binding on the driver in 
the way that conventional traffic signals now are. 
One can accordingly expect drivers' reactions to 
them to be of an even less deterministic nature than 
their reactions to the present ones. A model of the 
traffic system under these conditions seems most 
appropriate if formulated stochastically, and this 
is what has in fact been done in this study. The 
control variables of the system are, roughly speak
ing, the probabilities with which vehicles can be 
induced to make right turnR, left turns, or no turns 
at the intersections of the street network in re
sponse to the various signals to which their drivers 
er~ ~~rv:'~~n- ~h~ rr~ffir. ~ign~ls. of course. remain 
as a set of control variables as well. 

The problem of designing a traffic control system 
can then be viewed as that of making the best, or at 
least a satisfactory, choice of those probabili
ties. Formulated in this way, it develops into a 
constrained mathematical progranuning problem whose 
solution is made difficult partly by its non
linearity and partly by its large scale. The non
linearity is admittedly of a very special kind. The 
constraints, as well as the objective functions, are 
typically multilinear in the control variables. 

This is a feature that should be exploited in the 
solution procedure, and the several solutions that 
have been considered do so. 

The large scale of the problem, on the other 
hand, suggests decentralized control schemes. Such 
schemes are at least intuitively most appropriate 
when the controlled system is made up of many sub
systems geographically distributed over a wide 
area. It is then an appealing idea to exercise 
control over each subsystem separately, perhaps 
based mainly on inputs obtained locally, and to 
perform the necessary coordination through a hier
archy of supervisory controllers. Decentralized 
control schemes have the potential of reducing the 
cost of data communications, providing a high level 
of fail-safe capability, and allowing greater flexi
bility in the design and implementation of control 
strategies. 

Surprisingly, however, little work has been 
reported on the application of decentralized control 
concepts to optimize the operations of large-scale 
urban transportation systems and even less work that 
treats these systems stochastically (.!,). The cur
rently accepted versions of these concepts are 
explained in a recent article by Barry (£). Chu !ll 
explored the optimal decentralized control of a 
string of high-speed, densely packed vehicles using 
on-board controllers. Looze and others !!l and 
Kumar and others (~) proposed decentralized control 
schemes for regulating traffic on urban freeway 
corridors. Saridis and Lee (§) discussed the gen
eral problem of hierarchical control and management 
of traffic systems, while Chu CU, Sarachik (~), 

Singh and Titli (~), and Gershwin and others (10), 
among others, suggested decentralized control al
gorithms for large street networks, in nonstochastic 
formulations. A comprehensive survey of decen
tralized control methods and their applications to 
large-scale systems has recently appeared (11). 

In this paper, a traffic network model based on 
probabilistic concepts is developed, and the problem 
of truffic control in ouch u network io formulated. 
The reasoning that leads to decentralization as a 
technique for the solution of that problem is out
li~~d, ~~a, fi~~lly, =clutic~ ~l;c~!th~~ ~~~ b~!efly 

discussed, those that are already available as well 
as those that have been developed in this study. 

TRAFFIC NETWORK MODEL 

A traffic network is treated in this study as a 
stochastic system that is controlled by influencing 
the probability that a vehicle arriving at an inter
section will make a right or left turn or no turn at 
all. The discussion presented here is based on a 
rather simple network of streets. Its extensions to 
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Figure 1. Segment of a street network. 
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more general and complex configurations will, how
ever, be readily apparent. 

Consider a network that is a rectangular grid of 
streets numbered 1, 2, 3, etc. , and avenues labeled 
A,B,C, etc. Figure 1 shows the segment involving 
the streets numbered r, s, and t and avenues I, J, 
and K. During every red-green cycle, intersection 
sJ processes an input quadruple i of arriving pla
toons into an output quadruple k of departing ones, 
and it does so with certain "processing" probability 
Pik sJ. The indices i and k represent the 
sizes, compositions, and directions of the arriving 
and departing platoon quadruples at intersection sJ, 
respectively. A platoon is said to have departed 
from an intersection when it arrives at the next 
one. The processing probabilities at the different 
intersections are the control variables of the 
system. Signalization is present as a concern but 
is derived, rather than explicit, in this formula
tion. 

Since every platoon quadruple i is processed into 
some quadruple k, one must have 

where i and k range over 
values. In addition, if 
probability of arrival of 
is the joint probability of 
k, then 

(I) 

all of their possible 
Pi sJ is the joint 

quadruple i and qk sJ 
departure of quadruple 

(2) 

This equation relates the input and output prob
abilities at the same intersection. A second rela
tion prevails between inputs and outputs at differ
ent intersections. It expresses the fact that input 
quadruple i at a particular intersection consists of 
portions of the output quadruples released from the 
four intersections immediately connected to it. In 
Figure l, the input quadruple arriving at intersec
tion sJ is made up of the platoons coming from 
intersections sI, sK, rJ, and tJ. The joint arrival 
probability could thus be expressed as 

(3) 

where the four factors at the right-hand side repre
sent the probabilities of having output platoon 
patterns from intersections sI, sK, rJ, and tJ that 
match the input quadruple pattern to intersection sJ. 

