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areas as well as to collect data regarding those 
areas is helpful. 

4. There is a need to update and expand the 
Simpson-Curtin formula to account for inflationary 
effects on transit fare increases. There is also a 
need to include variables that account for travel 
cost changes in competing modes of travel. 

5. There is a need to examine transit pass usage 
patterns. Delineating "convenience" users from 
"financial savings" users and obtaining information 
on their usage frequency would be helpful for mar­
keting analyses and predicting revenue trends. 
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Measured Fare Elasticity: The 1975 BART Fare Change 
THADDEUS W. USOWICZ 

By using the measured response of San Francisco Bay Area Rapid Transit 
(BART) patrons to a fare structure change in 1975, this paper shows that vari­
ance in empirical demand elasticities can be strongly and inversely related to 
the level of patronage aggregation considered and the relative change in fare . 
The 1975 fare structure change affords a unique opportunity to observe such 
variance with both increases and decreases in fare occurring for cases at differ­
ent fare and patronage levels. Two levels of aggregation are considered. One 
is the systemwide total response aggregate; the other treats each origin·destina· 
tion data element as a separate case. Different values are computed for elas­
ticity and are found to be related to the level of aggregation. Elasticity func­
tions are also derived from the cases for use in BART forecasting procedures. 
Analysis for the correct weighting factors to use in fitting the elasticity func­
tions indicates that variance of the measured elasticities is related to the case 
patronage levels and the square of the difference in logarithms of the fares 
before and after the change. The fitted elasticity functions also demonstrate 
that divergences in values of elasticity can be a function of both model specifi­
cation and the operating point selected for the calculation of elasticity from 
the function. 

The objective of this study was to more accurately 
represent the varying response of San Francisco Bay 
Area Rapid Transit (BART) patrons from different 
market areas to fare changes through derived elas­
ticity functions. Elasticity functions aid in the 
prediction of responses to fare structure changes at 
a more refined level of critical system screen­
lines. They also provide potential controls for 
studying level-of-service impacts during simultane­
ous fare and level-of-service changes on BART in 
mid-1980. 

This paper presents results for both calculated 
constant aggregate elasticities and acceptably fit­
ted elasticity functions that quantitatively demon­
strate how much divergence can occur with such com­
putations. An important reason for this divergence 
is the high variance in the response of trip making 
to a fare change that appears to be inversely re­
lated to the level of patronage. Variance may pro­
vide an additional explanation for controversial 
inconsistencies in elasticity estimates Clrll. 

FACTORS IN DIVERGENT ESTIMATES 

Depending on the level of aggregation used in com­
putation, the data in this study yielded different 

values for average elasticity. This was not unex­
pected since Chan and Ou (.!_) had hypothesized that 
aggregate empirical elasticities based on coarse 
demand da ta would tend to underestimate the response 
while disaggregate calibrated elasticities, mostly 
based on zonal and household data, would overesti­
mate. Thus the absolute value of the aggregate 
elasticity would be less than that of the disaggre­
gate elasticity. The calculated aggregate elastic­
ity did demonstrate this relation with respect to 
the average elasticity for the set of origin-to­
destination cases that is a more disaggregated level 
of data. In this case, such differences appear to 
be an artifact of the method of computation and the 
aggregation of data. 

Gomez-Ibanez and Fauth (ll offer three other 
explanations for such differences: variations in 
data accuracy, failure to capture characteristics 
differentiating markets, and different variables 
included in model specifications. Model specifica­
tion does appear to be a significant factor for 
elasticity functions derived from mathematical 
models of demand. Ruiter Cll provides an excellent 
summary of many travel demand models along with 
derived elasticity functions. In most of the forms 
summarized, elasticity is not a constant. It is, 
instead, a function of the variables in the model, 
most often of the cost variable. Different sensi­
tivities are thus implied for the value of elastic­
ity. A departure from base values for the variables 
in the function results in a divergence in values 
computed for elasticity. If results in this paper 
can be extrapolated, differences on the order of 30 
to several hundred percent can easily occur. 

