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Elasticities derived from some demand models, in­
cluding the disaggregate models, do consider such 
cost variables. Transferability of results would be 
affected by the specification of these and other 
possibly important variables not yet identified. 

The variation in elasticity data is large rela­
tive to the mean value and inversely related to the 
demand level and the square of the log difference in 
fares. The indications are that the demand weighted 
mean value of the cases approaches the aggregate 
elasticity, which may provide a better estimate of 
the expected response if a single value for change 
in demand is sought. 

ACKNOWLEDGMENT 

This work was supported by a technical studies grant 
from the Urban Mass Transportation Administration, 
U.S. Department of Transportation. 

REFERENCES 

1. Y. Chan and F.L. Ou. Tabulating Demand Elastic­
ities for Urban Travel Forecasting. TRB, Trans­
portation Research Record 677, 1978, pp. 40-46. 

2. S.A. Gomez-Ibanez and G.R. Fauth. Using Demand 
Elasticities from Disaggregate Mode Choice 
Models. Transportation, Vol. 9, No. 2, June 
1980, pp. 105-124. 

Transportation Research Record 799 

3. E.R. Ruiter. Resource Paper. HRB, Special 
Rept. 143, 1973, pp. 178-205. 

4. C. Daniel III. Mathematical Models in Micro 
Economics. Allyn and Bacon, Inc., Boston, 1966. 

5 . N.R. Draper and H. Smith. Applied Regression 
Analysis. J. Wiley and Sons, Inc., New York, 
1966. 

6. J.F. Curtin. Effect of Fares on Transit Rid­
ing. HRB, Highway Research Record 213, 1968, 
pp. 8-20. 

7. T.W. Usowicz. Methodological Investigations and 
Development of Preliminary Forecasting Equations 
for BART Daily System, Daily Transbay, and P .M. 
Peak-Period Patronage. Department of Planning, 
BART, Los Angeles, March 30, 1979. 

8 . T. W. Usowicz. Trend and Seasonal Factors with 
Forecasting Equations for BART Daily System, 
Daily Transbay, and P.M. Peak-Period Patronage. 
Department of Planning and Analysis, BART Oak­
land, CA, March 24, 1980. 

9. J. Neter and W. Wasserman. Applied Linear Sta­
tistical Models. Richard D. Irwin, Inc., Home­
wood, IL, 1974. 

Publication of this paper sponsored by Committee on Public Transportation 
Planning and Development. 

Further Evidence on Aggregate and Disaggregate Transit 
Fare· Elasticities 

ARMANDO M. LAGO, PATRICK D. MAYWORM, AND J. MATTHEW McENROE 

This paper presents new evidence on transit fare elasticities from experimental 
demonstrations and demand models. Mean values and standard deviations of 
fore elasticities are analyzed for Uoih ayyregaie and Uisaggri:=gate ridership cate­
gories. Aggregate fare elasticities for fare-free, fare prepayment versus cash 
payment, and promotional fare reductions are presented. Fare elasticities are 
also disaggregated by mode, trip length, route type, period of the day, and in­
come and age groups. A review of the methods used in elasticities estimation 
is also presented. 

Over the past few decades, transit operators have 
relied on the Simpson and Curtin formula (,!) for 
predicting the impact of fare changes on transit 
ridership. The Simpson and Curtin formula, which 
predicts the percentage decrease in ridership as a 
function of the percentage increase in fares, has 
reverted to the rule of thumb that transit ridership 
will decrease (increase) 0.3 percent for every 1 
percent increase (decrease) in transit fares. 

Although the Simpson and Curtin rule of thumb is 
generally correct in highlighting the fact that 
transit ridership is inelastic, its indiscriminate 
use can lead to serious miscalculations of the 
ridership impacts of fare changes. This problem was 
brought out by two American Transit Association 
(ATA) studies of losses in passenger traffic due to 
transit fare increases between 1950 and 1967 (~,l>· 

Both studies, while finding an average shrinkage 
ratio of -0. 33, showed wide variances in the range 
of elasticities estimated, ranging from -0. 004 to 

-0.97. Dygert, Holec, and Hill 
in slightly more than half the 
ratio estimated by ATA was 
Curtin's rule of thumb. 

