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MAXBAND: A Program for Setting Signals on Arteries 

and Triangular Networks 

JOHN D. C. LITTLE, MARK D. KELSON, AND NATHAN H. GARTNER 

MAXBAND is a portable, off-line, FORTRAN IV computer program for setting 
arterial signals to achieve maximal bandwidth. Special features of the program in
clude (a) automatically choosing cycle time from a given range, (b) permitting 
the design speed to vary within given tolerances, (c) selecting the best lead or lag 
pattern for left-turn phases from a specified set, (d) allowing a queue clearance 
time for secondary flow accumulated during red, (e) accepting user-specified 
weights for the green bands in each direction, and (f) handling a simple network 
in the form of a three-artery triangular loop. Green splits can be provided or, 
alternatively, flows and capacities can be given and splits calculated by using 
Webster's theory. The program produces cycle time, offsets, speeds, and order 
of left-turn phases to maximize the weighted combination of bandwidths. The 
optimization uses Land and Powell's MPCODE branch and bound algorithm. As 
many as 12 signals can be handled efficiently. The program is available from 
the Federal Highway Administration. 

Signal-setting methods for fixed-time traffic-con
trol systems separate broadly into two classes. The 
first, and historically oldest, consists of methods 
that maximize bandwidth and progression. This group 
includes, among others, those of Little and Morgan 
(!), Little (~) and Messer and others (}). The 
second group contains methods that seek to minimize 
delay, stops, or other measures of disutility. 
Examples are Hillier's combination method (~) , 
Traffic Research Corporation's SIGOP (2_), 
Robertson's TRANSYT (6), Gartner, Little, and 
Gabbay's MITROP (l), and Lieberman and Woe's SIGOP 
II (_!!) • 

Although disutility-or-iented methods have now 
been available for some time, many traffic engineers 
continue to prefer maximal bandwidth settings be
cause they have certain inherent advantages. For 
one thing, bandwidth methods use ·relatively little 
input: the basic requirements are street geometry, 
traffic speeds, and green splits. In addition, pro
gression systems are operationally robust. Space
time diagrams let the traffic engineer visualize 
easily the quality of the results. Through ac
cumulated experience, engineers who have knowledge 
of the specific streets can spot problems and, if 
necessary, make modifications to the settings. Fur
thermore, various studies [for example, the study by 
Wagner, Gerlough, and Barnes (~)] and much practical 
experience have shown that bandwidth systems give 
good results in the field. It may even be that 
drivers expect signal progression and take it as a 
measure of setting quality. In any case we take the 
position here that, if engineers are going to use 
bandwidth systems, they should have the best. 

Morgan and Little (l) first computerized the set
ting of arterial signals for maximal bandwidth. The 
widely distributed program of Little, Martin, and 
Morgan (10) efficiently finds offsets for maximal 
bandwidth given cycle time, red times, signal dis
tances, and street speed. The total bandwidth at
tained can be allocated between directions on the 
basis of flow. 

Little (_£) subsequently generalized the computa
tion in several ways: The cycle time could be auto
matically selected from a given range, and so could 
speed. Networks could be solved. These and several 
further extensions became possible through a mixed
integer formulation of the problem. 

The flexibility thereby introduced has several 
advantages. For example, maximal bandwidth calcula
tions frequently have a disconcerting feature. On a 

long street, the signals that constrict bandwidth 
may turn out to be far apart. A small change in 
design speed or cycle time can produce quite dif
ferent signal settings and bandwidths. Yet drivers 
do not hold their speeds exactly constant and, as 
shown by Desrosiers and Leighty (11), they tend to 
adjust their speeds to the signals. Therefore, it 
makes sense to let design speed between signals be a 
variable, at least within certain limits. Simi
larly, it is helpful to be able to consider a range 
of possible cycle times automatically and determine 
which one combines best with the street geometry to 
yield maximal bandwidth. The mixed-integer formula
tion permits this. 

The approach has not become popular, however, for 
two principal reasons: 

1. A person must invest substantial effort in 
learning how to formulate and solve problems in this 
way. 

2. At the time the paper by Little !ll appeared, 
the solving of mixed-integer problems was inef
ficient and expensive. Since then, however, methods 
for solving mixed-integer problems have become bet
ter and large-scale computations have become cheaper. 

