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Comparison of Two Integration Methods in Transportation 
Routing 
JOCELYN F.B. SHAW AND BERNARD E. HOWARD 

Two methods of integrating the only principle that produces an optimal 
transportation route are compared, where c is the criterion function whose 
path integral is to be minimized. (All quantifiable factors, including environ
mental factors, may be included.) The optimum curvature principle is a 
necessary condition that an optimal route (however obtained) must satisfy 
in any region where c is smooth. aassical routes such as linear, parabolic, 
and circular splines are approximations to optimal routes. An intrinsic
equation algorithm that may have the necessary smoothness is introduced 
and is compared with a previously presented arc-of-circle algorithm. In the 
example with known analytic solution, the arc-of-circle algorithm is an 
adequate approximation to the preferable intrinsic-equation algorithm, 
the latter of which reduces to the former in the case of constant curvature. 
The intrinsic-equation algorithm is an order of magnitude more accurate 
in the example and is preferable because it is easy to use and because the 
other algorithm does not satisfy the smoothness hypotheses. Discontinui
ties of the criterion function can be allowed. 

This paper compares two integration schemes for es
tablishing optimum transportation routes (referred 
to in this paper, for brevity, as highways) by the 
Optimum Curvature Principle (OCP). The OCP was de
scribed by Howard, Bramnick, and Shaw (.!_) and ap
plied to a practical example by Howard and Shaw 
(£). For convenience, this paper describes the 
OCP. The first integration scheme uses a sequence 
of circular arcs joined together (as is sometimes 
done in highway routing), and the second uses a 
Taylor series expansion through cubic terms in which 
the path segments are joined together and there may 
be continuous curvature at the joints. The compari
son reported in this paper is performed to investi
gate the practical significance of the possibly 
higher degree of smoothness of the second method. 
The hypothesis underlying the derivation of the OCP 
necessary condition by means of the calculus of var
iations implies the greater degree of smoothness. 
Error analyses are carried out in each case. 

STATEMENT OF THE PROBLEM 

The problem can be stated in two parts: 

1. The mathematical problem is the numerical so
lution of a two-point boundary value problem in or
dinary nonlinear differential equations, which rep
resents the mathematical statement of the OCP 
described below. The practical problem is plan op
timization of a highway between two given locations. 

2. This paper is also concerned with studying a 
criterion field with a known solution for the opti
mum routes in order to establish the sensitivity and 
accuracy of the numerical integration schemes con
sidered. Two integration algorithms are used: the 
new intrinsic-equation method introduced in this 
paper and Howard and Shaw's arc-of-circle method 
<1>· Error analyses have been carried out (with the 
known analytic solution as standard of reference) to 
establish the correctness and the error bounds of 
the methods. 

NOTATION 

The following notation is used in this paper: 

c• segmented curve with discontinuous 
tangent; 

C1 = curve with smooth, continuous tan
gent; 

C2 curve with smooth, continuous curva-
ture; 

c = c (x, y) • criterion 
point x, y; 

function at 

c = exp(0.05y - 0.2x) = equation of the 
exponentional cost function; 
ac/ax = partial derivative of c with 
respect to X; 
ac/ay = partial derivative of c with 
respect to Y; 
a•c/ax• partial second derivative 
of c with respect to X; 

cxy = a2 c/ax ay = partial second derivative 
of ac/ay with respect to X; 
a 2c/ay 2 = partial second derivative 
of c with respect to Y; 

c' = dc/ds; 
dc/ dse+11 ; 2 directional derivative of c perpen-

dicular to route; 
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discretization or truncation error in 
terms of step size h; 
round-off error in terms of step size 
h; 
distance between 
(step size) ; 
de/ds; 

adjacent 

K, K' values at point O; 

points 

d 2 e/ds 2 ; 

slope of 
log step 
the mesh 

log absolute error versus 
size on the coarse side of 
(large step sizes) ; 

rad i us of curvature of optimum route ; 
distance along optimum route; 
coordinates of the criterion func
tion along X and Y axes; 
dx/ds, dy/ds; 
small increment in s corresponding to 
a small increase oe in e; 
small increments in x, y correspond
ing to increments os and oe; 
small increment in e corresponding to 
a sma ll increase os in s; 
angle of the route with the positive 
X axis (rad); 
values of 9 and coordinates at a 
point s along the optimum route; 
initial values of es, Xsr Ysi 
values for the next point of es' xs, 
Ysi and 
de/ds. 