(_!) have shown that 
cases the shrinkage 
below Simpson and 

The existence of such a wide variation in transit 
fare elasticities has prompted many transportation 
analysts to present evidence of disaggregate 
ridership response to fare changes (2_-1)· This 
paper presents new information on the size of 
aggregate and disaggregate transit fare elasticities 
obtained from demonstrations and demand models. In 
addition, this paper cautions the reader in 
interpreting the demand elasticity estimates from 
data containing no fare change. 

APPROACHES TO ESTIMATING TRANSIT FARE ELASTICITIES 

Nature of Approaches to Demand Estimation 

Two broad approaches to estimating fare elasticities 
may be distinguished. These approaches include (a) 
monitoring fare changes or demonstration studies, or 
those that rely on data generated either by a 
practical demonstration of an actual change or by 
monitoring an actual change in cur rent fares; and 
(b) nonexperimental approaches, or those that rely 
on a data base either devoid of an actual change in 
current fares or where actual changes are part of 
historical trends. 
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Approaches in the first category include the 
monitoring of transit fare demonstrations and in­
dividual fare changes such as those using monthly 
data series (.!!_,~). These approaches estimate fare 
elasticities in current dollars. The nonexperi­
mental approaches generally include (a) the conven­
tional time-series analysis of annual transit op­
erating statistics i (b) aggregate direct-demand and 
modal-split models based on cross-sectional datai 
and (c) disaggregate behavioral mode-choice models 
based on cross-sectional data. These last two ap­
proaches estimate fare elasticities in constant dol­
lars. All the nonexperimental approaches have in 
common the facts that the data base does not contain 
an actual fare change in current or money terms and 
also that the data base is not generated with the 
objective of controlling for nonfare changes. 

Methodological Note on Special Problems of 
Cross-Sectional Models 

In interpreting transit demand elasticities, some 
problems are posed by over-reliance on elasticity 
estimates developed from a cross-sectional data base 
containing no fare change. One cannot rely on 
elasticity estimates from cross-sectional studies to 
provide accurate estimates of annual changes in 
patronage in response to fare changes because they 
reflect a different type of behavior from that 
implicit in time-series analysis. This difference 
between time-series and cross-sectional models 
arises because the residuals from both models cannot 
be assumed to belong to the same underlying 
population. In general, cross-sectional estimates 
represent behavior that, for lack of better terms, 
economists have labeled "long-run structural 
adjustments" (10-llJ, although it is possible that 
cross sections taken at a time of rapid growth or of 
cyclical change could also reflect short-run annual 
adjustments such as those characterized by 
time-series relations. Although cross-sectional 
models have advantages in forecasting structural 
changes in demand, dynamic annual-change-type 
responses cannot be estimated with any degree of 
confidence unless supporting time-series information 
is available to establish a systematic relation. 

Another problem is that some recent work on 
disaggregate behavioral models has departed from 
McFadden's <lll original contribution and as a 
consequence, as shown by Oum (14), some of these 
models (a) impose many rigid a priori conditions on 
the elasticities and cross-elasticities of demand, 
(b) result in estimates of elasticities that are not 
invariant to the choice of the "base" or modal 
denominators, and (c) possess severely irregular and 
inconsistent underlying preference or utility 
structures. Moreover, an estimation problem arises 
whenever simultaneous mode choices concern more than 
two modes. Both Theil (.!2.) and Nerlove and Press 
(16) argue that biased coefficients result when 
simultaneous choices--such as the choices involving 
more than two transport modes--are estimated via 
single-equation estimation techniques such as the 
maximum likelihood approaches currently used by 
transportation mode-choice modelers. 

