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Improved Estimation of Traffic Flow for 

Real-Time Control 

YORGOS J. STEPHAN EDES, PANOS G. MICHALOPOULOS, AND ROGER A. PLUM 

A critical review of the most widely accepted demand prediction algorithms is 
presented. Based on data collected at four intersections, sensitivity analysis of 
the best existing algorithms indicates that very little improvement in their per
formance could be achieved. A new, simpler algorithm, which requires consid
erably less information and fewer computations, is subsequently proposed and 
compared with the best of the existing algorithms. The results suggest that for 
5-min prediction the second-generation Urban Traffic Control System predictor 
(UTCS-2) is usually better. However, in cyde-by-cycle prediction the proposed 
algorithm is considerably (as much as 41 percent) better than the best of the 
existing algorithms. 

The problems associated with computerized signal 
control are numerous, ranging from dema nd pre d i c t ion 
algorithms to reliability analysis, detector place
ment, and safelock design. In recent publications 
(1-3), traffic models and signal control strategies 
have been deve loped. 

The major objective of this study is to determine 
the most reliable prediction algorithm suitable for 
implementing a recently developed (}) real-time con
trol policy for critical intersections. This deter
mination depends on two basic criteria: (a) algo
rithm performance and (b) the ability of the 
selected algorithm to estimate average arrival flow 
rates on a cycle-by-cycle basis. The second er i
terion is required for the implementation of a 
policy such as that mentioned above. 

A critical review of the most widely accepted de
mand prediction algorithms is performed first. This 
review includes a summary of performance character
istics in which emphasis is placed on the effective
ness and drawbacks of each algorithm from the 
limited tests found in the literature. Potential 
improvements to the best existing algorithms, sug-. 
gested in the literature, are discussed, and sen
sitivity tests are performed that indicate the ex
tent of improvement in algorithm performance that 
could be expected to result from such changes. 

Subsequently, a new demand prediction algorithm 
is proposed and compared with the second- and third
generation Urban Traffic Control System (UTCS) 
predictors (i,2_), which were found to be the best 
(for the purposes of this study) among the existing 
algorithms. The c u rrent-measurement and histori
cal-average predictors are also included in the com
parisons. The comparison tests are based on 10 data 
sets collected at four intersections over a three
month period. These tests are more extensive and 
detailed than previous ones in that they include 
both isolated and coordinated intersections con
trolled by pretimed or actuated signals. 

The major findings can be summarized in three 
parts: 

1. The test results of a comparison of the per
formance of UTCS-2, UTCS-3, historical average, and 
cur rent measurement are in agreement with previous 
studies (6,7). More specifically, the 5-min predic
tions of -bOth UTCS-2 and UTCS-3 track the trend of 
the actual values of the volume measurements, and 
both improve the prediction in comparison with using 
the current measurement as the predicted value. 
However, in both cases the predicted values time-lag 
the actual measurements. The test results also show 
that UTCS-2 performs consistently better than 

UTCS-3. However, UTCS-2 provides less information 
or very little additional information over histori
cal averages. 

2. The sensitivity analysis performed here on 
UTCS-2 and UTCS-3 parameters indicates that not much 
improvement in expected UTCS performance could be 
achieved by varying the parameters away from the 
values recommended in the literature (_§.,§_). These 
observations reinfo rce the need for the development 
of simpler and more accurate demand prediction al
gorithms. 

3. An algorithm is proposed that, in its sim
plest form, degenerates to a mov ing average. The 
tests show that, when f e w data are avail a ble, the 
moving average is the most accurate method. When 
more detailed data are available, the complete al
gorithm performs at least as well as or better than 
a moving average. 

BACKGROUND 

Review of Demand Prediction Algorithms 

The existing demand prediction algorithms fall into 
three general categories: (a) the second genera
tion, (b) the third generation, and (c) algorithms 
developed after the third generation. The second 
generation is designed fo r control intervals on the 
order of 5-15 min, and the third generation is de
signed on a cycle-by-cycle basis. 

Second-generation algorithms are older and 
typically require extensive historical data as 
reference. They use current traffic measurements to 
correct for the traffic deviations from the average 
historical pattern. Second-generation UTCS (UTCS-2) 
(i), ASCOT (~), and ASCOT-RTOP (10) all belong to 
this category. 

Third-generation algorithms (2,1), generally more 
recent than the second generation, were developed 
with the objective of making predictions based on 
current traffic measurements only. However, the 
third-generation UTCS (2) , the best-known algorithm 
in this category, requires a "representative" data 
set for estimating prediction coefficients. This 
assumption is in conflict with the idea of "highly 
responsive control software" (i.e., the third
generation control software) for which the predictor 
was designed (7). 

The Baras-Levine algorithms (11-13), which con
stitute the most recent approach todemand predic
tion, fall in the third category. These algorithms 
are based on the hypothesis that, in contrast with 
previous assumptions, the data from traffic sensors 
represent a point process that is not Poisson. They 
._ui;::J..t:.LuLt:: u~~ .l:JUJ.nL-.LJrut.:ess Cecilniques to d.evel.op 

improved filter-predictors for use in traffic-re
sponsive (nearly real-time) computer control of ur
ban traffic. Their algorithm, F/P I (ill, is aimed 
primarily at critical intersection control and is 
based on a time-varying Markov chain model that rep
resents a linearization and discretization of non
linear traffic dynamics. F/P I was found to be more 
accurate and more informative than ASCOT by its 
authors (13). It needs, however, more computation 
time. In~ddition. unlike algorithms in th<> pre
vious two categories, the Baras-Levine algorithm 



Transportation Research Record 795 

Table 1. Algorithms tested and evaluated. 

Algorithm Description 

t-1 
UTCS-2 vi = mt + ')'(mt-I - f1-1) + (I - a) :E cf Cft-s-1 - mt-s-t ) 

s=O 

t-2 
+ ')'(! - a) :E cf Cft-s-2 - mt-s-2) 

UTCS-3 Vt = 'Y1 ft + (1 -·~:l~oil't + (1 - a):~: cfft-s-1] 

Historical average Vt ::; IBt 

Current measurement Vt = f1 

Proposed Vt = a, ft + a2Cft - ft-1) + a3 ( k~l ft-lr./N) + ao 

predicts queue size at an intersection rather than 
demand. 