OPTIMUM C.URVA'l'TJRF. PRINCTPT.E 

Descrip tion 

The OCP is illustrated in Figure 1. Let us take a 
case of a route (e.g. , a highway) to be built be
tween points C and D. The criterion field is as 
shown and represents construction costs per mile of 
highway. There is a high-cost area to the left be
tween the two end points and a low-cost plateau to 
the right of the figure. Such a situation could ex
ist where a depression in the ground (with marshy 
conditions) is in the high-cost area; this is sur
rounded by rising ground, the condition of which 
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Figure 1. General illustration of optimum curvature principle. 
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gets gradually better, resulting in higher, dder 
ground. The low area would need an embankment to 
raise the roadway above flood criteria as well as 
suitable treatment for the marshy ground: this is 
surrounded by ground at gradually lower cost and 
eventually by good ground at constant low cost. 
There is a straight-line route passing through the 
high-cost area and a circui taus route in the low
cost area. Somewhere in between, there is an opti
mal route that is ·a compromise and that optimizes 
the path integral (total cost, in this case) of the 
route. The optimal route wi ll be output by an OCP 
computer program that implements the OCP, provided 
that certain smoothness requirements of the crite..c 
rion field are followed. Discontinuities of the 
criterion field can be allowed. 

The OCP is described by Howard, Bramnick, and 
Shaw U.r Appendix 1). We may express the OCP as 
follows: At each point of an optimal route, the 
curvature is equal to the logarithmic directional 
derivative (or the percentage rate of change) of the 
local criterion function perpendicular to the 
route. That is to say thi'!t, at any point on the 
highway, the forward curvature is obtained by pro
jecting up to the criterion surface at that point, 
measuring the slope of the criterion surface perpen
dicular to the local direction of the highway, and 
obtaining the curvature of the new highway path by 
means of the fundamental OCP equation. For any 
point on a route obtained by any method, the OCP can 
be applied to check whether the segment considered 
is part of an optimum route. If it is not, then a 
better route exists. This could be useful where a 
route is established for nonoptimal reasons and cer
tain segments can be optimized. Figure 2 is adapted 
from Howard, Bramnick, and Shaw (1). The optimal 
route goes between points A and B: A and B are in 
the XY plane. HDEF is the ln[c(x,y)] function sur
face. Further details are given by Howard, Bram
nick, and Shaw <ll. 
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Figure 2. Specific illustration of optimum curvature principle. 
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Derivation 

Suppose that in three-dimensional space there are 
two points separated by layers of air that have dif
ferent refractive indices. There are an infinite 
number of different paths that the light tays can 
take. If only the rays that travel between the two 
points are considered, there will be a number of 
paths that will locally minimize the time of travel 
and one global minimum that will be the shortest 
path possible. The calculus of variations has been 
applied elsewhere--for example, by Bliss (l)--to 
solve this problem. 

The OCP is derived in the paper by Howard, Bram
nick, and Shaw (ll· Imagine a plastic medium formed 
in such a way that its refractive index at each 
point is proportional to the local cost function for 
the highway. Then, if a narrow beam of light is in
troduced at, say, the south end point of the highway 
and swept around a semicircle, the light rays will 
trace through the plastic, in accordance with Fer
mat's principle of least time, paths that correspond 
to our optimal routes. The equivalent thing is done 
on the computer by simulation. The mathematical ex
pression of the OCP (plus the geometric relations 
required to complete the principle) is as follows: 

d8 /ds = (!/c) ( dc/ds8 +tr12), dx/ds = cos 8, dy/ds = sin 8 (!) 

where 

e direction of the route, 
d0/ds route curvature, and 

c = local criteria function. 

The subscript means that the direction of the deriv
ative is taken in a direction perpendicular to the 
route direction. The integration methods are de
scribed later. 

One characteristic of the OCP is that the optimal 
paths curve toward the area of the maximum criterion 
function. This can be understood if it is realized 
that the optimal route between two points separated 
by a high-criterion area will be better off if it 
skirts the high-criterion area and spends more of 
its path in the low-criterion area (1). The result 
is that the extrema tend to align themselves along 
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the gradient to the criterion surface. 