In spite of the alleged superiority of calibrated 
models relying on cross-sectional data, some studies 
(6, 17) have shown that the approaches that rely on 
data generated by monitoring actual changes in cur­
rent fares result in more stable elasticity esti­
mates. The reader is therefore urged to use caution 
when interpreting and using elasticity estimates 
from calibrated cross-sectional models unless the 
models have been calibrated from a data base where 
actual fare changes have occurred. 
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Variable-Elasticity Models 

The research and implementation issues of 
disaggregate behavioral models have been reviewed 
elsewhere (18,19) and do not have to be repeated 
here. One area, however, that has been overlooked 
concerns the need for more analysis of the 
interaction effects of fare and service levels. 
Whether from demonstrations or sophisticated 
mode-choice models, most demand-analysis approaches 
explicitly ignore the possibility of analyzing fare 
and service interactions by assuming 
constant-elasticity models (i.e., assume the 
interactions to be zero). These constant-elasticity 
models should be deemphasized in favor of 
variable-elasticity models with interaction effects, 
such as the translog models (20). 

Aggregate Fare Elasticities 

From an analysis of more than 60 studies of transit 
fare demand (&_), the following aggregate fare 
elasticity means and standard deviations have been 
estimated: 

No. of 
Factor Mean SD Cases 
Monitoring fare changes, 

demonstration studies -0.28 ±0.16 67 
Nonexperimental time-

series -0.42 ±0.24 28 
Nonexperimental cross-

sectional -0.53 ±0.35 28 

The results from demonstrations and other 
fare-change-monitoring studies are not appreciably 
different from Simpson and Curtin' s rule of thumb. 
However, the fare elasticities developed from 
nonexperimental direct-demand and mode-choice models 
are appreciably higher, especially for those models 
using cross-sectional data. It has been shown that 
the calibrated elasticities from models are almost 
twice as large as the empirical elasticities 
estimated from actual fare changes !!]) . The 
aggregate values presented in an Ecosometrics study 
(6) show the elasticities from studies that use 
cross-sectional data to be 1.89 times the elasticity 
values from demonstrations and studies of fare 
changes that use before-and-after data. 

Fare-Free Elasticities 

The fare-free demonstrations and case studies 
conducted under the sponsorship of the Urban Mass 
Transportation Administration (UMTA) provide 
information on the ridership responsiveness to 
maximum reductions in fare to fare-free service. 
The following table (&_) summarizes the fare 
elasticities calculated from the results of these 
demonstrations: 

Service Restrictions 
CBD only 

Senior citizens 

Students only 

No restrictions 

Time Period 
Off-Peak 
-0.61 ± 0.14 

(3 cases) 
-0.33 
(1 case) 

NA 

-0.28 ± 0.05 
(4 cases) 

All Hours 
-0.52 ± 0.13 

( 3 cases) 
NA 

-0.38 
(1 case) 

-0.36 ± 0.28 
(2 cases) 

As seen from this table, the highest fare-free 
elasticities apply to central business district 
(CBD) travel where the result of the free fare is to 
divert a substantial number of walking trips to the 
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free bus service. Except for the CBD fare 
elasticities, the fare-free elasticities are 
generally lower than the elasticities obser'ved for 
fare increases and decreases at comparable initial 
fare levels. This is confirmed by the low 
elasticities of -0.29 and - 0.19 estimated from the 
off-peak fare-free demonstrations in Denver and 
Trenton. The relatively low fare-free elasticities 
throw doubt on the theoretical hypothesis that the 
greater the relative change in fares the greater the 
elasticity value. 

Fare Prepayment Versus Cash Payment 

The knowledge of fare elasticities of demand for 
transit fare prepayment is limited. The scant 
information available from Europe shows pass riders 
to be more fare-inelastic than cash-fare or ticket 
ciders, reflecting the fact that pass users are 
frequent riders who, like commuters, exhibit low 
fare elasticities. In Paris, the fare elasticity of 
demand for passes is -0.14 in contrast to -0.20 for 
single-ride tickets (21). The Midland Red Bus 
Company in Warwickshire County, England, shows fare 
elasticities of -0.10 for passes and -0.32 for 
single-ride tickets (~). 