Further research described here reveals that the 
mixed-integer formulation extends to multi phase 
signals. For example, asynm1etric <eds that occur 
when the green is delayed for left turns can easily 
be introduced into the formulation. The decision 
whether to put a left-turn arrow at the beginning or 
end of the green can be assigned to the optimization 
and resolved in whichever way maximizes total band
width. 

Messer and others (}) have also developed a pro
gram, PASSER II, to consider this last issue. An 
advantage of the present approach is that the mul
tiphase feature is combined with the flexibilities 
mentioned earlier into a single formulation that can 
be pursued to a mathematically proved optimum. A 
further extension is of potential value when sec
ondary flows are significant. Turn traffic entering 
the artery at a previous intersection may build a 
queue that interferes with the progression. In this 
case, a time advance can be put into the through 
band to permit the queue to clear the intersection 
before the through platoon arrives. 

A portable FORTRAN IV computer program has been 
developed that maximizes bandwidth according to 

methods described by Little (~) and extended here. 
The program, called MAXBAND, is designed to handle 
arteries and simple three-artery networks that con
tain as many as 17 signals. The program has been 
documented in a series of reports for the Federal 
Highway Administration (FHWA) (£) • 

METHODOLOGY 
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Figure 1. Space-time diagram showing green bands. 

distance inboood 

D 
Note: Inbound_ and ou i~u"d· gteen bWKk pass through lfgnllls Sh and 51• Quantities with bars time 

refer to inbound d1l(Clion; thot1 wlthoul, lo outbcM;rJd. Outbound reds are drawn solid 
and 11bo11e inbound r~s. which are dashed, In the general case shown, inbound and out-
bound reds need not coincide 

_si 
q(ri) 

Wi (;i) 

ith signal (i = l, ••• ,n); 
outbound (inbound) red time 
at Si (cycles); 
time from right (left) side 
of red at Si to left (right) 
edge of outbound (inbound) green 
band (cycles); 

t(h,il [t{h,il J travel time from Sh to Si 
outbound (Si to Sh inbound) 
(cycles); 
time from center of an 
outbound (inbound) red at Sh 
to the center of a particular 
outbound (inbound) red at Si 
(cycles) {the two reds are 
chosen so that each is 
immediately to the left (right) 
of the same outbound (inbound) 
gEeen band; ~(h,i) 
[~(h,i)] is positive if the 
Si center of red lies to the 
to the right (left) of the sh 
center of red}; 
time from center of ri to 
nearest center of ri (cycles) 
(positive if center of Ei is to 
the right of center of ril; and 

queue clearance time, an advance 
of the outbound (inbound) band
width upon leaving Si (cycles). 

The fundamental equation for formulating the 
arterial problem arises from a physical constraint. 
It is derived with the help of Figure 1 by express
ing the difference in time from A to B in two dif
ferent ways: First, by using outbound-defined 
quantities, time A to B m 6h + integer number of 
cycles+ ~(h,i). Then, by using inbound-defined 
qu~ntities, time A to B = integer number of cycles 
- ~{h,i) +another integer number of cycles+ 6·. 
Setting these times equal, rearranging, and coales~
ing the integers into a single variable, m{h,i), 

r/l(h,i) + iii(h,i) + 6i, - /::,; = m(h,i) (!) 

We call m(h,i) the loop integer in recognition of 
the more general case of networks. The terminology 
applies in the present case because the links Sh 
to Si and Si to sh form a loop and Equation 1 
states that the sum of times around the loop is an 
integer number of cycles. 

From Figure 1, we also read from C to D: 

<P(h ,i) + (1/2)ri + wi + T; = (1/2)rh + wh + t(h ,i) 

and from c to D: 

(2a) 
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¢{h,i) + (1/2)fi + wi = (1/2)rh + wh - 'f1t + t (h,i) (2b) 

Substituting Equation 2 into Equation 1 to eliminate 
~ and ~ gives 

t(h~) + t(h,i) + (l/2)(rh + rh) + (wh + wh) -(l/2)(ri + rj) 

- (w; + wi) - (r; + 'fh) + Lih - Li;= m(h,i) (3) 