Measured elasticities attempt to describe the 
response of demand to a change in cost directly. An 
increase in trip cost can be expected t o reduce trip 
making. Adjustments ean be made for; seasonality, 
trip purpose, accessibility to alternative stations, 
and perceived value of cost and its change with 
time. But adjustments cannot be made for all fac­
tors. Thus, erratic values for elasticity can be 
expected. The extent of the erratic behavior can be 
surprising. For example, elasticity for daily de­
mand in the 793 selected cases ranged in value from 
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13. 3 to -17. 3 with a standard deviation of 2 .129 
about a mean of -0. 781. Morning peak-period elas­
ticity showed a greater range from 21.1 to -34. 4 
with a standard deviation of 4 .121 about a mean of 
-0. 710. Since the square of the deviation from the 
mean is strongly related to the inverse of the level 
of patronage, the greater variation in the peak may 
be related to the lower levels of patronage in the 
sample cases. 

DEFINITION OF ELASTICITY 

The method used in this paper for computing elas­
ticity (n) from a measured response to a change in 
fare is the log difference ratio evolved directly 
from the differential formulation for elasticity (!, 
p. 169): n = (log D2 - log D1J/(log F2 
log Fil where D = demand, F = fare, and the 
subscripts represent before and after. 

Elasticity functions are deriv ed from commonly 
used demand model forms. Table 1 lists a selected 
set of demand models and the corresponding elas­
ticity functions. Both case dependent and case in­
dependent variables are identified. K and S are 
intercept and coefficient scaling constants that may 
be functions of variables not represented by F. The 
trip cost F may represent fare or the ratio of fare 
to average annual income. Fitting most of the elas­
ticity functions of Table 1 requires the assumption 
of a zero intercept. This is a serious and not al­
ways justified assumption (2_, p. 13). Mixed-model 
functions are possible alternatives and are listed 
in Table 2. The corresponding implied-demand models 
shown were determined from the differential equa­
tions based on the elasticity function. 

DESCRIPTION OF DATA 

Each element of the origin-to-destination trip ma­
trices for 33 BART stations based on daily and 2-h 
peak-period averages for representative weekdays in 
October and November 1975 is considered as a 
"case." Cases with no fare change, such as the 
round-trip cases representing system touring trips 
that enter and exit at the same station, and cases 
with zero patronage in any one of the time periods 
were rejected. These criteria left 793 acceptable 
cases. Table 3 provides selected statistics on 
total daily and morning peak data. Statistics for 
the afternoon peak were similar to the morning peak 
statistics. 

The BART fare structure is distance-related with 
minimum fares for the central business district and 
among neighboring stations and with a decreasing 
marginal cost with distance. Surcharges are added 
to transbay fares, and adjustments are made for rel­
ative speed and required transfers (£_). The new 
fare structure introduced on November 3, 1975, re­
duced some fares but increased most. The minimum 
fare changed from $0.30 to $0.25 and the maximum 
fare increased from $1.25 to $1.45. 

BART patronage exhibits seasonality and a growth 
trend. Extensive analysis had been done on five 
years of monthly average patronage since the start 
of transbay service (1_,~). Though statistically 
significant growth trends of more than 5. 6 percent 
per year were identified for daily patronage, data 
used for elasticity functions were not detrended 
since, in addition to much lower regional population 
and employment growth rates, a possible explanation 
for the trend can be real dollar fare elasticity. 
Relative seasonal factors (~ p. 11) were used. In­
come and trip purpose data were available for each 
station as origin or destination from the May 1976 
passenger profile survey. 

39 

Table 1. Alternative mathematical forms of demand models with corresponding 
elasticity functions with fare as independent variable. 

Demand Model Form 
Elasticity Function for D 
with respect to F Function Ref. No. 

Logarithmic or product 
D= K F-a 

Exponential 
D= K e-bF 

Linear 
D= K- bSF 

Half-bell 
D = K e-bF2/2 

Linear log 
D= K- bS log F 

Log linear 
log D = K + bS(l/F) 

11 =-a I.I 

11= -bF 1.2 

11 = -bS(F/D) l.3 

11 = -bF2 1.4 

11 = -bS(l/D) 1.5 

11 = -bS(l/F) 1.6 

Notes: Case dependent factors- D =demand; F =cost variable, fare or fare divided by in­
come; K =scaling factor or intercept; and S = slope-scaling factor (for this analysis 
assume S = 1). Cese independent parameters- a. b = constants. 