Both second-generation and third-generation de
mand prediction algorithms are the results of exten
sive research. However, the elaborate formulas they 
offer leave much to be desired. Other researchers 
have postulated a number of factors that, in their 
opinion, have apparently hampered the success of de
mand prediction algorithms. One factor brought for
ward by Kreer (.!!) is that the vehicles that are 
measured should be the same ones that are affected 
by the resulting change in control action; the only 
types of control that might satisfy this requirement 
(but might also result in increased computation 
costs) are critical intersection control and ve
hicle-actuated modes of control (~). To be sure, a 
major reason for the apparent failure in solving the 
traffic-control problem is that no predictor built 
to date is adaptive to the changing, underlying 
traffic-flow process. At coordinated networks, 
treating demand prediction as an open-loop i;>rocess 
is another reason, intimately related to the first 
one, for this failure. In recent research by 
Mengert, Brown, and Yuan (7), it was proposed to use 
the Trigg and Leach method (14), a smoothing algo
rithm, and another technique that they developed to 
make UTCS-2 and UTCS-3 adaptive. Significantly, 
preliminary tests did not reveal substantial im
provements. Box-Jenkins-type analyses and other 
estimation techniques such as Kalman filtering may, 
however, promise future improvements <l>· 

Of the five algorithms presented above, only 
UTCS-2 and UTCS-3 have been chosen for further 
analysis and testing. The Baras-Levine algorithm 
C!.ll could not be included, since it cannot be used 
for demand prediction. Neither version of the ASCOT 
algorithm (l,10) has been chosen for three basic 
reasons: 

1. ASCOT is a second-generation technique and as 
such cannot respond to traffic on a cycle-by-cycle 
basis; testing two similar techniques (i.e., UTCS-2 
and ASCOT) could not be justified unless one were 
significantly different from the other. 

2. ASCOT has data requirements that are signifi
cantly greater than those of any of the algorithms 
reviewed. 

3. ASCOT requires extensive instrumentation that 
is not available in most real systems. 

Two more algorithms have been included in compar
ison tests and performance evaiuation. The histori
cal average, one of the two algorithms, assumes that 
the volume during any specified time period equals 
the smoothed historical volume for that period as 
obtained from earlier observations. The second al
gorithm, the current measurement used as the pre
dicted value, assumes that the volume during any 
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given time period (in this case, 5 min or one cycle) 
is the same as that during the previous time 
period. As a result of this assumption, prediction 
inherently lags behind observation by at least one 
time period. This method has the simplest data re
quirements. 

Finally, the proposed algorithm assumes predic
tion to be a linear function of the current volume, 
the difference between the current and previous 
volume, and an average volume during the previous 
three to five time periods. All algorithms tested 
and evaluated in this work are presented in Table 1 
and explained in the following sections. 

The second-generation UTCS, UTCS-2, predicts the 
next-control-interval (on the order of 5-15 min) 
traffic volume at each detector location in real 
time based on the measurements from the same loca
tion only. The algorithm makes use of both smoothed 
historical traffic data and current traffic-volume 
measurements from the vehicle detector. 

The UTCS-2 set of equations has been presented 
elsewhere <!>· The complexity of the solution, how
ever, which is of major interest to this study, is 
usually not shown. By solving the difference equa
tions of UTCS-2 (4), it can be shown that UTCS-2 re
sults in the foll;wing demand prediction equation: 

1-1 
Vt= mt+ 'l'(m1-1 - 'Yft-d + (1 - a) :E cf(ft-s-1 - mt-s-d 

t-2 s=O 

+ ')'( ! - a) :E cf(ft-s-2 - mt-s-2) (!) 
s==O 

in which 

k 

mt = a0 + :E [a;cos(2nit/N) + b1 sin(2nit/N)] 
i-1 

(2) 

and 

where 

(3) 

A 

Vt predicted volume at time ti 
mt historical volume at time ti 
ft measured volume at time ti 
dt empirical adjustment at time ti 

a constant computed off-line from 
representative volume data of the lo
cation in question (e.g., for the 
UTCS system in Washington, D.C., a 
was 0.2) i 

'Y ~ smoothing coefficient (e.g., for 
the UTCS system in Washington, o.c., 
'Y was 0.9) i 

ao, ai, bi n coefficients (computed off-

k 

line) of Fourier series approximation 
of historical traffic patterns for 
each measurement location; 
user input parameter determining the 
fidelity of Fourier series approxima-
tion, usually the result of a trade
off between Fourier series accuracy 
and storage space and computation 
effort (in general, for more rapidly 
varying functions, higher values of 
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k should be used; k-values from 6 to 
20 have been used in past applica
tions) ; 

n = number of sample points of the repre
sentative data set; and 

N total number of time intervals in the 
representative data set (e.g., for 
15-min intervals, the data for a 24-
h day will consist of 96 intervals) • 

It can be seen that the UTCS-2 prediction equation 
(l) is a function of 

v = v [m(t), f(t), n, a] (4) 

where 

m = m(a0 , a;, b;. k, N, t; i = I to k) (5) 

The predictor for the third-generation UTCS soft
ware, UTCS-3, predicts traffic volume two control 
intervals into the future. Like UTCS-2, UTCS-3 
forecasts the volume at each location in real time 
based on measurements from the same location. How
ever, it is different from UTCS-2 in that the pre
diction process relies solely on current-day mea
surements (no historical traffic pattern is required 
for prediction). By solving the difference equa
tions of UTCS-3 (5), it can be shown that UTCS-3 re
sults in the foll~ing demand prediction equation: 

[ 
t-1 ] 

Vt+;= 'Y/t +(I - 'Y;) /10 a 1 +(I - a) ~ cl f,_s-1 
s==O 

in which 

I n-j [ s-1 ] 
'Y; = (n - 1) ~ f, -[10 a' - (1 - a) ~ aPfs-p-l 

s= I p= O 

I •+l-l JI x I fs+; - floDl'+ i - (1 - a) Z aP fs+j-p-l 
L p a O 

n [ s-1 ] 
+ (n - I -j) ~ f, -flo<l-(1 -a) ~ aPfs-p-I 

s=t p=O 

where 

Vt+j predicted volume for time (t + j) at time 
t; 

'Yj extrapolation constant computed off
line from representative volume data 
of the location in question; 

ft measured volume at time t; 
µt = exponentially smoothed volume measure

ment, also referred to as "coarse pre
diction of volume"; and 

°' = smoothing coefficient [a value of 0.95 
has been used in past applications (~]. 