Example 

1. From the exponential cost function in the ex
ample given by Howard, Bramnick, and Shaw Q), the 
optimal routes obtained by two different integration 
formulas were compared with the analytic solution. 
This enabled the error bounds to be studied. From 
the local criterion function surface generated on 
the computer, the OCP was used to determine the op
timal routes between the two end points. To do 
this, a one-parameter family of optimal routes was 
generated by varying the starting angle from one of 
the end points, numerically integrating the OCP to 
determine the optimal route for each starting angle, 
and selecting the paths that terminate on th.e other 
end point. The optimal route is the best of this 
discrete set. A shooting method, outlined by Howard 
and Shaw (2), was used to narrow down the correct 
starting a~le and successively diminish the incre
ments in the starting angle, wherein the angle in
crements start at O .1 rad and decrease by a factor 
of 10 for each successive graph. 

"-• The illustrative example given by Howard, 
Bramnick, and Shaw (1) was used to verify that the 
method did indeed give the optimal-path routes. 
This example uses an exponential criterion field of 
c = exp(0.05y - 0.2x). The optimal route for any 
starting angle--say, 0. 8 rad--was calculated. [The 
details are not essential to an understanding of 
this paper, but the interested reader is referred to 
Equations 5-7 of Howard, Bramnick, and Shaw <l>. J 
This was also used to get the error bounds for the 
new intrinsic-equation algorithm and the original 
arc-of-circle algorithm. Figure 3 is the computer 
printout for the optimal paths for which the 
intrinsic-equation algorithm was used. The computer 
printout for the arc-of-circle algorithm is so simi
lar that it has been omitted. Each optimum starts 
at the same starting angle (say, 0.8 rad) but uses 
different step sizes. The error is the difference 
between the experimental and analytic value of the 
y-intercept when x is zero. Figure 4 shows the 
graph of log absolute error versus log step size for 
both algorithms. 

INTEGRATION ALGORITHMS 

The equations of the two integration algorithms com
pared in this paper are presented below. To save 
space, the method of derivation of each is described 
in sufficient detail that the results may be repro
duced by anyone skilled in the art without listing 
all of the equations of the intermediate steps. 

Arc-of-Circle Algorithm 

The OCP gives the curvature of an optimal route at 
each point. A natural engineering approach is to 
form the route by joining small arcs of circles of 
curvature. The analytic equivalent of this geomet
ric operation is the computation of the position and 
the direction of the route at the end of the small 
arc of length 0s by means of the fol lowing Pqna
tions: 

68 = 6s (cy cos 8 - Cx sin IJ)/c 

6x = 6s cos 8 (! -682 /6) - 0.56sf>IJ sin 8 

lly = 6s sin 8 (1 - 511 2 /6) + 0.56sf>IJ cos 8 

(2) 

(3) 

(4) 

This algorithm was derived and applied by Howard 
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and Shaw (£). The main steps in the derivation are 
as follows: 

1. cSe is obtained from the OCP and definition 
of directional derivative (,!). 

2. ox and 0y are obtained by resolving the 
chord of Figure 5 in the X and Y directions, respec
tively, by use of trigonometric identities and ap
proximating sin c1e and cos c1e by their MacLaurin 
expansions through terms of order cSe 2 • 

Joining small arcs of circles gives a route of 
class C1 (smooth, continuous tangent) but discon
tinuous second derivative (curvature) at the 
joints. However, an optimal route (by derivation of 
the OCP) is of class C2 • The question arises as 
to whether (a) the intuitively clear arc-of-circle 
algorithm (vastly superior to the linear segmented 
c• approximation) is a sufficiently good approxi
mation to the theoretical optimum for practical pur
poses or (b) it is possible to develop a smoother 
algorithm that is not too cumbersome and that yields 
significantly better results. This paper addresses 
this question through the following algorithm. 

Intrinsic- Equation Algorithm 

It is known from differential geometry (2_) that a 
space curve is uniquely determined to within a con
gruence by its curvature and torsion (two scalar 
functions of arc length) and a plane curve by its 
curvature alone. The congruential ambiguity is re
solved by specifying initial position and direction. 

It is customary to expand the intrinsic equations 
in MacLaurin's series about a given point on the 
curve, referred to the intrinsic trihedral (tan
gent, normal, and binormal vectors). This gives 
useful local information, but to generate the entire 
curve it is necessary to resolve coordinates and di
rections back and forth between the moving trihedral 
system and the inertial system and to integrate the 
Frenet-Serret differential equations to obtain the 
rotation of the intrinsic trihedral as its origin 
moves along the curve. 