So far we have required that Si follow Sh in 
the outbound direction, but this restriction is not 
necessary. For physical reasons we wish t(.) to 
satisfy t(h,j) = t(h,i) + t(i,j); by reason of which, 
setting h = j, we shall require t(i,h) = -t{h,i) and 
by a similar argument, t(i,h) = -t(h,i). With thes~ 
relations, Equations 2 and 3 hold for arbitrary 
sh and Si, and 

<P(h,j) = r/l(h,i) + r/l(i,j) r/l(h,i) = -<P(i,h) (4) 

m(h,j) = m(h,i) + m(i,j) m(h~) = -m(i,h) (5) 

along with corresponding expressions for $· 
Notation becomes simpler if the signals are num

bered sequentially from l to n in the outbound 
direction. Then define Xi=x(i,i+l) forx=t, 
t, m, $• ~· Now Equation 3 gives 

ti+ i;" + (w; + wi) - (wi+! + W;+1) + Li1 - Li;+1 = -(1 /2)(r1 +r;) 

+ (i/2)(ri+J + fi+i) + (T; + T;+i) + m1 

From Figure l we also see that 

If for the moment we also require 
collect Equation 6 and Equation 7 
mixed-integer linear program (LPl) 
arterial signals. 

b = b, 
into 

for 

LPl: Find b, b, wi, wi, and mi to max b, 
to 

b =b 
W1 + ~ .; I - r; } 

w1 + b .; I - fj 
i = 1, . .. , n 

(w; + W;) - (w;+1 + W;+1) + (t; + t;) + Li1 - Li;+1 = -(l/2)(r1 + r;) 

+ (1/2)(•1+1 + fi+i) + ('f; + T;+d + m; i = I , . .. , n - i 

m1 =integer 

b, b , whWi > O i=l, . . . , n 

(6) 

(7a) 

(7b) 

we can 
a basic 
setting 

subject 

LPl has 3n constraints, 2n + 2 continuous variables, 
and n - l unrestricted integer variables. 

In the formulation of LPl, the green band is de
fined on departure from the signal. Therefore, when 
queue clearance times are introduced, the jog put 
into the band will, under some circumstances, cause 
the tail of the arriving band to hit red. If de
sired, the green band can be defined so as to re
quire room for both the arriving green band and 
the que~e clearance jog. This can be done by adding 
ti and ti , respectively, to the left-hand sides of 
Equations 7a and 7b (or 13a and 13b below). This 
change may reduce the bandwidth somewhat. 

We next introduce a generalization that permits 
the optimization program to decide when the left
turn phase (if one is present) will occur with re
spect to the through green at any signal. The 
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Figure 2. The four possible patterns of left-turn phases. 
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left-turn green can be picked to lead or lag, which
ever gives the most total bandwidth. At the same 
time, however, the traffic engineer must be able to 
specify which of the possible combinations of leads 
or lags will be permitted in a given instance. 

Figure 2 shows the four possible patterns of 
left-turn green phases. Let 

gi (gil 

R.i (ii) 

R 

Since the 
is inbound 

ii, -R + ri 

outbound (inbound) green time for through 
traffic at Si (cycles), 
time allocated for outbound (inbound) 
left-turn green at Si (cycles), and 
common red time in both directions to 
provide for cross-street movements 
(cycles). 

time allocated to outbound left-turn green 
red time, we have (see Figure 2) r· = - _1 

= R + R.i and ri + gi = 1, ri + gi = 
1. Moreover, we can express ai, the time from 
the center 
of R.i and 

Pattern 
1 

2 

3 

4 

-_of ri to the next center of 
ti for 

"'· ....!. 

each case as 

-(1/2) (R.i + i'i) 

(1/2) (R.i + ti) 

-(1/2) (X.i - ii) 

(1/2) (R.i - ii) 

follows: 
ri, in terms 

All of these can be expressed in the following 
form: 

t.1 = (1/2)((281 - l)Q1 - (281 - l)R;) (8) 

where oi and 6i are 0 - 1 variables 
previous cases are now picked out by 

Pattern 
l 

0, 
....!. 
0 

and the 

Transportation Research Record 795 

Pattern 
2 
3 
4 

0. 
1 

1 
0 
1 

6. 
0 
0 
1 

1 

Therefore, we can use the mixed-integer program to 
select the pattern that will maximize bandwidth. If 
only certain patterns are to be permitted, restric
tion can be placed on the 6i and 6i to enforce the 
requirements. For example, if only ~atterns 1 and 2 
are permitted, the constraint 6i + Iii = 1 is added. 

