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Estimating the Contribution of Various Factors to 

Variations in Bus Passenger Loads at a Point 

ROBERT M. SHANTEAU 

A procedure for estimating the relative contribution of various factors to the 
variation of passenger loads on buses at a point is described. These factors 
include unequal bus headways and the uncertainty in the number of passen
gers to arrive in a given time interval. Since overcrowding is undesirable, for 
a given passenger flow a bus company must use more buses if the variation of 
loads between buses is large than if it is small. It is assumed that bus arrivals 
are either so frequent or so unpredictable that passenger arrivals are indepen
dent of bus arrivals. It is also assumed that bus headway does not change 
much over a typical passenger-trip length. Data are presented to show that, 
in the typical case, unequal bus headways contribute far more to variations 
of passenger loads on buses at a point than all other factors combined. It is 
rare that headways are so well controlled that their contribution becomes 
comparable with that of other factors. Where headways are poorly con
trolled, the public would most likely benefit from investments in headway
control strategies. In principle, the cost of controlling headways can be 
balanced against the benefits to find an optimal level of control. 

The number of buses an urban transit agency must 
provide on a busy line is usually determined by the 
peak passenger flow past the maximum load point. 
Most often, the objective of the bus company is to 
use the fewest number of buses while still providing 
an acceptable level of service, where level of ser
vice is defined in terms of overcrowding and/or pas
senger waiting time. 

Overcrowding is undesirable because (a) it causes 
discomfort and inconvenience to the passengers and 
(b) it makes circulation within the bus difficult 
and thus causes the bus to spend more time loading 
and unloading. In this paper, passenger waiting 
time is not used as a measure of performance. In
stead, passenger loads are used because the bus com
pany itself is mostly concerned with overloading. 

Most bus companies try to provide some excess ca
pacity to compensate for variations in loads that 
occur from day to day. These variations are caused 
by the stochastic nature of passenger arrivals and 
by unequal headways (elapsed time between buses). 
It was recognized as early as 1916 (1, p. 156) that 
unequal headways can be a major cause of variations 
in passenger loads. 

Since fewer buses are needed on a line for which 
variations in loads are small than on one for which 
they are l arge, it is usually to the economic ad
vantage of the bus company to use a control strategy 
that attempts to equalize headways <.~). However, 
because traffic conditions and passenger stops cause 
variations in the travel times of buses, it is dif
ficult to prevent deterioration in the regularity of 
headways (}). It is useful for the bus company to 
know what improvements in variations of loads it can 
expect from a range of control strategies so it can 
properly allocate its resources between vehicles and 
control. 

PROBLEM STATEMENT 

The practitioner is faced with the problem of how to 
evaluate various strategies without actually imple
menting them. In this paper, it is assumed that the 
future is sufficiently like the past that we can 
predict what would happen under different strategies 
in the future by analyzing data collected in the 
past. Basically, we want to relate the load on a 
bus to its headway in such a way that we can predict 
its load for different headways but for the same 

general passenger arrival pattern. First, however, 
we must set up a structure for the problem in which 
we can carefully state our assumptions. 

ANALYSIS 

Bus Trajectories and Passenger Arrivals 

Suppose, for a particular day in the past, we plot
ted the time of arrival, origin stop, and destina
tion stop of every passenger on the line on a time
space diagram, as shown in Figure 1. Here, the x's 
represent passenger arrivals and the subscripts the 
destination stop. Multiple subscripts mean that 
several people arrived at a stop at the same time. 
On the same diagram, we also plot the trajectory of 
each bus. 

Usually, when a bus stops, it picks up all pas
sengers who have arrived since the last bus left. 
For instance, in Figure 1, bus 3 picks up two pas
sengers at stop 2, one each destined for stops 4 and 
5. Assume that each bus always has room for all 
passengers waiting for it. Then the load on a bus 
at a particular point is the number of people who 
have arrived between that bus's trajectory and the 
previous one's and who desire to travel beyond that 
point. Passengers who got off prior to that point 
or get on after it are irrelevant. For instance, 
bus 3 is carrying seven passengers as it leaves stop 
5. Note that, where bus drivers refuse passengers 
because their buses are already too full, the actual 
load may not match precisely the load that we have 
constructed. Note also that only departure times 
from stops are relevant and that the details of the 
trajectories between stops can be ignored. 