In the two-dimensional problem of determining an 
optimal highway plan, it is more convenient to work 
directly and exclusively in the inertial frame of 
reference of primary concern. The algorithm con
sists of two steps: 

1. Compute the curvature K and rate of change of 
curvature K' for the given point xs, Ys• and di
rection 8s from the following three equations: 

K=IJ '=(cy cos8-cx sin8)/c 

c'= Cx cos 8 +Cy sin 8 

K'= [cxy cos 26 + O.S(Cyy - cxx) sin 28 - 2Kc'] /c 

(5) 

(6) 

(7) 

where subscripts denote partial differentiation and 
the prime denotes total derivative with ·respect to 
arc length along the curve. 

Equation 5 is the OCP, derived by Howard, Bram
nick, and Shaw (l); Equation 6 is the chain rnlf> of 
differentiation (,!) plus the geometric relations 
x' a cos e, y' = sin e; Equation 7 results from 
differentiating and simplifying Equation 5. 

2. Compute the coordinates (x1, Y1l of the 
next point on the optimal route and the direction 
e1 of the route at that point, in terms of the 
distance h = 0s along the route, from the follow
ing three equations: 

(8) 
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Figure 3. Computer printout of optimal routes for intrinsic-equation algorithm. 
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x1 = x0 + h cos Bo - 0.5h2 Ko sin B0 -h3(K0 sin B0 + K0
2 cos B0 )/6 (9) 

y 1 =Yo+ h sin B0 + 0.5h2 K0 cos B0 + h3(K0 cos Bo -K0
2 sin B0 )/6 (10) 

Equations B-10 are the Taylor series expansions 
of the respective functions eh, xh, Yh about 
the values 0or xor Y01 previously derived 
relations are used to obtain expressions for the co
efficients in the Taylor expansions. They are the 
practical equivalent of the intrinsic equations of 
the curve, referred to inertial axes. 

Although it appears that x and y are computed to 
one higher order of accuracy in 6S than is a, 
they all are computed to the same order of accuracy 
in 60 and in K--namely, through K'. In fact, if 
K' = 0 (implying constant K), then the intrinsic
equation algorithm reduces to the arc-of-circle al
gorithm. Thus, the difference between the two is 
that the intrinsic-equation algorithm takes into ac
count rate of change of curvature whereas the arc
of-circle algorithm does not. 

ERROR ANALYSIS 

It is known that the computational error in numeri
cal integration on the digital computer is the sum 
of two components: (a) the discretization error and 
(bl the round-off error. These errors behave as 
follows: 

1. The discretization error 
coarse side or large step sizes. 

dominates on the 
It is known that 

Ed =ahk 

where 

h 
k 
a 

2. 
side or 

Er =~/h 

numerical integration step size, 
order of the method, and 

(11) 

factor that depends on the problem being 
solved. 

The round-off error dominates on the fine 
small step sizes. It is known that 

(12) 

where a is a factor that depends on computer word 
size. 

For the present example, with known analytic so
lution, the error was calculated by subtracting the 
computed value from the experimental value. The ab
solute value of the error is plotted against step 
size on log-log paper in Figure 4. 

The arc-of-circle algorithm produces the neater 
curve, showing slope 2 where discretization error is 
dominanti a slope of -1 occurs where round-off error 
is dominanti the optimal step size (h) is about 
1/16. The total error does not change sign, and 
there is a true minimum error. 

The intrinsic-equation algorithm is a case where 
the error changes sign and has a zero value. Since 
log 0 = -m, there is a sharp dip in the curve. 
The slope is -1 where the round-off error dominates 
and 2 where the discretization error dominates. The 
optimal step size is between 0.05 and 0.075. Theo
retically, there is an h when the error is zero, but 
it is not practical to identify the exact value. If 
one examines the area of the sharp dip, the in
trinsic-equation algorithm is an order of magnitude 
better than the arc-of-circle algorithm for optimal 
step sizes of each. 
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DISCUSSION OF RESULTS 

1. The results show that the intrinsic equation 
procedure and the various error analyses carried 
out, together with the application to a problem with 
a known answer, verify the validity and accuracy of 
the method. 