Table 2. Mixed-model fitted elasticity functions. 

Function 
Ref. No. 

2.1 
2.2 
2.3 
2.4 
2.5 

Fitted Elasticity 
Function 

11 =-a-bF 

11 =-a - b(F/D) 
11 =-a - b F2 

11 =-a- (b/D) 
11 =-a- (b/F) 

Implied Demand Model Form 

D = K P-8 ebF 

D = K F-a - [bl(a + l)]F 
D = K p-• e-bF2/2 

D = K F-a - (b/a) 
log D = log K - a log F + b(l /F) 

or, 
D = K F" eb/F 

Notes: Case depe ndent factors - D =dem and; F =cost variable, fare or fare divided 
by income; K =scaling factor or intercept; and S =slope-sca ling factor (for 
this analysis assume S = 1). Case independent factors- a, b = constants. 

Table 3. Selected statistics for October and November 1975 representative 
sample averages. 

Total Day A. M. Peak Period 

Patronage October November October November 

Total 124 942 118 090 33 848 31 447 
Total patronage• 123 822 117 276 33 820 31 415 

Average extracted fare($) 0.632 0.753 0.657 0.778 
Average trip distance (km) 21.1 20.9 22.3 22.0 
Average time in BART 27.6 27.3 28.3 27.9 
(min) 

Total 793-case sample 
patronage 97 685 90 335 27 302 24 686 

Average extracted fare($) 0.709 0.872 0.732 0.899 

Note: Trip distance is on-board BART trip distance. Time in BART includes average 
waiting and transfer time plus nominal on-board travel time. 

3Exclusive of round trips. 

METHODOLOGY FOR DEVELOPING ELASTICITY FUNCTIONS 

The elasticity functions were developed by fitting 
the curves of Table 2 with least squares regres­
sion. Patronage and trip cost variables were com­
puted from data for each month and from averages for 
both months. Income, trip time, distance, work trip 
purpose, and BART system segment indicator variables 
were also considered. Best fits were obtained with 
patronage and both trip cost variables for October, 
the "before" month. Distance and trip time, which 
correlated with fare, provided good initial fits; 
other variables tested seemed to be irrelevant. The 
multiple correlation coefficients for the fits were 
very low despite very satisfactory F-values. An 
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analysis of residuals revealed that the residuals 
were not normally distributed and were strongly re­
lated to the values of patronage, fare, and the 
abso- lute difference in the logarithm of fares. 
Weighted leas t squares was indicated. 

The appropriate weighting factor to use is one 
that inversely relates the residual variance to some 
constant vacian c e (5, p. 80; 9, p. 326). Of the 
various weighti ng schemes tried; three had some the­
oretical merit. The first used the square of the 
log difference in fares; this could be justified by 
cons idedng measured elasticity to be a stochastic 
demand response divided by a constant that is the 
log difference in fares. The second used the level 
of patronage; this could be justified by cons i der ing 
it as a sample size for the measured response of 
indiv idual trip makers. The third used a factor 
based on the proportion of trips changed; this would 
be applicable for the output of a Bernoulli process 
where 1 is a change in trip making and 0 is no 
change. All three reduced variance and produced 
better multiple regression coefficients, but the 
last yielded unsatisfactory distributions of resid­
uals. Best results were obtained through a combina­
tion of the first two in the weighting factor 
(wi), Wi = Oil (log Fi2 - Fill 2 where 
oil is the level of patronage of case i in the 
"before" month and Fik is the fare for case i in 
month k. 

FINDINGS AND DISCUSSION 

Aver.age Va l ues fo r Elastic ity 

Selected averages for daily systemwide measu red 
elasticities are given in Table 4 . Except for the 
aggregated totals without round trips, averages are 
for 793 cases. The weighted averages are less in 
absolute value than the unweighted since the weight 
factors were heavier for cases with measured elas­
ticities with smaller deviations from the mean 
value. The range of these estimates is noteworthy. 
In other results, morning peak elasticities varied 
less but indicated a more elastic aggregate re­
sponse; afternoon peak elasticities varied more and 
were less elastic. 