Assumpt i ons 

Suppose that passengers' arrival times, origins, and 
destinations in no way depend on buses' departure 
times or on the strategy being used. That is, in 
Figure 1, if the buses had arrived at different 
times, the location of the x's and the subscripts 
would not change. This would happen, for instance, 
if buses arrived either so frequently or so unpre
dictably that passengers did not check ,the time be
fore leaving for their stop. Then if we were to hy
pothesize a different set of trajectories for the 
buses, we could still easily construct the load each 
bus would have carried. 

One difficulty with the procedure presented so 
far is that we need to know the passenger arrival 
times and the bus departure times at every stop. 
Suppose that bus trajectories are parallel or, in 
particular, that the time between a bus's departure 
at one stop and its departure at the next is the 
same for every bus (but not necessarily the same at 
every stop). If we now observe the departure times 
of all buses at one stop, we know the departure 
times of all buses at all stops. Essentially, we 
have assumed that a bus's headway does not change 
significantly over a distance comparable to the 
length of an average passenger trip. This allows 
the headway to change slowly. On a well-controlled 
bus line the headways do in fact change slowly. 
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Figure 1. Time-space diagram of a bus line. 

Beginning 
of line Time 

This assumption also makes the description of 
passenger arrivals easier. In particular, it im
plies that the bus travel time from any point x to 
the point in question, x0 , is fixed. Let us call 
this travel time T(x,x0 ). Suppose we observe 
two passengers, one who arrives at stop x at time t 
and another who arrives at stop xa at time t + 
T(x,x0 ). Because bus trajectories are parallel 
and the arrival time of both passengers is the same 
relative to a given trajectory, both passengers 
catch the same bus. For our purposes, the two pas
sengers are equivalent, and we can replace the orig
inal arrival process by an equivalent one at x 0 
for which the arrival time of a passenger at x is 
shifted by T(x,x0 ). (Note that passengers who 
alight before the bus reaches x 0 are ignored.) 

If we know the passenger arrival times for the 
equivalent process, then for any set of bus depar
ture times from xa we could construct the loads on 
the buses at x 0 • This procedure, however, still 
depends on the exact bus departure times (as opposed 
to simply the headways), since, for instance, the 
average rate of passenger arrivals might change over 
time and the loads on two buses with the same head
way might be different. Let us assume that passen
ger arrivals are stationary, so that their average 
arrival rate is consistent. (The extension to non
stationary arrivals requires only that a headway be 
replaced with the time necessary to pick up a given 
number of passengers.) Then the expected load on a 
bus is simply proportional to its headway. That is, 
if L/H = h is the random variable associated with 
the load on buses that have a headway h, then the 
expected value (or average) of the loads on these 
buses should be 

E(LIH = h) = rnh (!) 

where m is the average passenger arrival rate. Be
cause of the uncertainty in the number of passengers 
to arrive during a headway h (which is here called 
the uncertainty in passenger arrivals), the load on 
a bus with headway h will vary about mh. 

Similarly, the average load over all buses, re
gardless of headway, is 

E(L) = rnE(H) (2) 

Because of unequal headways, uncertainty in passen
ger arrivals, and perhaps other factors, the load on 
an individual bus will vary about this mean. Sup
pose for the moment that only unequal headways con
tribute to the variability of loads on buses--i.e., 
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Figure 2. Comparison of actual load distribution with distribution of observed 
headways scaled by the passenger arrival rate: (a) 7:55-8:30 a.m. and 
(b) 8:45-9:30 a.m. 