There have only been a few attempts to calculate 
fa r e p r epayment demand elas tic i t i e s by us i ng U.S. 
data. In Jacksonville, Florida, the adult cash fare 
elasticity of -0.31 is lower than the demand 
elasticity for passes (-0. 36) (1l) • The systemwide 
fare elasticity is -0. 38. Demand elasticities for 
pass users participating in the employer-promoted 
fare prepayment demonstration in Sacramento (~) 

were calculated by Ecosometcics to be -0.41 for work 
trips, -0.27 for nonwork trips, and -0.39 overall. 
The higher fare elasticity for work trips compared 
with that for nonwork trips is indicative of the 
limitations on nonwork travel for individuals 
working every day. 

By using a maximum-likelihood disaggregate choice 
model, Page (1!) estimated fare elasticities of the 
pcobabili ty of purchasing a pass ranging from -0 .18 
to -0.38 foe the Sacramento employer-promoted 
monthly-pass program. Although the elasticity 
estimates are reasonable, the econometric-demand 
work conducted here and elsewhere on pass programs 
has failed to analyze passes as rate structures. 
The result of this improper reflection of the 
econometrics of rate structures is to confuse the 
price-and-income effects of passes on demand (~). 

Fare Elasticities from Promotional Fare Reductions 

Although transit properties across the country are 
continuously offering "bargain fares", "Sunday 
specials", and "fare-free days," few of these 
programs are monitored closely for their short-term 
and long-term ridership and revenue impacts. 
Ca cuo l o and Roess (26) , however, have i dent i f i ed two 
fare-free projects~from which fare elasticities 
could be calculated. 

An Auburn, New York, experiment involved the 
all-day elimination of a 25-cent fare for one 
month. Although ridership increased more than 300 
percent during the fare-free month (fare elasticity 
of -0.63), there is no mention of the 
level-of-ridership attrition after the experiment. 
In Madison, Wisconsin, fares were abol ished during 
off-peak hours for one week. Total weekly ridership 
increased 93.5 percent, resulting in a fare 
elasticity of -0.32. 

In 1975, Madison conducted a demonstration 
project ' to test the effects of reduced fares and 
more frequent headways on weekend ridership (27). 
Although some data discrepancies exist, the 
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demonstration is one of the only documented efforts 
in the United States to sequentially vary transit 
fares and headways. The results of the short-term 
weekend fare reduction and subsequent fare increase 
are presented below (§_,.£1.) : 

Fare 
Change 
Decrease 
Increase 

Date of 
Fare Change 
January 18, 1975 
May 10, 1975 

Fare Elasticities 
Saturday Sunday 
-0.28 -0.20 
- 0.51 -0.64 

Caruolo and Roess (~) also reviewed the 1974 
"Save-on-Sunday" program sponsored by the 
Metropolitan Transit Authority i n New York City. 
Under the two-rides-foe-the-price-of-one program, 
ridership increased by approximately 37 percent 
overall. The Sunday price promotion lasted six 
months and resulted in an overall fare elasticity of 
-0.47 (§_). As in Auburn and Madison, the price 
promotion in New York City resulted in a net revenue 
loss for the operator. 

DISAGGREGATE FARE ELASTICITIES 

Recently, transit operators have begun to target 
fare programs to meet the needs of specific user 
groups, and aggregate fare elasticities do not 
provide reliable estimates of the ride rship and 
revenue impacts of individual programs. This 
section presents evidence of disaggregate fare 
elasticities for different types of trips and user 
groups. 

Fare Elasticities by Mode 

Several studies have confirmed that bus 
elasticities (8 cases) are_ two times greater 
rapid-rail fare elasticities (8 cases), as 
below (&_,21,~,~): 

Bus Rapid-Rail 
City Service Service 
New York -0.32 ± 0.11 -0.16 ± 0.04 
London -0.33 -0.16 
Paris -0.20 -0.12 
Mean and SD -0.30 ± 0.10 -0.15 ± 0.13 

fare 
than 

shown 

For six independent fare changes in New York City 
between 1948 and 1977, the mean bus fare elasticity 
is -0. 32 ± 0. 011 while the value for subway 
service is -0.16 ± 0.004. This larger elasticity 
for bus transit than for rapid rail can be explained 
by the more numerous substitutes for bus transit. 
Automobile, taxi, and even walking modes of travel 
share the same right-of-way and serve the same 
routes as buses. In contrast, rail transit has 
fewer modal substitutes, is faster than bus transit 
operating on surface streets, and occupies its own 
right-of-way. 