The processing of quadruple i into k by intersec
tion sJ presumably takes a certain known processing 
time tik sJ, which depends on both the input i 
and the output k. One way of assessing the perfor
mance of intersection sJ, therefore, would be by its 
mean processing time: 

(4) 

Equations 1-4 written down for all intersections 
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describe the state of traffic flow in the entire 
network. Control is exercised by adjusting the 
processing probabilities at the different intersec
tions in such a way that a satisfactory flow pattern 
results. In this study, a pattern is considered 
satisfactory if it avoids "overload" throughout the 
network. The term overload can be given various 
interpretations; the simplest (though not obviously 
the most realistic) is that overload is avoided at 
intersection sJ if 

(5) 

where ll.sJ is the cycle length there. The reason 
for adapting this definition is that a violation of 
Equation 5 at any one intersection will eventually 
lead to unbounded waiting times and queue lengths 
there. These would entail the same phenomena at 
neighboring intersections and thus represent an 
expanding nucleus of congestion in the network. 

The problem of achieving a satisfactory flow 
pattern, as formulated here, is seen to be a mathe
matical programming problem, though one without an 
obvious objective function. A set of processing 
probabilities Pik sJ that obeys the constraints 
of Equations 1-5 is to be determined, if it exists. 
In other words, dny feasible solution to the problem 
is regarded to be satisfactory. It is customary in 
mathematical programming to prescribe a suitable 
objective function and to seek a solution that is 
optimal relative to it. In this case, one can take 
the same approach on the basis of the argument that 
overload at even only one intersection, as just 
explained, represents a highly undesirable traffic 
phenomenon and that it accordingly should be avoided 
if at all possible. This view suggests a rather 
natural choice of the objective function, namely 

T = (1/N)Lr' 1 (6) 

in which the sum extends over all intersections in 
the network (and the factor l/N is there mainly for 
cosmetic reasons). The minimization of -r would of 
course be subject to the constraints of Equations 
1-5. Additional constraints may be needed to impose 
origin-destination (0-D) specifications, queue
length limits, and other traffic restrictions. 
These are not mentioned here for simplicity of 
exposition. 

If the Equation 6 choice of an objective function 
is considered inappropriate, others can be substi
tuted for it, and several that have been considered 
by traffic engineers are natural candidates. The 
nature of the problem, and to some extent also that 
of its solution, are not greatly affected by such 
modifications. 

The problem in any case is of very large scale in 
general, regardless of whether scale is measured in 
terms of the number of variables or the number of 
constraints. The number depends on what variables 
or constraints are counted. In terms of variables, 
if one considers only the proces!;ling probabilities 
Pik sJ, there will be as many as there are 
platoon quadruplets per intersection, squared (to 
allow for arrivals and departures) , and multi plied 
by the number N of intersections in the network. In 
terms of constraints, if one considers only the 
probability and overload constraints (Equation 5 and 
Figure 1), there will be N(N + 1). 

The problem is also nonlinear in its variables, 
as one readily recognizes. If Equation 6 is used as 
the objective function, the nonlinearities are of a 
special nature. The variables enter into the con
straints and the objective function in sums of 
products, but none are raised to powers other than 0 
or 1. They are, in other words, multilinear func-
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Figure 2. Decentralization by avenue. 
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tions of those variables. The same is true of the 
problem if objective functions other than that of 
Equation 6 are used, provided they are expected 
values of cost-benefit parameters attached to the 
traffic flow. 

CONTROL DECENTRALIZATION 

The large scale of the programming problem described 
in the preceding section makes it highly desirable 
to seek a solution by way of a decornposi tion al
gorithm or, which is saying the same thing, to 
effect control by decentralization. Of the various 
schemes that have been considered so far in this 
study, one that is patterned on the hierarchical 
decomposition procedures developed by Mesarovic and 
his students <2, Chapter 4) currently appears the 
most promising. A brief description of these proce
dures and their use in the study is given here. 

The idea of the hierarchical decornposi tion 
schemes is to resolve the Lagrangian L that cor
responds to a large-scale programming problem into a 
number of terms 

(7) 

each of which involves variables associated mainly 
with a single subsystem rather than with the system 
as a whole. There evidently is a good deal of 
latitude in the interpretation of the word "mainly" 
and, for that matter, the word "subsys tern". In 
fact, success with the approach is often tantamount 
to a judicious exploitation of that latitude. 

The approach that has been used in this study so 
far is the following. It has been assumed that the 
traffic in the network is characterized by a "domi
nant direction of flow," e.g., from north to south 
in Figure 1. One can then assign the control of 
traffic along and across each avenue to a subordi
nate controller, as indicated in Figure 2. The 
coordination of the signaling among avenues can be 
assigned to one supervisory controller or to several. 