1.0 1.0 
(a) (b) 

0 J' 
0.B O.B ;~ 
0.6 0.6 

[" I 0.4 0/ o Observed Loads 04 

1r,P~ ~ o. Observed Headways 
0.2 scaled by the 02 

Passenger Arrival 

0 0 20 40 60 BO 100 120 40 60 BO 100 120 

~ Passengers ./,, Passengers 

passengers arrive in a steady stream. Then a bus 
with headway h would carry exactly mh passengers. 
If we were to plot the distribution of loads under 
this supposition and compare it with the distribu
tion of actual observed loads, then any difference 
observed would be caused by factors other than un
equal headways. 

Example 

Figure 2 shows a comparison such as that proposed 
above for data gathered for two different time peri
ods on a bus line in Oakland and Berkeley, Cali
fornia. [The data were collec.ted in November 1977 
at the maximum load point of the northbound 51 line 
of Alameda-Contra Costa County (AC) Transit. This 
load point is downstream from a transfer point of 
the Bay Area Rapid Transit system.] The details of 
the data collection are given elsewhere (4). Basic
ally, loads and headways of buses at the maximum 
load point were observed during two time periods 
when the passenger arrival rate was nearly con
stant. In this case, the maximum load point was 
downstream from a rapid transit station and any dif
ference between the two distributions represents the 
effect not only of the uncertainty in the arrival of 
bus passengers but also of the uncertainty in the 
arrival of train passengers upstream of the transfer 
point and the uncertainty as to whether a bus picks 
up a batch of transfers from the rapid transit sta
t ion at all. 

That the distributions nearly coincide for each 
of the two time periods shows that the contribution 
of factors other than unequal bus headways to the 
variability of loads on buses is unimportant. In 
particular, uncertainty in passenger arrivals con
tributes little. Only if the headway distribution 
were considerably narrower than it was for these 
buses would uncertainty in passenger arrivals become 
significant. That is, unequal headways cause most 
of the variation in loads. 

Variance Calculations 

The phenomenon cited above can be quantified. If 
buses arrive either so frequently [i.e., at headways 
less than about 10 min (2)1 or so unpredictably that 
passengers arrive independently of buses, then the 
variance of the load on a bus [Var(L)] is related to 
the variance of the headway of a bus [Var (H)] and a 
function characteristic of the passenger arrival 
process [r(h)], as follows (j__): 

Var(L) = rn2 Var(H) + rnE[Hr(H)] (3) 

Note that the variance and expected value are taken 
with respect to the headway distribution. In the 
second term, the expected value is taken of the 
function hr (h), where r (h) is the variance-to-mean 
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Figure 3. Typical shape of r(h) for AC 3 
Transit bus line in Oakland and Berkeley, 
California. 
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Table 1. Contributions of various factors to variance of load on a bus. 

Value of Contribution (passengers2 ) 

Factor 7:55-8:30 a.m. 8:45-9:30 a.m, 

Unequal bus headways 665 643 
Uncertainty in the arrival of 63 so 

nontransferring passengers 
Unequal rapid-transit-train 7 

headways 
Uncertainty in the arrival of trans- 14 2 

ferring passengers 
Uncertainty that a bus picks up 47 41 

a batch 
Total 796 737 

ratio of the number of passengers to arrive in a 
time interval of length h, taken as a function of 
h. If passengers arrived in a Poisson process, for 
instance, then r(h) would be a constant, 1. It has 
been shown elsewhere (!) that, for values of h near 
a bus headway, r (h) is closer to 2 or 3. Further, 
r(h) is not constant. Its shape is typically as 
shown in Figure 3. 

If there were no variability in headways, Var (H) 
would be zeroi if there were no variability in the 
arrival of passengers, r (H) would be zero. Thus, 
the first term [m 2 Var (H)] is the contribution to 
load variance of unequal headways, and the second 
term is the contribution to load variance of uncer
tainty in passenger arrivals. 