Although it can be said for certain that bus fare 
elasticities are, on the average, twice as large as 
rapid-rail elasticities, the relation between bus 
and commuter-rail fare elasticities is 
inconclusive. Although it is our belief that 
commuter-rail fare elasticities are lower than those 
for buses, the few observations available show 
inconsistencies that make it impossible to formulate 
definite conclusions. The most reliable of the 
fare-elasticity estimates are those from London (30) 
and from the Boston 1963 demonstration (l_!), which 
show commuter-rail elasticities lower than bus fare 
elasticities (§_). 

Long- and Short-Distance Fare Elasticities 

The demand for very short transit trips appears to 

. 
"' 
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be more elastic with respect to fares than is the 
demand for long trips. The London Transport Review 
Board's 1968 mathematical analysis (,1£) shows that 
bus trips of less than l mile exhibit higher fare 
elasticities (-0. 55) than trips of 1-3 miles 
(-0.29). Bly (21) reports that in Essen, Germany, 
the fare elasticity for short- and long-distance 
trips was found to be -0.32 and -0.12, respectively. 

Fare Elasticities by Route Type 

Differences in fare elasticities have been observed 
for various types of transit services and routes in 
urban areas. The general consensus has been that on 
routes in which the preponderance of travel is for 
work purposes, such as radial arterials and express 
routes, the fare elasticities are lower than those 
observed on routes with a large proportion of 
discretionary travel, such as on intrasuburban and 
local routes. 

Table l presents data from the London Transport 
experience that tends to support this. The results 
show that weekday intrasuburban trips are more 
elastic than radial trips between central London and 
the suburbs. The relatively large intrasuburban 
fare elasticities suggest that the intrasuburban 
trips are either less important or have more modal 
substitutes than radial trips. 

Peak and Off-Peak Fare Elasticities 

In nearly every study where peak and off-peak fare 
elasticities have been estimated, off-peak 
elasticities are two to three times larger than the 
values observed for peak travel. The off-peak fare 
elasticities for New York and London presented in 
Table 2 (6) are 2.5 times larger than corresponding 
peak-per i~d values. Moreover, this factor applies 
equally to bus and rapid-rail travel. For subway 
service in New York City and bus service in St. 
Louis , afternoon peak-period ridership is more 
elastic than morning peak-hour ridership indicating 
that a greater degree of nonwork or nonessential 
travel takes place during the evening rush hour. 

Table 1. Fare elasticities by route type and transport mode. 

Route Type 

Transport Mode Radial Arterial Jntrasuburban All 

Bus -0.09 -0.38 -0.32 
Rapid rail -0.11 -0.28 -0.26 
Commuter rail =JlJlQ ::.Q.12 -0.13 
Mean -0.09 -0.31 -0.24 

Note: Because own-price elasticities were not presented in Fairhurst and Smith 
(30) and could not be estimated 1 the elasticity values presented in this table 
were calculated from simulations of a 10 percent fare increase across aH 
public transportation modes. 

Table 2. Disaggregated fare elasticities by time of day and week. 

City 

New York 
Rapid rail 

St. Louis 
Madison 

Denver 
Trenton 
London 

Bus 
Rapid rail 

Stevenage, England 

Peak Period 

A.M. 

-0.03 
-0.13 

P.M. Average 

-0.06 
-0.17 

-0.27 -0.27 
-0.10 -0.10 
-0.32 -0.32 

Off-Peak 
Period 

-0.11 

-0.32 

-0.29 
-0.19 

-0.37 
-0.25 
-0.84 
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Evening, late night, and weekend fare elastic! ties 
are not much different from the values observed for 
midday services, although the results obtained from 
a 1968 study for New York City (28) show Sunday 
ridership to be less elastic than Saturday ridership 
(_§.). 