(6) 

(7) 

lt can be seen that the UTCS-3 prediction equation 
(z) is a function of 

v = v [[10, i(l), n , aj 

Comparative Evaluation and Drawbacks of UTCS-2 and 
UTCS-3 

Both UTCS predictors are based on single-location 
traffic measurements. Both use the linear combina
tion of residues (differences between traffic mea
surements and either historical data or smoothed 
traffic data) as the basic feature for prediction. 
The second - generation pLedictor requires histo!ical 
data as the reference. The third-generation predic-
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tor does not require historical data, makes predic
tions based on current traffic measurements (7), and 
can be applied to undersaturated links only {zl· 

The drawbacks of UTCS-2 (7) led to the develop
ment of UTCS-3. Major UTCS-2 drawbacks are related 
to its high reliance on historical data: Traffic 
volume can vary substantially, depending on various 
external (with respect to algorithm) factors (e.g., 
weather conditions, special events, developments in 
other modes of transportation, and even the traffic
control change itself). UTCS-2 is not responsive to 
such changes. Because of this reliance on histori
cal data, UTCS-2 is not readily transferable across 
systems and therefore is not practical. A large 
data base is required for the historical data. This 
data base consumes computer storage space and must 
be updated periodically off-line. Furthermore, an 
analysis conducted early in the UTCS project in 
which "simulated" traffic data were used indicated 
that historical data were not always necessary to 
achieve good prediction. 

As can be seen from a comparison of Equations 1-3 
and Equations 6-8, UTCS-2 prediction is indeed a 
function of two time-dependent functions (more ac
curately, a function of the difference of two time
dependent functions): measured volume f(t) and 
historical volume m(t). UTCS-3 prediction, on the 
other hand, is a function of f (t) only. The con
stants to be predetermined are n, the number of 
sample points of the representative data set, and 
a, the smoothing coefficient; these constants are 
needed irrespective of the UTCS predictor specifica
tion chosen. 

A small number of past performance tests compar
ing UTCS-2 and UTCS-3 <&,.§.> have indicated that 
UTCS-3 is not capable of achieving a performance as 
high as that of UTCS-2, which was consistently 
better --i. e., had both a lower mean square and a 
lower mean absolute value error. In addition, 
UTCS-2 had a larger portion of small-magnitude er
rors than UTCS-3 (6). Time-lagging is a serious 
drawback of both algorithms, but it is especially 
obvious with UTCS-3, where it is inherently two time 
intervals long and cannot be compensated for. One 
result of this inherent time lag is that, when there 
is a detector outage, UTCS-2 provides reasonably 
good values during the outage and is available as 
soon as vehicle detector operation is restored 
whereas UTCS-3 will not provide predicted volumes 
until two time intervals after the vehicle detector 
is restored. 

RESEARCH APPROACH 

For testing the demand prediction algorithms, 10 
data sets were collected at six locations in the 
Minneapolis-St. Paul metropolitan area during Oc
tober, November, and December 1979. The details are 
summarized in Table 2, which shows that the selected 
locations include both coordinated and isolated in
tersections under pretimed or actuated control. 

1wo error measurements were computed for each 
data set and algorithm: (a) mean square error 
{MSE), which penalizes large prediction errors, and 
lb) mean absolute error (MAE), which indicates the 
expected typical error for an individual predic
tion. These error measurements, which have been 
established in the literature for comparing predic
tion performance (~11), are defined as follows: 

MSE = [l:(measured volume - predicted volume)2 ] /N (9) 

MAE= [~I measured volume - predicted volume I] /N (10) 

where N i" the t<;>tal m1mber of predictions. 
In using current UTCS algorithms, all of the 
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Table 2. Summary of data·set characteristics. 

Location 

Oak Street, S.E., and Delaware Avenue, northbound 
Oak Street, S.E., and Washington Avenue, S.E., westbound 
Oak Street, S.E., and Washington Avenue, S.E., eastbound 
Oak Street, S.E., and Washington Avenue, S.E., southbound 
Union Street, S.E., and Washington Avenue, S.E., westbound 

Fifth and Excelsior, Hopkins 

Data Approach 
Set Classification 

I Coordinated 
2 Isolated 
3 Coordina led 
4 Coordinated 
5 Coordinated 
6 Coordinated 
7 Coordinated 
8 Coordinated 
9 Isolated 

10 Isolated 

necessary constants were obtained from the litera
ture (i 1l) except the smoothing constant, a, in 
which case the steady-state a value was found and 
used. Historical averages were formed by using data 
from seven days. The Statistical Package for the 
Social Sciences regression package <lil was used to 
determine constants where needed by the formulas. 

All tests for which results are presented later 
in this paper are valid for comparison among predic
tion algorithms. Since the data used for testing 
were collected at a number of locations, nothing can 
be concluded regarding the relation between control 
policy and prediction accuracy. 

PROPOSED ALGORITHM 

Because of the disadvantages of the existing al
gorithms already described and some additional prob
lems discussed later in this paper, it was decided 
that a new algorithm should be developed. In addi
tion to meeting the objectives set forth in the in
troduction, the new algorithm should avoid arbi
trary methods of treating the data and should in
stead be based on theory in as straightforward a 
manner as possible. It should be flexible enough to 
become part of closed-loop traffic control once the 
demand prediction was incorporated into the traffic 
process. It should also be simpler and at least as 
accurate as UTCS-2 or, in cycle-by-cycle prediction 
(of most interest to the project objectives), UTCS-3. 

The proposed algorithm uses the volume during the 
next time period as the predicted variable; the cur
rent volume, the difference between current volume 
and previous volume, and the average volume during 
the previous three, four, or five time periods are 
the independent variables. The algorithm can be 
derived by using data from one or more previous days 
and used for demand prediction on the following 
day. On-line derivation is also possible. 

The prediction equation is 

(11) 

where N is the number of time periods considered 
(N = 3, 4, and 5 are suggested values) and a 1 , 
a 2 , and a 3 are control coefficients that can be 
found by using standard regressive techniques to 
best fit the measured data for the location in ques
tion. 

From the above it can be seen that the proposed 
algorithm is a function of 

v = v [f(t), ab N; i = 0 to 3] (12) 

It can also be seen that the algorithm is simpler in 
form than either UTCS-2 (Equations 1 and 2) or 
UTCS-3 (Equations 6 and 7). It should also be noted 
that the prediction equation (Equation 11) is of the 
general form 
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Control 
Policy Date and Duration 

Semiactuated 5-min intervals, 3 :00-6 :30 p.m., l 5 days in Oct.-Nov. 1979 
Pre timed 5-min intervals, 3:00-6:30 p.m., 15 days in Oct.-Nov. 1979 
Pretimed 5-min intervals, 3 :00-6:30 p.m., l 5 days in Oct.-Nov. 1979 
Pretimed 5-min intervals, 3 :00-6:30 p.m., 15 days in Oct.-Nov. 1979 
Pre timed Nov. 13, 2:45-3:50 p.m., 40 cycles 
Pre timed Nov. 14, 8:30-9:35 a.m., 39 cycles 
Pre timed Nov. 14, 3:55-5:00 p .m., 33 cycles 
Pre timed Nov. 15, 7:30-8:35 a.m., 38 cycles 
Pre timed Dec. 3, 3 :50-4:55 p.m., 45 cycles 
Pre timed Dec. 4, 3:40-4:55 p .m., 45 cycles 

v(t) = ao + a1f(t) + a2 [df(t)/dt] + a3ff(t)dt (13) 

and could be treated as a proportional-plus, deriva
tive-plus integral control problem if the traffic 
system were closed-loop--i.e., if the demand esti
mates were used to set the traffic signals con
trolling the flow f (t). The benefits expected from 
such a general treatment are known in system analy
sis and well documented in the literature (16,ll.). 