The equation analogous to Equation 3 for the data 
analyzed in Figure 2 is somewhat more complicated 
and is given elsewhere (4). Table 1 gives the nu
merical results for the various contributions. 
Again we see that unequal headways, represented by 
var(H), cause most of the variability in the load on 
a bus. In this case, Var (L) ~ 750 passengers•, 
and the standard deviation of the load is about 
±27 passengers. That is, even though sufficient 
buses might be dispatched so that the average load 
is equal to the number of seats on a bus, an indi
vidual bus quite easily could carry as many as 27 
standees or have 27 empty seats. 

Coefficient of Variation of Bus Headways 

The equation for Var(L) can be rewritten as follows: 

Var(L) = C2 (H) m2 E2 (H) + mE[Hr(H)] 

= C2 (H) E2 (L) + mE(Hr(H)] (4) 

where C2 (H) = Var(H)/E 2 (H) and is the square of 
the coefficient of variation of the headway. Note 
that the calculation of E[Hr(H)] requires knowledge 
of r (h) as well as the complete headway distribu
tion. For the purpose of approximation, let us as
sume that r(h) is a constant (even though we know it 
is not). Let this constant be r. Then mE[Hr(H)] 
rmE(L), and 
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Var(L) ~ (C 2 (H) E(L) + r] E(L) (5) 

Now the analysis of whether headways contribute more 
or less than passengers to the variation in loads 
comes down to whether C2 (H) E (L) is large or small 
relative to r. 

Rule of Thumb for Buses and Rapid Transit 

The rule is this: If C2 (H) E(L) is comparable to 
r, then headways and passengers contribute about 
equally to variations in the load on a bus. Note 
that this statement is also true if we take square 
roots: If C(H) [E(L) ]1/2 is comparable to rl/2, 
then headways and passengers contribute about 
equally. For the two time periods analyzed above, 
C(H) was about 0.63 and 0.81, and E(L) was 41.4 and 
32.0 passengers, respectively. Thus C(H) 
[E(L)]l/2 was 4.05 and 4.58. As seen in Figure 3, 
r(h) is about 2-3 for headways of 2-6 min (the aver
age headway during both periods was abou t 4 mi n), so 
we wi l l let r be 2.5. The n (2.5) 1/2 • l . 2 is 
far less than C(H) [E(L)]l/ 2 for eithe r time pe
riod. Thus, we conclude that for these time periods 
unequal headways contribute far more to the varia
tion in the load on a bus than does uncertainty in 
passenger arrivals. 

In order for headways not to dominate, C(H) 
[E(L)]l/2 would have to be about 1.2. For a full
sized bus, E(L) ~ 50, so C(H) would have to be 
about [2.5/E(L)jl/2 ~ 0.22. Such a small vari
ability in headways is rare, although not unknown. 
For instance, in a study of the Newcastle-upon-Tyne 
33 route in December 1973 (§), C(H) at the Lonsdale 
Terrace stop was 0.57. 
found to be 0.20. 

Three years later, it was 

The same analysis can be used for systems that 
have larger or smaller average passenger loads per 
vehicle. For instance, a rapid transit system might 
schedule its trains so that they carry about 1000 
passengers. Then C(H) would have to be about 0.05 
for headways and passengers to contribute equally to 
var (L). 

CONCLUSIONS 

In effect, C(H) is a measure of the variability of 
the headway (specifically, the standard deviation) 
on a scale of the mean. This analysis shows that, 
for a bus line, if C(H) is above about 0.30, then 
unequal headways contribute almost exclusively to 
the variability of loads on buses. In this case, we 
would say that headways are poorly controlled. On 
the other hand, when C (H) is below about O. 3, un
equal bus headways and uncertainty of passenger ar
rivals contribute about equally. In this case, 
headways are well controlled. In fact, it does 
little good to reduce C(H) below about 0.2 because 
under that value the uncertainty in passenger arriv
als, over which the bus company has little control, 
starts to dominate. 