There are scant data available on accurate 
estimates of the cross-elasticity between peak and 
off-peak periods. Ecosometrics <&> presented 
evidence that showed the mean elasticity of peak 
demand to off-peak fare changes to be +0 .15 ± 0 .14 
(6 cases) and the mean elasticity of off-peak demand 
to peak period fare adjustments to be +0.03 ± 0.01 
(2 cases). Clearly, the reason for the extremely 

low peak demand cross-elasticities is that workers 
have little choice in deciding their home-to-work 
travel time. In cities with differential 
time-of-day pricing and well-organized variable work 
hours programs (such as in Duluth, Minnesota), peak 
to off-peak fare cross-elasticities may be larger. 

Fare Elastic iti e s by i ncome and Age 

One would expect high-income groups to have a larger 
fare elasticity than low-income groups. The 
analyses of both the Denver and Trenton off-peak 
fare-free demonstrations provide partial support for 
this general hypothesis, as shown in the table below 
(ll_,34): 

Off-Peak Fare 
Elasticities 

Household I ncome !S! Denver Trenton 
Under 5 000 -0.28 -0.09 

5 000-9 999 -0.24 -0.10 
10 000-14 999 -0.25 -0.41 
15 000-24 999 -0.28 -0.08 
25 000 or more -0.31 -0.43 

Although the Denver demonstration shows only 
slight differences in off-peak elasticities by 
income group, Trenton's fare elasticities generally 
rise as household incomes increase. The 
elasticities calculated in these demonstrations 
refer to off-peak hours when most nonwork trips are 
taken. Whereas most of the new transit trips in the 
Denver case came from the more-affluent groups, the 
largest increase in temporal shifts from the peak 
came from the lowest-income groups. 

The Denver and Trenton off-peak fare-free 
demonstrations have provided some evidence to 
suggest that there is an inverse relation between 
age and ridership response during the off-peak 
hours. In both demonstrations, young people were 
most responsive to the off-peak fare elimination, as 
shown in the following table: 

Age Category 
(years) 
1-16 

Demonstration 
Denver 
-0.32 

Late 

Trenton 
-0.31 

Mean 
Value 
-0.32 

Midday Evening Night Saturday Sunday All Hours 

-0.10 -0.18 -0.04 -0.15 -0.04 -0.09 
-0.40 -0.38 -0.24 

-0.28 -0.20 
-0.51 -0.64 

-0.28 -0.28 -0.45 
-0.18 -0.22 -0.13 -0.26 

-0.33 
-0.16 
-0.67 
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Age Category Demonstration Mean 
(:tears! Denver Trenton Value 
17-24 -0.30 -0.24 -0.27 
25-44 -0.28 -0.08 -0.18 
45-64 -0.18 -0.12 -0.15 
65 or older -0.16 -0.12 -0.14 

CONCLUSION 

The principal focus of this paper has been on 
identifying the differences in fare elasticities of 
transit demand among market groups. Although 
systemwide elasticity values, such as the Simpson 
and Curtin formula, have been useful for predicting 
aggregate ridership changes resulting from changes 
in fares, these values do not provide reliable 
estimates of the ridership and revenue impacts of 
individually targeted fare programs. Thus, the 
evidence currently available on disaggregated fare 
elasticities of demand was presented. 

Also, the differences in fare elasticities noted 
in this paper highlight the futility of using 
flat-fare systems as revenue-producing agents. Not 
only do flat fares provide more subsidy to the 
more-affluent suburbanites and other long-distance 
riders, but they also result in significant losses 
of opportunities for increasing ridership and 
revenues. If U.S. transit companies are going to 
take advantage of the increased revenue and 
ridership opportunities afforded by the differences 
in fare elasticities across transit markets, the 
reliance on flat fares will have to be abandoned. 
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Free-Fare Transit: Some Empirical Findings 
LAWRENCE B. DOXSEY AND BRUCE D. SPEAR 

This paper presents comparative results from two free transit demonstrations 
funded by the Urban Mass Transportation Administration. In Denver and 
Trenton, one-year experiments with off-peak free transit began early in 1977. 
The analysis here is based on survey and ridership-count data collected as part 
of the demonstration evaluation process. Aggregate ridership increases of 
about 50 percent were observed at both sites following the elimination of fares. 
The majority of the additional trips would have otherwise been made by non· 
bus modes, though roughly 15-25 percent would not have been made at all 
without free fare. Transit-dependent groups, including the elderly, the poor. 
and the carless, were less responsive to fare elimination than were nondepen· 
dent groups. Neither demonstration had a measurable impact on automobile 
use. At both sites increased ridership led to modest and generally localized 
deteriorations in service quality. 