In an open-loop application, such as at isolated 
intersections, the accuracy of the proposed algo
rithm depends directly on the regularity of the 
traffic data trend--i. e., on the similarity between 
the trend of the data used for the determination of 
the control coefficients and that of the actual 
measurements. This implies that the algorithm 
should be used during periods compatible with those 
during which data were collected. Updating algo
rithm coefficients will further improve accuracy. 
However, extensive historical data are not required 
by the algorithm. In a closed-loop application, the 
algorithm would keep its present form. The coeffi
cients ai could then be determined through analyt
ic methods well established in the theory of dynamic 
optimal control (1&_-l.§_l. 

A simpler version of the algorithm introduced 
above is obtained for ao = o, a1 = 0, a2 = o, 
a 3 = 1 in Equation 11: 

vt = ~ f1-k /N 
k=i !' (14) 

which is the moving average. As demonstrated later, 
this version can achieve high prediction accuracy, 
as good as or slightly worse than that of Equation 
11, but it is inherently slow in responding to 
abrupt demand changes. In the absence of such 
changes, and in the absence of any previous informa
tion on a particular intersection, this most simple 
version would be preferable to all others. 

TEST RESULTS 

In this section, sensitivity tests on certain 
parameters of the two best existing demand predic
tion algorithms are first performed. The tests in
dicate that the performance improvement achieved by 
varying these parameters is negligible. The pro
posed algorithm is then tested, evaluated, and com
pared with the other algorithms given in Table 1. 
Two prediction intervals--5 min and cycle-by-cycle-
are considered by using the data set given in Table 
2. 

Sensitivity Ana.lysis and UTCS-2 and UTCS-3 Possible 
Imecovements 

It has been proposed elsewhere (7) that a potential 
improvement to UTCS-3 performance lies in computing 
the parameter 7 j on-line by using a formula that 
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Table 3. Prediction errors for range of a values in UTCS-3 (data set 1 ). 

Error (vehicles/$ min/lane) 

a MSE MAE 

0.05 123.3 10.0 
0.10 112.3 9.5 
0.15 102.0 9.0 
0.20 92.3 8.5 
0.25 83.2 8.1 
0.30 74.7 7.6 
0.35 66 .9 7.1 
0.40 59.8 6.6 
0.45 53.3 6.2 
0.50 47.4 5.7 
0.55 42.l 5.3 
0.60 37.S 5.0 
0.65 33.S 4.7 
0.70 30.2 4.4 
0.75 27.S 4.1 
0.80 25.4 3.9 
0.85 24.0 3.7 
0.90 23.2 3.6 
0.95 23 .0 3.6 
I.OD 23.5 3.6 

Figure 1. Prediction errors for range of a values in UTCS-3: data set 1. 
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Table 4. Prediction errors for varying 
a and 'Y values in UTCS-2. MSE (vehicles/5 min/lane) 

a = 0.9° 
Data 
Set 'Y = 0.28 r = 0.4 

1 13.l 14.3 
2 61.8 61. 9 
3 51.4 51.l 
4 19.1 2 1. 8 
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is different from Equation 7. Such a change would 
make 'Yj a time-varying function adaptive to the 
latest trend of the traffic deviations. By follow
ing similar reasoning, a, the smoothing constant 
in both UTCS-2 (Equation 3) and UTCS-3 (Equation 8), 
can be made adaptive by using the Trigg and Leach 
method (JJ) . 

To obtain an indication of the extent to which 
UTCS performance could be improved through such 
changes, a sensi ti vi ty analysis was performed. 
First, error sensitivity with respect to changes in 
a was analyzed. For each a value, a total 
number of sample points n was chosen so that a 
achieved a steady-state level. For any data set, 
errors were then recorded for a complete range of 
a values. 

The tests led to two major conclusions: 

1. Around the best a values (i.e., when errors 
are lowest), errors are not very sensitive to 
change s in a (see Table 3 and Figu r·e 1). This may 
be ve r i fied, for e xample, from Table 3, where the 
MSE elasticity with respect to a can be found to 
be ver y l ow: ea(MSE) = 0.16; in the same table, 
it ca n be s een that ea(MAE) = o. 

2. Values of a and 'Y previously recommended 
for UTCS-2 and UTCS-3 (6,7) we re used, and they per
formed q ui te well. Pe cfo!'."manc e was worse whe n any 
a or 'Y values o t her t ha n the one s recommended 
from the Washington, D.C., application (Ji_,2) were 
used with UTCS-2 (see Table 4). Performance im
proved by, at most, 2.8 percent for "best" a 
values in the UTCS-3 application (see Table 5). 

These sensitivity-analysis results indicate that, 
if methods for calculating a and y were im
proved, the improvement of UTCS performance would be 
insignificant. This can be concluded since, for the 
locations examined, error sensitivity to a and Y 
changes around values recommended in the literature 
was very low. These results are strengthened when 
it is observed that the locations examined had quite 
different properties and were controlled by dif
ferent policies. These results also support the 
need for a better demand prediction algorithm. 

Five- Minute Prediction 

Data sets 1-4 (Table 2) were used in these tests. 
Five algorithms were tested: UTCS-2, UTCS-3, cur
rent measurement, historical average, and the pro
posed algorithm. Use of UTCS-3 for one-time-step, 
5-min prediction was possible (.§_) by considering 5 
min as one time step and by setting j = 1 in 
Equation 6. The coefficients developed for the 
proposed algorithm and the test results are 
summarized in Tables 6 and 7, respectively. 