We often wish to let the user favor one direc
t ion--say, by manipulating the ratio of inbound to 
outbound bandwidth. For example, this ratio might 
be set to that of the two flows. Such a requirement 
is easily built into the LP as a constraint. How
ever, in making one green band l arger than the 
other, we can never make it larger than the smallest 
green in that direction. Once this is achieved, it 
is foolish to restrict the opposite direction fur
ther just to satisfy the ratio. Therefore, we speak 
of a target ratio. 

Let k = target ratio of inbound to outbound band
width. For the case of k < 1 (outbound 
favored), we can set up the objective function and 
ratio constraint as follows: max(b +kb), subject 
to b ~ kb. The k > 1 case is also accommodated 
if we change the formulation to max(b +kb), subject 
to 

(I - k)b ;;, (! - k)kb (9) 

For k = 1, the l ast i nequal ity must be repl aced by 
b = b. 

A further set of generalizations is possible. 
One of the most important is to let signal period 
(cycle length) and speed be variables. Each will be 
constrained by upper and lower limits. In addition, 
changes in speed from one street segment to the next 
can be limited. Let 

T 

z = 

d(h,i) [d(h,i)] 

cycle length (signal 
period) (s) i 
l/T = signal frequency 
(cycles/s) i 

lower and upper limits 
on cycle length, i.e., 
T1 < T < T2 (s) 1 
distance between Sh and Si 
outbound (inQOUndl (m) i 

d(i,i + 1), di= d(i, 
i + 1) 1 

lower and upper limits on 
outbound (inbound) speed 
(m/s) i and 
lower and upper limits on 
on change in outbound (in
bound) reciprocal speed, 
i.e., l/hi < (l/vi+ll 
- (l/vil < l/gi 
(m/s)- 1 • -

We are constraining change in speed by putting upper 
and lower limits on change in reciprocal speed. 

- --.! .._ _ 
'fU.I. .._.C 

serves to prevent large, abrupt speed changes. 
Reciprocal speed is used because it enters linearly 
in the constraints and can be transformed into 
ti. Thus, 

ti= (ddvi)z 

t; = (d1(Vi)z 

In the expanded formulation, ti, ti, 
decision variables that, once known, 
progression speeds. 

(10) 

and z are 
determine 
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We add to LPl all of these generalizations to 
yield a more versatile mixed-integer linear program. 

LP2 : find b, b, z, ;;;i, ti, ti, .Sir 6i, and mi to 
max (b + kb) , subject to 

(I - k)b ;;, (I - k)kb 

wi + _b .;; I - ri} 

W; + b .;; I - I; 
i =I, .. . , n 

(wi + W;) -(wi+i + W;+i) + (t; + t;) + o;Q; - Si QI -o;+1Q;+1 + bi+1R;+1 - m; 

(11) 

(12) 

(13a) 

(13b) 

= (ri+l - r;) + (T; +Ti+!) i = I , ... , n - I (14) 

l1lj =integer 

lli, ifi =O, I 

(!Sa) 

(!Sb) 

(16a) 

(16b) 

where, if k = 1, Equation 11 is replaced by b = b. 
LP2 involves (lln - 10) constraints and (4n + 1) 

continuous variables, up to 2n (0 - 1) variables and 
n - 1 unrestricted integer variables, not counting 
slack variables. In addition, if the user decides 
to require or prohibit certain left-turn patterns, 
constraints on oi and 6i are added up to a 
maximum of 2n. 