This paper summarizes the results of two off-peak 
free-fare demonstrations sponsored by the Office of 
Service and Methods Demonstrations, Urban Mass 
Transportation Administration (UMTA). One took 
place in Denver and the other in Trenton. Each 
lasted for one year. Restriction of free fare to 
off-peak periods served to reduce the overall cost 
of the demonstrations since peak-period ridership 
continued to generate revenue. Furthermore, con­
tinued collection of peak-period fares focused 
ridership gains on the excess capacity of the off­
peak periods. 

Although the basic approach to fare elimination 
was identical in Denver and Trenton, the two demon­
strations had several important contextual differ­
ences. These included predemonstration site-and­
transit service characteristics, underlying local 
objectives for the demonstration, the manner in 
which fare elimination was implemented, and external 
events that influenced the observed impacts of the 
demonstrations. Perhaps the most significant dif­
ferences between the two demonstrations were in the 
circumstances under which they originated. Whereas 
the Trenton demonstration was planned from the be­
g inning as a one-year experiment, the Denver demon­
stration evolved out of what was initially planned 
as a one-month, locally sponsored transit promotion 
effort. One consequence of the more spontaneous 
origin of the Denver demonstration is that there was 
little opportunity to develop either a comprehensive 
implementation procedure or an evaluation plan. 

Also, during the course of the demonstration 
Denver restructured its bus routes from a radial 
pattern, focused on Denver's central business dis­
trict (CBD), to a grid pattern. The route restruc­
turing probably had both temporary and longer-term 

negative impacts on free-fare ridership levels (!>· 

AGGREGATE CHANGES IN TRANSIT RIDERSHIP 

With the introduction of off-peak free fares, each 
site experienced a large increase in aggregate sys­
tem ridership that was sustained throughout the dem­
onstration period. In Trenton, average weekly off­
peak ridership rose by 46 percenti in Denver, the 
increase was 52 percent. Figure l presents monthly 
ridership estimates for the two sites from January 
1977 through June 1979. 

Although ridership peaked early in each demon­
stration, it is evident from the figures that much 
of these ridership gains were sustained throughout 
the year of free fare. This suggests that even 
after the novelty of free bus service wore off, free 
fare continued to make transit an attractive travel 
alternative. Following the reinstitution of off­
peak fares early in 1979, ridership remained above 
projections based on predemonstration levels, sug­
gesting that some of the ridership induced by the 
free fares was retained after fares were reimposed. 
However, several exogenous events also influenced 
post-demonstration ridership in ways that were prob­
ably significant but cannot be easily quantified. 
Perhaps the most significant influence came from the 
nationwide gasoline crisis that occurred in 1979. 
The long-term impacts of the free-fare promotion are 
therefore uncertain at best, but are probably not of 
sufficient magnitude to offset the revenue loss as­
sociated with the year-long free-fare promotion. 

TRAVEL-RELATED BENEFITS 

The benefits ascribed to free-fare-induced transit 
derive from three sources: (a) increased mobility 
for transit dependents, (b) reduction of car travel 
through diversion of car trips to transit, and (c) 
economic stimulation of commercial areas through in­
creased trip making for shopping. 

One of the principal benefits attributed to free­
fare transit is an increase in the mobility of tran­
sit-dependent segments of the population. By elimi­
nating cost as a barrier to travel, proponents argue 
(2,3) that such groups as the poor, the elderly, or 
the-young will have greater access to activities and 
opportunities throughout the urban area. 

It was found that 12 percent of all free-fare 
trips in Trenton and 7 percent of those in Denver 