The proposed versions in Table 6 follow the form 
of the prediction introduced previously by Equation 
11. The two errors, MSE and MAE, for the five al
gorithms are presented in Table 7 in two ways. The 
value for each error is given so that conclusions on 
algorithm performance can easily be drawn; evi-

MAE (vehicles/5 min/lane) 

a= 0. 8 a= 0.9" a = 0.8 

r= 0.2 

14.0 
64.2 
52.6 
2 1.0 

"(= 0.4 

15.6 
65.9 
59.4 
24.3 

'Y = 0.2° 

3.0 
6.4 
6.1 
3.4 

r = 0.4 r = 0.2 r= o.4 

3.0 3.0 3.0 
6.4 6.4 6.5 
6.3 6.2 6.5 
3. 7 3.6 3. 9 

8 Va1ue reco mmended from past app1ications (~. J_). 
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Table 5. Prediction errors for varying a values in UTCS-3. 

MSE (vehicles/5 min/lane) MAE (vehicles/5 min/lane) 
Data 
Set °'; 0.95" °'; 0.85 °'; 0.95 3 

I 23.0 22.5 3.6 
2 89.5 88.2 7.7 
3 84.8 83.3 7.5 
4 30.8 30.l 4.3 

3
Value recommended From past applications(~]). 

Table 6. Proposed algorithm versions (5-min prediction). 

Control Coefficient 
Proposed 
Version •o a1 a1 a3 

I 11. 748 0.521 0 0 
2 16.713 0.517 0 0 
3 20.061 0 0.067 0 
4 18.375 0 0 0.457 
5 16.962 0 0 0.497 
6 14.254 0 0 0.573 
7" 0 0 0 l 
8" 0 0 0 I 
9" 0 0 0 I 
8 Corresponds to the moving average. 

°'; 0.85 

3.5 
7.6 
7.5 
4.3 

No. of 
Time 
Periods (N) 

3 
4 
5 
3 
4 
5 

Table 7. Prediction errors of five types of prediction algorithms for 5-min 
prediction. 

Data 
Set' 

2 

4 

Algorithm 

Current 
UTCS-3 
UTCS-2 
Historical 
Version 1 
Version 7 
Version 8 
Version 9 

Current 
UTCS-3 
UTCS-2 
Historical 
Version 2 
Version 7 
Version 8 
Version 9 

Current 
UTCS-3 
UTCS-2 
Historical 
Version 4 
Version 5 
Version 6 
Version 7 
Version 8 
Version 9 

Current 
UTCS-3 
UTCS-2 
Historical 
Version 3 
Version 7 
Version 8 
Version 9 

ti As in Table 2. 

MSE 

Value 

23.5 
23.3 
13.1 
12.8 
19.0 
22.5 
23.l 
24.5 

92.9 
89:5 
61.8 
65.0 
89.4 

117.3 
126.8 
122.9 

87.l 
84.8 
51.4 
55.8 
71.0 
71.3 
73.4 
67.5 
61.5 
63.5 

34.8 
30.8 
19.1 
16.9 
24.8 
26.8 
24.8 
24.3 

MAE 

Difference from Difference from 
UTCS-3 (%) Value UTCS-3 (%) 

0.9 3.6 0.0 
3.6 

-44 3.0 -17 
-45 3.0 -17 
-18.5 3.2 -11.1 
-3.4 3.7 2.8 
-0.9 3.8 5.6 

5.2 4.0 11.1 

3.8 7.6 -1.3 
7.7 

-31 6.4 -17 
-27 6.7 -13 

-0.1 8.0 3.9 
31.l 8.5 10.4 
41.7 8.6 11. 7 
37.3 8.3 7.8 

2.7 7.6 1.3 
7.5 

-39 6.1 -19 
-34 6.2 -17 
-16.3 7.3 -2.7 
-15.9 7.2 -4.0 
-13.4 7.3 -2.7 
-20.4 6.8 -9.3 
-27.5 6.3 -16.0 
-25.1 6.4 -14.7 

13.0 4.7 9.3 
4.3 

-38 3.4 -21 
-45 3.4 -21 
-19.5 3.8 -11.6 
-13.0 4.0 -7.0 
-19.5 3.7 -14.0 
-21.1 3.8 -11.6 

dently, lower errors indicate better algorithm per
formance. In addition, each algorithm is compared 
with UTCS-3, and the deviation of its error with 
respect to that of UTCS-3 is presented. A positive 
deviation means that the algorithm in question has 
an error greater than that of UTCS-3 and is there
fore less desirable than UTCS-3. A negative devia-
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tion implies that the algorithm has an error smaller 
than that of UTCS-3 and is therefore more desir
able. The best-performing algorithm in 5-min pre
diction, UTCS-2, was not chosen as a basis for 
comparison since it could not be used in 
cycle-by-cycle prediction. 

The following conclusions can be drawn from the 
test results and the relative performance compari
sons given in Table 7: 

1. For any data set, at least one version of the 
proposed algorithm performs substantially (as much 
as 21 percent) better than UTCS-3. 

2. The proposed algorithm does not always per
form as well as UTCS-2 or the historical average. 
This is especially true for the isolated location 
(data set 2), where the mean absolute error is 25 
percent higher than that of UTCS-2. A probable rea
son for the superior performance of UTCS-2 in this 
case is the importance of historical data for 5-min 
prediction in isolated locations. 

3. Versions 7-9 of the proposed algorithm, which 
degenerate to a moving average of three to five pre
vious periods, exhibit performance very similar to 
that of the complete algorithm. 

4. By increasing N (the number of time periods 
considered for an average) from three to five in the 
proposed algorithm, performance is not significantly 
affected. 

5. For all locations, UTCS-2 errors are lower 
than UTCS-3 errors. 

·6. For all locations, the errors of the histori
cal algorithm are lower than the errors of UTCS-3. 
At two of the four locations, the historical algo
rithm also performs better than UTCS-2; however, for 
all locations, the difference in performance between 
the historical algorithm and UTCS-2 is not signifi
cant. 

7. For all locations, prediction from the cur
rent measurement alone is worse than that of either 
UTCS-2 or UTCS-3. 

Figures 2-4 show the performance of four of the 
algorithms tested for data sets 2, 3, and 4, respec
tively. The historical average has not been plotted 
together with the rest of the algorithms, since it 
exhibits behavior very similar to that of UTCS-2. 
The conclusions cited above can also be drawn from 
these figures. 

Cycle-by-eycle Pr ediction 

Both coordinated and isolated intersections, cor
responding fo data sets 5-10 in Table 2, were used 
in the cycle-by-cycle prediction tests. Three algo
rithms were tested: UTCS-3, current measurement, 
and the proposed algorithm. The two historically 
based algorithms investigated for 5-min predic
tion--i.e., historical and UTCS-2--could not be used 
for cycle-by-cycle prediction since signal cycles 
did not begin and end at the same times each day. 