LP2 describes how the arterial case is solved. 
The triangular loop consists of three arteries. Its 
mathematical program consists of (a) an objective 
function that is a weighted combination of the ob
jective functions of the individual LP2' s (the 
weights being set by the user to express the rela
tive importance of bandwidth on the three arteries), 
(bl all the constraints of the individual LP2's, and 
(c) the loop constraint. The loop constraint is 

~ 1/J r = nL 
(i ,j)<L J (1 7) 

where ~ij is the offset (in cycles) for 
in loop L and nL is the loop integer. 

link (i,j) 

De termining Green Splits 

One option in MAXBAND is for the user to supply the 
green splits. As an alternative, the user can pro
vide traffic volume and capacity information and the 
program will calculate the splits. This is done 
essentially by using the theory of Webster (13), who 
has shown that under certain circumstances total 
delay at an intersection is minimized by dividing 
the available cycle time among competing streams of 
traffic proportional to their volumes divided by 
their capacities. 

In MAXBAND, the user who wishes to use this op
tion provides volume and capacity information for 
the traffic, classified into four through movements 
and four left-turn movements for each intersection. 
Let 

TRAT(i) through-traffic ratio of volume to 
capacity in direction i, 

LRAT(i) c left-turn traffic ratio of volume to 
capacity in direction i, and 

i • OUT, IN, OUTC, INC = outbound main, 
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inbound main, outbound cross street, 
and inbound cross street. 

The procedure calculates 

MAIN= max[TRAT(OUT) + LRAT(IN), TRAT(IN) + 
LRAT(OUT)] =the larger of through volume/ capacity 
plus opposite left-turn volume/ capacity for the two 
directions on the main street. 

CROSS= max[TRAT(OUTC) + LRAT(OUTC), TRAT(INC) + 
LRAT(OUTC)] =the same quantity for the cross 
street. 

The basic split between main street and cross street 
is 

MM = MAIN/(MAIN + CROSS) = total time allocated to 
main street (fraction of cycle). 

CC = CROSS/ (MAIN + CROSS) = total time allocated to 
cross street (fraction of cycle). 

Let L(OUT) [L(IN)] = outbound (inbound) left split 
and G(OUT) [G(IN)] =outbound (inbound) through 
split. Then, 

L(OUT) = {LRAT(OUT)/[TRAT(OUT) + LRAT(IN)] x MM. 
L(IN) = {LRAT(IN) / [TRAT(OUT) + LRAT(IN)]} X MM. 
G(OUT) =MM - L(IN). 
G(IN) =MM - L(OUT). 

If necessary, these splits are then modified 
slightly to meet minimum green requirements. 

COMPUTER PROGRAM 

The computer program consists of (a) a control 
section, (b) an input section that accepts the prob
lem data from the user, (c) a matrix generator that 
transforms the input into a form usable by the 
mixed-integer linear program, (d) a ma thematical 
programming package, and (e) an output routine that 
interprets the mathematical programming results and 
prints them out in a form usable by a traffic engi
neer. The program contains approximately 11 000 
lines of FORTRAN IV code, broken down as follows: 

~ No. of Lines 
Control program 100 
Input program 3200 
Matrix generator 3200 
MPCODE 2500 
Output program 2000 

Control Program 

The control program manages the overall computation, 
calling each of the other programs as needed. 

Input to the program is on IBM cards or a corres
ponding card image file on another medium such as 
magnetic tape or disk. The basic inputs are as fol
lows: 

1. Overall problem information--The overall 
problem information includes a name for the run, an 
indicator for whether it is a loop problem or an 
artery problem, an indicator for whether metric or 
customary units are used, the acceptable range of 
cycle lengths, and the target ratio for the band
widths on each artery and their weights, unless 
these are to be computed from volume information. 
Usually, default values are used in the mathematical 
programming package for certain parameters, such as 
the maximum number of iterations and reinversions, 
but, if the user wishes, these can be supplied as 
part of the overall problem information. 
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2. Network geometry--The order of signals on 
each artery is given, along with the distances be
tween them (which may be different in each direc
tion) and the names of their intersections. In the 
case of a loop, the intersection numbers at artery 
meetings are specified. 

3. Green splits or traffic flows and capaci 
ties--The user may specify the green splits at each 
signal as a fraction of the overall cycle time. 
Alternatively, traffic flows and capacities can be 
given for each link, including cross streets and 
turning movements, and the program will calculate 
green splits by using Webster's formula. 

4. Left-turn patterns--Left-turn phases can oc
cur at the beginning or end of the green in either 
direction, creating four possible patterns for the 
through direction at each intersection. The user 
can specify which of the patterns are acceptable, 
and the program will choose among them to maximize 
bandwidth. 