When headways are poorly controlled, it might pay 
the bus company to invest in control strategies that 
reduce the variance in headways. If it can thus re
duce the variance in loads, it can either use fewer 
buses and tolerate the same amount of overcrowding 
or it can reduce overcrowding and use the same num
ber of buses. In the first case the bus company 
saves money, and in the second case the public re
ceives better service. In either case, the public 
benefits<.~). 

This paper does not discuss the cause of unequal 
headways or the cost of controlling headways. It 
does illustrate that, once unequal headways occur, 
they are the dominant cause of variations in loads. 
A strategy to control headways, of course, must be 
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based on a knowledge of why unequal headways occur. 
Once effective strategies are developed, then in 
principle their cost can be balanced against the 
benefits, as derived from this paper, to find the 
optimum level of control. 
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Proposed Approach to Determine Optimal Number, Size, 

and Location of Bus Garage Additions 
THOMAS H. MAZE, SNEHAMAY KHASNABIS, KAI LASH KAPUR, AND MANIS. POOLA 

A proposed technique for determining the location, size, and number of new 
bus-garage additions is described. First, different cost components (nonrevenue 
transportation cost, operating cost, and construction cost) related to new ga
rages (location, size, and number) are identified, and it is shown how most of 
the current techniques fail to consider the full ramifications of all of these cost 
elements. Second, an optimization model is presented that includes the full 
range of cost components that deserve consideration in decisions related to the 
number, location, and size of new garages. A case study is also presented in 
which the implications of the full range of cost components are tested on an 
actual fixed-facility problem. The case study uses the proposed technique in 
its most fundamental state. The analysis shows that some of the less visible 
but recurring nonrevenue cost components may significantly affect the total 
annual garage cost. On the other hand, the more prominent, one-time con
struction cost may be of marginal importance in the annual cost of the garages 
distributed over the life of the facility. 

Determining the location, size, and number of new 
bus garages is a problem commonly faced by expanding 
transit agencies. However, little independent 
research has been devoted to developing a standard 
and accurate technique to determine the least-cost 
number, size, and location of garage facility expan
sions. The importance of the use of a standard and 
accurate technique for such purposes is twofold: 

1. The addition of a new garage (or garages) 
represents a long-term commitment to a costly por
tion of the transit system. The following costs are 
quite important with respect to other system costs 
and can vary considerably in magnitude according to 
the prospective garage number, location, and size 
alternatives: (a) the costs of nonrevenue travel to 
and from work assignments, (b) the cost of operating 
the garage, and (c) the costs of new construction. 

2. Locating and sizing a new bus garage is often 
one of the more controversial aspects of transit 

planning. Bus garages often occupy prime industrial 
sites but, because bus operators are public agen
cies, they do not enhance the local tax base. 
Furthermore, the movement of buses into and out of a 
garage often has a disrupting effect on traffic flow 
on adjacent arterials. For these reasons and 
others, proposals for new bus garages often meet 
with strong local opposition. Thus, it seems only 
prudent that the decision maker should have accurate 
information relative to the total cost ramifications 
to justify his or her choice of the location and 
size of a proposed garage or the number, location, 
and size of proposed garages. 

This paper reviews methods that transit authori
ties have used to locate and size garage additions. 
The analysis techniques are described so that the 
reader can contrast existing techniques with the 
proposed technique. Next, a proposed technique is 
presented, along with a case study, to portray the 
possible cost saving resulting from its use. Fi
nally, directions for future development of the 
proposed technique are outlined. 

PROBLEM STATEMENT 

The basic goal of all transit agencies is to provide 
transit service in the most equitable and cost-ef
fective manner. The development of er iter ia def in
ing the number, size, and location of fixed facili
ties constitutes a key element in the realization of 
this goal. A mislocated or improperly sized facil
ity can, over a few years, account for millions of 
dollars in wasted funds. Conversely, the dollars 
saved by optimally locating and sizing these facili
ties can be more effectively used in other areas of 
system operations. 