The coefficients developed for the proposed al
gorithm and the test results are summarized in 
Tables 8 and 9, respectively. Coefficients for ver
sions 7-9 (Table 6), which correspond to the moving 
average, are derived on-line. Coefficients for ver
sions 10-12 (Table 8) are derived from data set 
6--i.e., a period adjacent to the prediction period 
of data set 8. Coefficients for versions 13-15 
(Table 8) are derived from the combined set of data 
sets 5-7--i.e., from periods not compatible with the 
prediction period of data set 8; for this and the 
previous test only, the deviation and prediction 
periods were chosen to be different so that the per
formance of the algorithm under less than ideal con
ditions could be examined. Finally, coefficients 
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Figure 2. Five-minute volume: data set 2. 
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Figure 3. Five-minute volume: data set 3. 60.-----------------------------------------, 
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Figure 4. Five-minute volume: data set 4. 801,------------------------------------- ---, 

50 

40 

for versions 16-lB (Table B) are derived from data 
set 9--i. e. , a period almost identical to the pre
diction period. Here, the algorithm was expected to 
perform best. 

The following conclusions can be drawn from the 
test results and the relative performance compari
sons given in Table 9: 

4-"UUp .m s:uop.m 
TIME OF DAY 

__ Actual 

Prediction• 
Current M11a1urement 

0 UTCS 2nd Generation 
0 UTCS 3rd Generation 
6 Propoud Ver1ion 3 
D Propoud Verelon 8 

&:OOp .m 

1. At all times, at least three versions of the 
proposed algorithm are substantially (as much as 41 
percent) better than UTCS-3. These versions corre
spond to the moving average. As in the case of 5-
min prediction, the unsatisfactory UTCS-3 perfor
mance can be attributed, at least in part, to the 
occasional congestion at the test sites. 
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Table 8. Proposed algorithm versions (cycle-by-cycle predictionl. 

Control Coefficient 
No. of Time 

Version ao a, a2 a3 Periods (N) 

10 7.435 0 0 -0.359 3 
11 9.759 0 0 -0.781 4 
12 11.053 0 0 -1.014 5 
13 2.044 0 0 0.762 3 
14 1.597 0 0 0.818 4 
15 1.265 0 0 0.861 5 
16 6.839 0 0 0.277 3 
17 8.030 0 0 0.149 4 
18 8.098 0 0 0.143 5 

Table 9. Prediction errors of three types of prediction algorithms for cycle-by-
cycle prediction. 

MSE MAE 

Data Difference from Difference from 
Set• Algorithm Value UTCS-3 (%) Value UTCS-3 (%) 

Current 13.14 26 2.98 21 
UTCS-3 10.44 2.47 
Version 7 7.77 -26 2.22 -10 
Version 8 7.19 -31 2.13 -14 
Version 9 6.94 -34 2.12 -14 

6 Current 4.70 10 1.71 9 
UTCS-3 4.27 1.57 
Version 7 3.74 -12 1.55 -1 
Version 8 3.20 -25 1.44 -8 
Version 9 3.20 -25 1.43 -9 

7 Current 7.44 2 2.04 -2 
UTCS-3 7.33 2.09 
Version 7 6.01 -18 2.03 -3 
Version 8 6.12 -17 2.03 -3 
Version 9 6.04 -18 2.07 -1 

8 Current 9.43 22 2.51 15 
UTCS-3 7.74 2.18 
Version 7 5.07 -34 !. 78 -18 
Version 8 5.21 -33 1.76 -19 
Version 9 4.60 -41 1.68 -23 
Version I Ob 6.20 -20 1.99 -9 
Version 11 b 8.30 7 2.37 9 
Version l 2b 9.37 21 2.55 17 
Version 13c 6.52 -16 1.98 -9 
Version 14c 5.90 -24 1.83 -16 
Version !Sc 5.79 -25 1.84 -16 

5-8 Current 8.75 17 2.32 12 
UTCS-3 7.47 2.08 

9 Current 17.02 15 3.19 7 
UTCS-3 14.82 2.97 
Version 7 9.22 -38 2.47 -17 
Version 8 8.70 -41 2.48 -16 
Version 9 9.22 -38 2.53 -15 

10 Current 8.53 7 2.44 7 
UTCS-3 7.99 2.29 
Version l 6d 5.43 -32 2.00 -13 
Version l 7d 5.31 -34 1.97 -14 
Version 18d 5.31 -34 1.97 -14 
Version 7 6.20 -22 1.99 -13 
Version 8 6.30 -21 2.06 -10 
Version 9 6.02 -25 2.02 -12 

~As in T~b1e 2. 
Equa tlon.s derived from data set 6. 

~Equations derjved from data sets 5-7. 
Equations dedved from data set 9. 

2. From data sets 9 and 10, it can be verified 
that the more sophisticated versions of the proposed 
algorithm (versions 16-18) perform even better than 
the moving average. Therefore, the best performance 
is obtained when the algorithm is derived from data 
collected, on an earlier day, during a period iden
tical to the prediction period. 

3. When the algorithm is derived from data col
lected during periods incompatible with the predic
tion period, in most cases performance is still con-
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siderably (as much as 25 percent} better than 
UTCS-3. In such cases, however, the moving average 
offers a slightly better prediction than the more 
sophisticated versions and is therefore preferable. 

4. The performance of the proposed algorithm is 
not affected by the approach type (i.e., coordinated 
or isolated} • 

5. For all data sets, the current measurement 
predictor is least desirable. 

Figures 5-8 illustrate the performance of the 
three algorithms in cycle-by-cycle prediction of 
data sets 5, 8, 9, and 10, respectively. For data 
set 8, Figure 6 shows three versions of the proposed 
algorithm--one that uses a data set from the pre
vious day (version 10), one that uses three data 
sets from the previous and the current day (version 
15), and one that is equivalent to a moving average 
(version 9} using four data sets. For data set 9, 
Figure 7 shows the proposed version equivalent to a 
moving average whereas, for data set 10, Figure 8 
shows both that version and the complete proposed 
algorithm. The conclusions derived from Table 9 and 
cited above could also be drawn from these figures. 

As Figure 8 shows, the proposed algorithm 
achieves superior performance by weighing a constant 
average, describing volume trend during the same 
period on a previous day, much more heavily than 
cycle-by-cycle traffic fluctuations. This suggests 
that the assumption of average arrivals frequently 
used in practice for isolated intersections is not 
unreasonable. In contrast, in Figures 3 and 6 and 
in Table 8 it is seen that this assumption is unrea
sonable for coordinated intersections. 

Finally, it should be noted that, as Tables 7 and 
9 indicate, the improved performance of the proposed 
algorithm over UTCS-3 is much more noticeable in 
cycle-by-cycle than in 5-min prediction. 