5. Queue clearance time--Queues may build up 
during red time as a result of turning movements 
onto the artery at previous intersections. Such 
queues may impede the flow of vehicles in the 
through band. The user may therefore specify at any 
intersection in either direction a queue clearance 
time as a fraction of the cycle length. The program 
will adjust the through band to arrive at the inter
section after the queue has cleared and leave the 
intersection with the queue included as part of the 
band. In effect, this puts a jog into the through 
band, advancing it upon leaving the intersection by 
an amount eqtial to the queue clearance time. 

6. Range of speed--For each link or, if pre
ferred, for the artery as a whole, the user speci
fies a design speed and a speed tolerance. The pro
gram then chooses speeds for each link from this 
range so as to maximize bandwidth~ In addition, the 
user can constrain the change in speed from one link 
to the next. If the user does not set limits on 
speeds and speed changes, default values of 10 per
cent are used. 

More detailed specification of inputs is found in 
the MAXBAND User's Manual (12). 

Matrix Generator 

The mathematical program LP2 is a special case of 
the general linear mixed-integer problem: max ex, 
subject to 

Ax~ b 

x ;. 0 

Xj integer j e J 

where x is an n-vector of variables whose values are 
sought, c is an n-vector of objective functions co
efficients, A is an (m x n) matrix of coefficients, 
b is an m-vector of right-hand-side constants, and J 
is a set of subscripts identifying the variables 
required to be integer. 

The traffic pro~lem described earlier as LP2 re-
_ _ _ ,: ____ ----!£.! - -·-"' - --- £.- •• 'ti L 

":lU.Ll.C~ ~t"C'"-.LJ-.L'"' VCl.J..UC~ .LU.I.. "'' u, c, QllU u.. .L.Ln:::.:u::: 

will change as the traffic problem changes. It is 
necessary to have a generalized program, called the 
matrix generator, that will take the traffic input 
data and convert them into the appropriate vectors 
and matrices for input to the mathematical program
ming package. 

Mathematical ProqramJliinq Package 

A key part of the computer program is the routine 
for solving the mixed-integer linear program. After 
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several linear programming codes were examined and 
comparative runs were made on two mixed-integer 
packages, MPCODE was selected. MPCODE is available 
in FORTRAN IV source code and is superbly documented 
in a hard-cover book by Land and Powell (_JJ.J. 

The output of the program is divided into three 
parts: input cards, a data summary, and a solution 
report. 

The input-card section is a simple printing of 
the input cards. The data-summary report contains 
the following information: 

1. MPCODE values used by the Land and Powell 
system; 

2. For an artery, (a) general information such 
as the name of the artery, the number of signals, 
limits on cycle length, units, target bandwidth 
ratio, and bandwidth weights; (b) arterywide values 
such as design speed, tolerances, and limits on 
changes between links; (c) intersection values, in
cluding splits with an indication of their origin, 
queue clearance times, minimum greens, and the per
mitted patterns for left turns; (d) link values as 
actually used, including length, design speed, and 
speed tolerances; and {e) volumes and capacities on 
all approaches, when provided. 

3. For a loop, (a) general loop information, 
including upper and lower limits on cycle time and 
where the arteries meet, and (b) the same artery 
information described above but for each of the 
three arteries. 

The solution report presents the following data: 

1. An indicator for whether the problem has been 
solved successfully; 

2. MPCODE statistics describing the number of 
iterations, etc., used by the Land and Powell 
algorithm to solve the problem ("number of solu
tions" is the number of integer solutions, including 
the optimal integer solution, found for the problem); 

3. For an artery, (a) general information, in
cluding name of artery, number of signals, and type 
of units; (b) cycle time and bandwidths; (c) left 
patterns selected as optimal; (d) duration and off
sets of splits in both fractions of a cycle and 
seconds; and (e) traversal times and speeds on links; 

4. For a loop, (a) loop information, including 
chosen cycle time, bandwidths, and objective func
tion; (b) same information as for a single artery 
for each of the three arteries; and (c) repeat of 
duration and offsets of splits for signals at artery 
meetings. 

Examples of outputs for several test problems are 
given elsewhere (11_). 