2. From the application of the OCP (with the two 
integration algorithms considered) to the illustra
tive example given by Howard, Bramnick, and Shaw 
(1), the methods were found to give correct results, 
with reasonable error bounds for the value of y when 
x = 0 as checked by the analytic solution in the 
same paper. For the intrinsic-equation integration, 
the error bound is about ±0.000 013 in a y of 
about 7.2. For the segment of a circle integration, 
the error bound is about +0.000 12 for the same y at 
about the same step size. 

The error analyses, log absolute error versus log 
step size, are shown in Figure 4; they use, respec
tively, the arc-of-circle and the intrinsic-equation 
algorithms. The superiority of the latter is shown 
by the fact that it changed sign at a step size of 
about 0.06. A slope of -1 was clearly shown, for a 
step size of less than 0.03, on the fine mesh side 
of the graph as well as unusual stability for the 
random round-off error, which may be irregular. On 
the coarse side of the mesh, a slope of 2 was clear 
for step sizes greater than 0 .13. For step sizes 
between 0.03 and 0.13, because of proximity of the 
change in sign, and mixing of the effect of round
off and discretization error, there was a steepening 
of the slopes. This steepening of the slopes and 
the change in sign show the superiority of the in
trinsic-equation algorithm over the arc-of-circle 
algorithm in this example. 

FUTURE RESEARCH 

Since the OCP is a new optimizing tool, there are 
many areas in which further work can usefully be 
done. These areas include generation of the crite
rion function, integration of the OCP, and generali
zation of the OCP in various directions, including 
discontinuities in the criterion function, general
ized end point conditions, and the like. The work 
of Howard, Bramnick, and Shaw (1) has been drawn on 
for some of the suggestions that follow. 

Local Criterion Function 

Revenue is lost to the community when taxable land 
is lost to right-of-way. If this factor is to be 
usefully included, some planning projections are 
needed of the future possible use the land might 
have had if no expressway had been built. The im
pact of the expressway itself on future land use 
could be included in the planning study. 

The local criterion field could be generalized to 
include the effect of discontinuities such as sudden 
variations in right-of-way costs and environmental 
factors or sudden change from four to six lanes. 
Howard and Shaw (1) treat this problem together with 
thP. WP.ierstrass-F.rdmann Corner Condition (which we 
hope to present in later papers) • 

When the OCP has been generalized for practical 
application to three-dimensional problems, factors 
that depend on direction and location relative to 
factors immediately adjacent to the point considered 
could be included. Some of these factors are cut 
and fill and other factors dependent on vertical 
alignment. 

User costs and environmental and ecological fac
tors can be included in (and can dominate) the cri-
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terion function. The method encompasses whatever 
factors are considered. 

Theoretical Problems 

The application could be extended to three-dimen
sional problems such as hilly country where cut and 
fill becomes important. The OCP remains valid, as 
shown by Howard, Bramnick, and Shaw (1), but, for 
simultaneous plan and profile optimization, a tor
sion principle [developed by Shaw (~)] is needed. 
It is planned to present this in a later paper. 

The class of admissable arcs could be extended 
from 
smooth, 
tended 

continuously differentiable to piecewise 
and the boundary conditions could be ex

by using such lemmas as the Weierstrass-
Erdmann Corner Condition; the transversality condi
tion could be included to allow for variable end 
points, such as cities being two-dimensional regions 
rather than points, or to find a route to a major 
river or political boundary. 

The intrinsic-equation method, together with its 
error bounds, could be studied to improve the appli
cation of the OCP, particularly if some of the re
search suggested above were carried out. The theory 
of splines appears to have potential application in 
this regard. 

Sufficient conditions for a minimum could be in
vestigated. The OCP is one of several necessary 
conditions that make possible constructive determi
nation of local extrema. Theorems discussed by 
Bliss (l), Akheizer (l), and others provide suffi
cient conditions for a weak extremum (extremum over 
the class of differentiable arcs) and sufficient 
conditions for a strong extremum (extremum over the 
larger class of piecewise smooth arcs), but the 
practical usefulness of these theoretical conditions 
is not clear without further study. 

CONCLUSIONS 

Howard, Bramnick, and Shaw <ll established the prin
ciple and theoretical feasibility of the OCP. The 
OCP is a practical aid in the location and optimiza
tion of highways in certain cases. An improved 
intrinsic-equation integration process is originated 
in this paper, and its usefulness is demonstrated. 
An error analysis has been carried out to study the 
error in cases where the true end value is known. 