CONCLUSIONS 

The test results of the previous section suggest 
that in 5-min prediction, for all locations, UTCS-2 
performs better than UTCS-3 and that both are 
superior to the current measurement for prediction. 
The results also indicate that predictions based on 
historical data alone are as good as and frequently 
better than UTCS-2 predictions. The results are 
consistent with previous findings and lead to the 
conclusion that computations and data requirements 
can be significantly reduced by choosing the his
torical algorithm over either UTCS-2 or UTCS-3 for 
5-min prediction. The results also indicate that, 
in 5-min prediction, at least one version of the 
proposed algorithm performs better than UTCS-3 in 
all cases: however, it does not always perform as 
well as UTCS-2. 

In cycle-by-cycle prediction, which was of the 
greatest interest in this study, UTCS-2 and the his
torical algorithm cannot be used. From the remain
ing three algorithms, again the current measurement 
performs worse than UTCS-3 while the moving-average 
version of the proposed algorithm performs better 
than UTCS-3 in all cases. When the proposed algo
rithm is derived from data collected on an earlier 
day during a period identical to the prediction 
period, it performs better than all algorithms ex
amined. However, the complete version of the pro
posed algorithm has certain disadvantages in com
parison with the moving-average version: (a} It may 
need to be updated frequently, (b} it requires that 
data be collected on at least one previous day, and 
(c) it performs best when used during a specified 
time of day, which makes it necessary to develop 
more than one equation for each day (a minimum of 
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Figure 5. Flow rate: data set 5. 
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Figure 6. Flow rate: data set 8. 
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Figure 7. Flow rate: data set 9. 

14 

12 

11 

10 

w 
!;[ 5 
IC 

3:: 4 
g 
... 3 0 

2 

0 

0 

2 4 6 8 10 12 14 16 
CYCLE 

0 

0 

2 • 8 8 10 12 14 18 

CYCLE 

0 

~. 0 

0 

4 6 8 10 12 14 16 18 

Transportation Research Record 795 

Actu•I 

Predictions 

Current Meaeurement 
0 Propoud Ver1ion 9 
0 UTCS 3rd Generation 

20 22 24 26 28 30 32 3 

__ Actual 

Prediction• : 

2 

Current Mea1urement 

0 Propoud Vereion 8 
0 UTCS 3rd Generation 

~ PropoHd Vere ion 10 
"V Propoaed Version IS 

22 24 26 2 30 

@ 0 
0 

0 

• n 

Aclual 

32 

0 Pr1dlction1 : 

34 

[ 
Current Measurement 

0 Propo1ed Version 7 
0 LITCS 3rd Generation 

20 22 26 8 30 32 34 36 

Oo 
0 

0 

3 40 
CYC LE 



Transportation Research Record 795 

Figure 8. Flow rate: data set 10. 
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three equations for each peak and off-peak period 
would be required). 

Despite these criticisms, the proposed algorithm 
has significant advantages over existing algo
rithms. It does not need extensive historical data 
as UTCS-2 and the historical average do, and it can 
be applied in cycle-by-cycle prediction whereas 
UTCS-2 and the historical average cannot. Further
more, it performs better (as much as 41 percent 
better for the versions examined) than the UTCS-3. 
It should also be pointed out that it could easily 
be optimized at a later date by using established 
optimal-control-theory methodologies. 

The moving-average version of the proposed algo
rithm will usually offer prediction that is more ac
curate than that offered by the best existing algo
rithms. It achieves such performance with minimal 
data, since volume or flow-rate measurements ,from 
the previous three intervals are sufficient. It is 
therefore recommended that the moving-average ver
sion of the proposed algorithm be used initially, 
especially if little is known about the demand char
acteristics of a particular intersection. If more 
information on demand is available, it is desirable 
to use the complete proposed algorithm. 
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Discussion 

Nathan H. Gartner 

The authors have conducted a comprehensive review of 
algorithms for short-range traffic-volume prediction 
of the type that were used in second- and third-gen
eration UTCS control strategies. They also investi
gate a newly proposed, rather simple algorithm that 
in its general form calculates the predicted volume 
as a linear combination of the current (measured) 
value, the difference with respect to the previous 
value, and the moving average (analogous to the pro
portional-plus, derivative-plus integral control
ler). The authors tested this algorithm on a number 
of data sets covering 5-min intervals and single
cycle intervals (presumably, in the 1- to 2-min 
range). Judging by two forms of mean error cri
teria--MSE and MAE (Equations 9 and 10)--results in
dicate that, for the shorter, cycle-by-cycle predic
tions, the proposed algorithms perform better than 
the other algorithms that were tested. 

The results and conclusions of the paper are 
veritable and confirm ideas obtained from previous 
studies on the use of prediction algorithms in traf
fic control. This discussion is only peripherally 
concerned with the particular results and method
ology of the paper; it is primarily directed toward 
the ulterior objective of the study, that of im
plementing real-time traffic-control strategies. 

Real-time traffic control is designed to provide 
an increased degree of responsiveness to changing 
traffic flows. The expectation is that intersection 
performance can be improved by capitalizing on this 
variability. Yet extensive field tests with the 
UTCS system and elsewhere show that such expecta
tions did not materialize (19,~_). The more re
sponsive the strategy that was tested, the less ef
fective was its performance. In analyzing these 
results, one may erroneously conclude that a library 
of signal-control plans generated off-line by using 
historical data (from another day, perhaps another 
year, but for the same daily period) is more effec
tive than controls generated on-line by using very 
recent data (the past few minutes). However, a 
closer examination of these studies reveals that it 
is not the rationale that has failed (i.e., that 
traffic-responsive control should provide benefits 
over fixed-time control) but the models and pro
cedures that were implemented that failed to produce 
the desired results. 

Real-time traffic-control strategies that rely on 
predicted volumes are not truly responsive: They do 
not respond to actual traffic conditions but to hy
pothetical conditions. The traffic-flow process and 
the optimization procedure used in deriving the con
trol plans form an inseparable closed-loop control 
system. The signal controls can only be effective 
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if an accurate model is used in the optimization. 
Yet these strategies use an abstract model that is 
calibrated by the predicted volumes. Predictions 
are inherently inaccurate, and therefore the models 
cannot take account of the short-term fluctuations 
to which they are supposed to respond. In essence, 
by aggregating and averaging the data, the predic
tion algorithms destroy the information content that 
is most important for real-time control. 