TESTING 

The testing of the program has included runs on a 
wide variety of problems and operation on several 
computers. 

Table 1 gives run statistics for 10 arterial 
problems and 3 loop problems. The number of 
variables, constraints, and integer variables (total 
and free) relate to the mixed-integer program and 
represent measures of program difficulty. The 
number of branch and bound iterations is another 
measure of how much computation the program re
quired. The number of solutions is the number of 
feasible integer solutions discovered, up to and 
including the optimal one. Input data for several 
of the problems can be found in Little and Kelson 
(12). 
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Table 1. MAXBAND performance statistics. 

Problem Characteristics 
Solution Characteristics 

No. of Integer 
Variables CPU 

Problem No. of No. of No. of No. of No. of Time Cost 
Type Problem Signals Variables Constraints Total Free Iterations' Solutionsb (s) ($) 

Arterial Broadway, Cambridge, MA 5 25 45 4 4 36 I 2.17 0.73 
Voorhees scenario le 6 30 56 s s 668 2 5.81 1.07 
Short version, Waltham artery 6 33 56 8 8 197 3 3.23 0.76 
Voorhees scenario 2c 6 36 56 II II 957 6 7.01 1.23 
Voorhees scenario 2c, computed splits 6 36 56 II II l 457 5 9.74 1.52 
Modified Voorhees scenario 2c , 

computed splits 6 42 56 17 17 607 7 6.26 l.35 
Voorhees scenario 1°, computed splits 6 42 56 17 17 2 089 6 14.08 2.03 
Modified Waltham artery II 60 116 15 10 I 296 4 17.1 6 2.44 
Waltham artery 11 60 Ill 15 15 3 781 7 44.79 5.69 
Wisconsin Avenue, Washington, D.C. 17 88 177 19 19 8 700 12 -210.00 -25.00 

Loops Modified Attleboro loop 4 36 44 5 5 286 3 3.69 0.84 
Attleboro loop 4 37 44 5 5 432 4 4.44 0.92 
FHWA test network 15 93 168 19 16 32 885 15 628.81 74.87 

8 Total number of simplex iterations used. bTotal number of feasible integer solutions found. cTest arterials provided by FHWA. 

Figure 3. Eleven-signal test problem: Main Street, Waltham, Massachusetts. 

Figure 4. Main Street, Waltham: outbound green band. 
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The central processing unit (cpu) time is the 
number of seconds required on the Mas sachusetts In
stitute of Technology (MIT) IBM 370-168 and is the 
primary performance measure. As can be seen, most 
problems have been solved in a few seconds, although 
one problem, the 15-signal FHWA test network loop 
problem, took 10.5 min. The cost shown is the cost 
charged by the MIT Information Processing Service. 

The settings developed by MAXBANO have been put 
into a traffic simulation program (NETSIM) for sev
eral of the test networks with good results. In 
addition, the MAXBAND output can be used to con
struct a space-time plot. Figure 3 shows Main 
Street, Waltham, Massachusetts. Figures 4 and 5 

Figure 5. Main Street, Waltham: inbound green band. 
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show space-time diagrams for its MAXBAND~enerated 

settings. In Figure 4, note the slight changes in 
slope resulting from 10 percent permitted variation 
in design speed. In Figure 5, inbound red times 
differ from outbound because of left-turn phases. 

The MAXBAND program has been transmitted to FHWA 
on magnetic tape and has been operated on computers 
to which FHWA has access. 

DOCUMENTATION 

Little and Kelson (12) provide documentation for 
MAXBAND in three volumes. Volume 1, the Summary 
Report, provides an overview of MAXBAND, including 
complete input and run data on three test networks. 
Volume 2, the User's Manual, describes the MAXBANO 
system and how to use it in detail, including 
worked-out examples of a basic symmetric artery, a 
basic asymmetric artery, a general artery, and a 
loop. Volume 3, the Programmer's Manual, gives com
puter program documentation: First, an overall de
scription of the program is provided, organized by 
subroutine, and then a listing is given for each 
subroutine along with a description of what it 
does. In addition, major variables used in the 
subroutine are listed. No attempt is made to 
document MPCODE, since excellent documentation has 
already been provided by Land and Powell (14). 
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