Bounds can be established on the accuracy of the 
optimal routes in a practical way. It is shown that 
the error bounds are well within engineering toler
ances. 

The reasons for comparing the two integration al
gorithms are theoretical and practical. The Hilbert 
differentiability condition (satisfied in optimal 
routing problems) proves that optimal routes must be 
at least as smooth as the criterion function, which 
must be as smooth as class C2 for the derivation 
of the Euler-Lagrange equation and the OCP. But the 
joins of circular arcs, parabolas, and straight 
lines often used in highway design are only of class 
C1 and thus cannot be optimal routes, whereas the 
intrinsic equations of a curve can be carried to as 
many terms as necessary to ensure any required de
gree of smoothness. On the other hand, in this one 
analytic example, the circular arcs approximate the 
true optimal route to a sufficient degree of engi
neering accuracy. This is comforting since, once 
the optimal route (or routes) has been established 
and accepted, the highway engineer can approximate 
it with curves and straight lines in his or her 
usual way. The same program can then be used to 
find the cumulative effect of this departure (or any 
other departure) from the optimal route. But it 
must be emphasized that the optimal route that does 
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satisfy all of •the hypotheses must be obtained first 
as a standard of reference. 
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Effect of Increased Truck Size and Weight on Rural 
Highway Geometric Design (and Redesign) 

Principles and Practices 
OGILVIE F. GERICKE AND C. MICHAEL WALTON 

A summary is presented of a study of the effects that an increase in legal 
truck limits would have on highway geometric design elements and of the 
cost implications should various segments of the Texas highway system 
require redesign and modification to facilitate their safe and efficient opera
tion. The paper includes (a) a review of past and current research concerning 
the effects of a possible change in legal vehicle dimensions and weights on the 
geometric design elements of rural roads, (b) an identification of those geo
metric elements most affected by a change in truck dimension and weight, 
(cl an assessment of the effects a change in legal truck size and weight will 
have on these geometric design elements for a variety of operating conditions, 
and (d) an estimate of the cost required to redesign and modify the highway 
section. 

A set of issues surrounding the legal limits on 
sizes and weights of motor vehicles has become a 
primary policy concern of government and the truck
ing industry. Such concern is reflected by current 
federal initiatives (stemming from the Surface 
Transportation Act of 1978), related study activi
ties, and actions of several state transportation 
agencies. 

Fuel shortages and rapidly increasing fuel prices 
have provided an impetus for resolving many of the 
problems associated with vehicle sizes and weights. 
The underlying notion is frequently reflected in the 
following simple relation: Large vehicles can carry 
more freight per unit of fuel. However, although 
fuel conservation is important, it is only one of 
many measures that may be used in an analysis of 
size and weight issues. 

Today's highway network is the result of an evo
lutionary process that represents, among other 
things, a mix of geometric design principles and 
practices. Any significant change in vehicle oper
ating characteristics should require an assessment 
of geometric design practices and the impact on the 
existing highway system in terms of operational as-

pects and safety. Also needed would be an estimate 
of the cost required to redesign and modify the cur
rent network or segments of the network to accom
modate the larger vehicles. 

In Texas, a study is under way to evaluate some 
of the effects of operating larger and heavier vehi
cles on the highway system. Initial results, deter
mined by using a study technique modified from the 
National Cooperative Highway Research Program 
(NCHRP) (l), showed estimated pavement costs, bridge 
costs, truck operating cost savings, and fuel sav
ings that would result from increases in limits on 
axle weight and gross vehicle weight (GVW) coupled 
with corresponding changes in vehicle unit length 
and width. No change in the height of vehicles or 
trailers is considered in this study. The work re
ported in this paper focuses on the costs of the 
geometric design and redesign requirements associ
ated with increases in vehicle size (length and 
width) as well as weight. 

SCOPE OF THE RESEARCH 

As an initial assumption, four different vehicle 
combinations (~) and two highway classification 
schemes (cases 1 and 2) are considered. The four 
vehicle scenarios are shown in Figures 1 and 2. 

In case 1, the three functional rural highway 
systems are considered in the analysis: (a) the In
terstate highway system, (b) the U.S. and state 
highway system, and (c) the farm-to-market (FM) road 
system. Case 1 represents a traditional approach 
that fits the Texas highway network of about 60 000 
miles. 

Case 2 differentiates on the basis of road use. 
In case 2, the following rural functional classes, 
or combination of classes, are also considered in 