A good demonstration of the inadequacy of short
term volume predictions for their intended use is 
provided by the extensive data sets analyzed by the 
authors and shown in Figures 2-8. In all cases, the 
discrepancies between predicted and actual values 
are very substantial. The shorter the prediction 
interval, the larger are the relative discrepan
cies. [The authors should also calculate the mean 
relative error values of the type l/N ~ (error/ 
measured value).] A most telling example is shown 
in Figure 8, where the best predictor turns out to 
be an almost fixed value, notwithstanding the highly 
variable cycle-by-cycle flow rates. It is clear 
that one cannot conceivably derive a responsive 
strategy from such a prediction. 

Furthermore, suppose one could predict the flows 
in each cycle with complete accuracy (i.e., with a 
zero mean error value). Even then the resulting 
real-time control strategy might be ineffective. 
For example, the following numbers represent vehicle 
arrivals for two cycles, grouped into 5-s intervals, 
on a signal-controlled approach with a 60-s cycle 
time: 

Cycle 
1 
2 

Vehicle Arrivals 
1 1 2 1 1 2 0 2 0 0 1 1 
0 1 0 0 1 1 2 1 2 1 1 2 

During both cycles, the flow is the same (12 ve
hicles), yet the optimal control strategy for each 
should be entirely different because of the differ
ent distribution of the arrivals within the cycle. 

To summarize, I offer the following conclusions: 

1. Reliable estimates of future traffic volumes 
can only be obtained for lengthier time periods (of 
several minutes). These estimates can then be used 
to derive steady-state-type control strategies 
(e.g., first-generation traffic-responsive control). 

2. The quality of predictions should not be 
judged merely by their average closeness to the ac
tual values; rather, they should be evaluated in 
terms of the ultimate objective--the effectiveness 
of the control strategies that they produce. 

3. Estimates of volumes for very short periods 
(e.g., cycles) are unreliable and cannot be used to 
provide effective real-time control. Therefore, 
there is a need to develop real-time traffic-control 
strategies that move away from the use of predicted 
average volumes and rely mostly on actual flows. 
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Samir A. Ahmed 

'l'he authors have provided a needed critique of 
several predictor models that have been proposed for 
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real-time control of street intersections. It is 
true, as the authors have pointed out, that one of 
the major reasons for the unsatisfactory performance 
of real-time signal-control systems is the lack of a 
predictor model that describes the dynamic behavior 
of the traffic-flow process. The paper does not, 
however, substantiate the important points made on 
how a predictor model should avoid arbitrary methods 
of treating the data and instead be based on a solid 
theoretical foundation. 

Predictor models can be categorized into two 
general categories: ad hoc models and point-process 
models. Ad hoc models (e.g., moving-average models, 
exponential smoothing models, and adaptive expo
nential smoothing models) propose arbitrary weight
ing schemes to be assigned to the current and pre
vious observations on the variable of interest. The 
primary advantage of these models is their ease of 
implementation, and their major weakness is their 
inherent lack of a general approach for choosing 
among alternative weighting schemes. The proposed 
models described in this paper (Equation 11) and the 
rest of the models given in Table 1 are in this 
category. In using these models, much is left to 
the personal judgment of the engineer or investi
gator who must assume any special knowledge of the 
control system under consideration. 

The other category of models--point-process 
models--forms a broad class of potential models for 
representing the stochastic nature of many physical 
processes. The eventual form of the predictor model 
is determined by the properties of the observations 
on how a process actually behaves and, among other 
linear predictor models, the resulting forecasts are 
optimal in terms of having minimum MSE (21). In ad
dition, in view of the recent developments in the 
joint analysis of interrelated processes, it is pos
sible to construct point-process models for predict
ing several processes observed in different parts of 
the control system. 

To compare the prediction errors resulting from 
ad hoc models and point-process models, I applied 
three ad hoc models and a point-process model that 
has been developed for freeway traffic to a total of 
166 data sets obtained from three freeway surveil
lance systems ( 22). Forecasts were made for 1 min 
ahead in time. -By using the same error measures 
described in the paper, the point-process model has 
been found to be superior to the ad hoc models. 

In conclusion, I believe that it is time that 
some serious research was devoted to the problem of 
predicting traffic-flow variables for the real-time 
control of street intersections. Such research 
should be based on the well-established theory of 
point-process models. 
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Authors' Closure 

We would like to thank Gartner for his constructive 
remarks, which are in close agreement with our 
views. With regard to Ahmed's comments, we observe 
the following. 

As pointed out from the outset, the objective of 
this study was to test the existing models in order 
to select the most appropriate one for easy field 
implementation subject to the stated criteria. The 
developm·ent of the models was incidental and 
resulted from the need to simplify the prediction 
process. The simple predictors emerged as at least 
as accurate as and frequently better than the most 
complex ones. 

With respect to the argument that prediction 
models fall into the two categories suggested by 
Ahmed, one can argue that, under a more comprehen
sive classification, models can be grouped as (a) 
descriptive or correlative, (b) causal, and (c) 
normative. Most efforts to date belong to the first 
category. Their inherent weakness is lack of atten
tion to causal analysis and use of rather arbitrary 
and complex statistical methods to best describe the 
system modeled. Our attempt at capturing the basic 
causal relations within the system analyzed repre
sents only a first modest step in entering the 
second category. We insisted on keeping our models 
simple in form, yet we included all major terms that 
would make sense to a traffic practitioner. 
Furthermore, the models can be simply transformed to 
become part of the complete feedback system analysis 
in either the time or the frequency domain, once the 
complete traffic system is modeled. Since an under
standing of the causal relations governing the whole 
traffic system is currently lacking, it is our be
lief that a jump into normative interpretations 
would be premature at this stage. Since such an 
understanding is lacking, results from normative 
analysis would not offer substantial improvements 
and therefore would not be cost effective. To be 
sure, Ahmed's findings (11_) are, in effect, consis
tent with this statement. For example, they indi
cate that a simple moving average could be as ac
curate as the method he proposed. 

As for Ahmed's final conclusion, we again feel 
that the emphasis should not be on the exact statis
tical treatment of the problem. We believe that de
mand prediction should not be treated as a point 
process without using more valuable information that 
is currently ignored, information related to traffic 
dynamics. More specifically, a detailed traffic 
model should be developed for analyzing traffic flow 
in signalized links. Demand prediction would, then, 
be greatly simplified, since information from up
stream detectors would be used. In addition, a 
traffic model is needed to identify the tail end of 
the queue and predict arrivals there. In short, 
complete dynamic traffic-behavior analysis is more 
crucial than exact statistical treatment of the pre
diction method. 

Finally, the methods proposed by Ahmed and Cook 
(11_) do not appear to be overwhelmingly superior, 
and their successful and cost-effective application 
to interrupted-flow conditions remains to be tested. 