Selected Elasticity Functions 

Selected fitted elasticity functions are shown i n 
Table 5. High t-statistic values show that the in­
dependent variabl e s a r e significant explanatory 
variables for measur ed elasticity even though 
coefficients of determina tio n (r 2 ) a r e not large . 
Adding another variable did not i mprove t he fit sig­
n i fi cantly i n most cases . The functions listed ar e 
all preferable to a constant elasticity by regres­
sion criteria . 

Some insight into the divergence of elasticity 
estimates given by differently specified models can 
be gained from the plots of e las t ici ty funct i ons 
against fare divided by income in Figures 1 and 2. 
Figure 1 shows functions that were directly fitted 
to the independent variable while Figure 2 shows 
those that were related to demand and had to be 
tcansformed by substitution of the appropriate de­
mand function from Tables 1 and 2. The zero inter­
cept functions are plotted to illustrate the impli­
cation of that constraining assumption. For ex­
ample, curves 2.5 and 1.6 represent the same inverse 
cost independent variable of the log linear model 
but are different because curve 2.5 includes a sig­
nificant intercept that shows the dominant influence 
of the product model. The null hypothesis is not 
supported for the plotted zero intercept cases and 
is rejected at the 0.01 significance level. On the 
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Table 4. Average measured elartlclties of BART daily systemwide patronage 
related to fare change in November 1975. 

Type of Demand Adjustment 

Method of 
Computation 

Linear mean rati o 
Unweighted 

Log difference ratio 
Unweighted 
Weighted by -

AOL Fa 
Oh 

D(ADLF)2 

Aggregated -
793 cases 
Totals 

Unadjusted 

- 0.682 

-0.689 

-0.559 
-0.368 
-0.348 

-0.377 
-0.310 

Seasonality 

-0.773 

-0.781 

0.621 
-0.443 
-0.392 

-0.454 
-0.3 99 

Seasonality and 
Trend 

-0.803 

-0.811 

- 0.641 
-0.468 
-0.406 

-0.479 
-0.429 

8 A DLF :::: Absolute value of the difference in log fares. bD = Demand. 

Table 5 . Selected weighted regression results for fitted measured elasticity 
function. 

Coefficient 
Indepen- of Deter-

Table 2 dent mination 
Ref. No. Variable Coefficient !-Statistic Intercept (r2) 

2. 1 F/I -11.294 -11.25 0.027 6 0.1380 
2.5 l/F 0.015 67 12.27 -0.879 0 0.1598 
2.3 (F/1)2 -11 2. 17 -9.78 -0.21 3 I 0.1079 
2.2 (F/I)/D -158.08 -6.49 -0.348 6 0.0506 
2.1 F -0.612 5 - 8. 58 -0.057 15 0.0851 
2. 5 l/F 0.216 7 10.3 9 -0.844 5 0.1202 
2.3 p2 -0.367 5 -6.75 -0.265 6 0 0545 
2.2 F/D -10.62 - 5.97 -0.351 7 0.0431 
2.4 l /D - 6.880 6 -5.56 -0.350 2 0.0376 

T -0.015 96 -9.12 -0.002 3 0.0952 
L - 0.0 14 65 -- 7.84 - 0.134 4 0.0721 
F/I -10.459 -6.30 0.040 I 0.1384 
T 0.001 783 -0.63 

No tes: F = Octo ber fare ( .$); l = income (.$000s) ; D = Oc tober demand (trips) ; T = in-
BART travel time (min), including wait and transfer time ; L =on-board station-
to-statio n travel di stance (km). 

Weighting factor is deman d times the square of the difference in log fares. 

other hand, the fitted straight-line function (2 .1) 
derived from the exponential demand model effec­
t i vP. l y has a zero inte rcept. The null hypothesi s 
that the intercept of this function is zero is main­
tained at 95 percent confidence. 