To do so, one collects in each of the terms LJ 
all those making up the Lagrangian L that can be 
associated with the traffic on and across avenue J. 
With the objective function of Equation 6, this makes 

(8) 

disregarding any additional terms attributable to 
0-D constraints and others. The mean processing 
times TsJ in Equation 8 are explicitly multi
linear functions of the processing probabilities 
Pik sJ of intersection sJ but implicitly also of 
those of other intersections. Strictly speaking, 
TsJ would be a function of the processing prob
abilities of all other intersections but, with the 
dominant direction of flow, only of those lying 
north of avenue J. 

One can now seek an optimal set of processing 
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probabilities in the usual way--namely, among those 
that satisfy the following equations: 

aL/aP;k'~ = aL A/aP;ksA + aL 8/aPiksA + ... + aL z/aP;ksA = 0 

aL/aP;ksB = aL 8/aP;ksB + ... + aL z/aPiksB = 0 

(9) 

(10) 

(11) 

and so on, along with the overload and other con
straints. The form of these equations is due to the 
assumption of a dominant direction of flow that 
implies that LA depends only on the Pik sA, 
LB only on Pik sA and Pik sB, etc. 

The form of Equations 9-11 further suggests that 
the controller for avenue J be assigned the solution 
of the optimization problem represented by the 
equation 

(12) 

along with overload and other constraints pertinent 
to avenue J. This optimization would be for the 
processing probabilities Pik sJ of the intersec
tions along that avenue. The quantity 

(13) 

would be supplied to the avenue J controller by a 
superior to be treated as an additive constant 
during the optimization. It would be updated by the 
superior and resupplied to the subordinates for a 
new optimization. 

The actual computational procedure, as in most 
nonlinear programming problems, would not, however, 
seek a direct simultaneous solution of Equations 12 
and 13 but would use a search algorithm selected 
from among the several candidates briefly discussed 
in the next section of this paper. 

SOLUTION TECHNIQUES 

It has been pointed out that the problem of devising 
satisfactory or optimal traffic control, as formu
lated in this study, is a constrained nonlinear 
programming problem. It is, in fact, of a special 
kind that has been referred to here as "rnulti
linear". This is true regardless of whether or not 
the control scheme is decentralized. 

Several existing solution techniques suggest 
themselves. Among them are, first of all, a number 
of well-tested algorithms for the solution of con
strained nonlinear programming in general (_!l,_!1). 
Their very generality, however, tends to be a disad
vantage in that their convergence may be slow and 
uncertain in practice. Another group of techniques 
goes under the term of geornetr ic programming 
(14,15). They apply to a more restricted class of 
problems but one that includes many of the rnulti
lincar oneo. Unfortunately, they do not readily 
accommodate equality constraints of the kind that 
are inherent in the traffic-control problem formula-

............. ...... ... _ ... .: ....... , ___ , ... 

.......... t' ..... &.. ............................... ..I. 

appropriate. 
An effort was accordingly made in this study to 

investigate solution algorithms that are tailored to 
multilinear problems. One such algori thrn exploits 
the fact that the rnultilinear programming problem is 
a natural generalization of the linear ones and 
hence is a rather direct analog to the well-known 
simplex algorithm (16). 

As of this writing, however, a number of special
ized techniques patterned on the gradient method are 
being favored because they seem most amenable to the 
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kind of extensions in the traffic-control problem 
that are expected to become necessary in the near 
future. 

DISCUSSION OF FORMULATION 

This paper has described the present status of a 
study that seeks to formulate the problem of traffic 
control in city streets, with a view to the way in 
which the control might be executed in another 
decade or two. It may be of interest to add some 
brief remarks on the thinking that led to the cur
rent formulation, the features of it that are now 
thought to be undesirable, and the developments in 
it that are anticipated for the near future. 

The idea of the formulation arose from a recent 
effort at developing a mathematical approach to 
organization theory (17). The parallel between the 
control of traffic in city streets and organizations 
may seem rather remote, but there are in fact a 
number of important analogies. For one, both can be 
designed with the aim of avoiding overload among 
junctions--i.e., among the intersections of city 
streets and among the members of an organization. 
Moreover, in both the control variables develop into 
probabilities of the kind that have here been called 
processing probabilities. There are, however, 
substantial distinctions as well. Most important 
may be the fact that the flow of traffic in a street 
network is a much more involved phenomenon than the 
flow of information and material in a well-function
ing organization. In fact, it may be safe to say 
that an organization that had as disorderly a flow 
pattern as city traffic would be virtually unmanage
able. 

The main shortcoming of the current formulation 
of the control problem is felt to be its nondynamic 
character. It is a tacit assumption in a solution 
by mathematical programming that, once obtained, the 
solution will also be promptly adopted. In traffic 
control, however, and especially in the kind of 
control scheme envisioned here, this is unlikely to 
be so. The control system will thus have to monitor 
its own success with the traffic pattern by means of 
suitably placed sensors and adjust its control 
signals accordingly. The dynamics of the resulting 
feedback loops will have to be combined with the 
driver characteristics in order to achieve satis
factory operation. At this time, the gradient-like 
methods mentioned in this paper seem the most amena
ble of those considered or developed so far. 
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