The functions fitted directly and inversely to 
the cost variables yield the best and almost equiv­
alent figures of merit. October fare divided by 
income is more efficient than fare itself and is 
preferred. The inverse cost function (2.5) produces 
behavior contrary to that implied by a log linear 
model and the regression coefficient would be re­
jected under a one-tailed test. The linear function 
(2.1) wi th i t s near zero intercept is the most ac­
ceptable with respect to its consistency with the 
postulated behavior of demand related to cost in an 
exponential model. 

CONCLUSION 

The measured elasticities and elasticity functions 
presented were all computed using acceptable methods 
from the same data base. Yet they give diverse 
values for elasticity. Variance in the response to 
fare change is one factor influencing this diver­
sity. Also, the often used assumption of constant 
elasticity is not necessarily correct. Fare level 
or fa r e related to income are acceptable explanatory 
variables for the variation in measured elasticity. 



Transportation Research Record 799 

Figure 1. Elasticity functions directly fitted 
to October fare divided by income. 
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Figure 2. Elasticity functions derived from 
functions fitted to inverse demand or fare 
divided by income and by demand. 
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Elasticities derived from some demand models, in­
cluding the disaggregate models, do consider such 
cost variables. Transferability of results would be 
affected by the specification of these and other 
possibly important variables not yet identified. 

The variation in elasticity data is large rela­
tive to the mean value and inversely related to the 
demand level and the square of the log difference in 
fares. The indications are that the demand weighted 
mean value of the cases approaches the aggregate 
elasticity, which may provide a better estimate of 
the expected response if a single value for change 
in demand is sought. 
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Further Evidence on Aggregate and Disaggregate Transit 
Fare· Elasticities 

ARMANDO M. LAGO, PATRICK D. MAYWORM, AND J. MATTHEW McENROE 

This paper presents new evidence on transit fare elasticities from experimental 
demonstrations and demand models. Mean values and standard deviations of 
fore elasticities are analyzed for Uoih ayyregaie and Uisaggri:=gate ridership cate­
gories. Aggregate fare elasticities for fare-free, fare prepayment versus cash 
payment, and promotional fare reductions are presented. Fare elasticities are 
also disaggregated by mode, trip length, route type, period of the day, and in­
come and age groups. A review of the methods used in elasticities estimation 
is also presented. 

Over the past few decades, transit operators have 
relied on the Simpson and Curtin formula (,!) for 
predicting the impact of fare changes on transit 
ridership. The Simpson and Curtin formula, which 
predicts the percentage decrease in ridership as a 
function of the percentage increase in fares, has 
reverted to the rule of thumb that transit ridership 
will decrease (increase) 0.3 percent for every 1 
percent increase (decrease) in transit fares. 

Although the Simpson and Curtin rule of thumb is 
generally correct in highlighting the fact that 
transit ridership is inelastic, its indiscriminate 
use can lead to serious miscalculations of the 
ridership impacts of fare changes. This problem was 
brought out by two American Transit Association 
(ATA) studies of losses in passenger traffic due to 
transit fare increases between 1950 and 1967 (~,l>· 

Both studies, while finding an average shrinkage 
ratio of -0. 33, showed wide variances in the range 
of elasticities estimated, ranging from -0. 004 to 

-0.97. Dygert, Holec, and Hill 
in slightly more than half the 
ratio estimated by ATA was 
Curtin's rule of thumb. 

(_!) have shown that 
cases the shrinkage 
below Simpson and 

The existence of such a wide variation in transit 
fare elasticities has prompted many transportation 
analysts to present evidence of disaggregate 
ridership response to fare changes (2_-1)· This 
paper presents new information on the size of 
aggregate and disaggregate transit fare elasticities 
obtained from demonstrations and demand models. In 
addition, this paper cautions the reader in 
interpreting the demand elasticity estimates from 
data containing no fare change. 

APPROACHES TO ESTIMATING TRANSIT FARE ELASTICITIES 

Nature of Approaches to Demand Estimation 

Two broad approaches to estimating fare elasticities 
may be distinguished. These approaches include (a) 
monitoring fare changes or demonstration studies, or 
those that rely on data generated either by a 
practical demonstration of an actual change or by 
monitoring an actual change in cur rent fares; and 
(b) nonexperimental approaches, or those that rely 
on a data base either devoid of an actual change in 
current fares or where actual changes are part of 
historical trends. 


