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soil-property variability while the statistical 
analysis quantifies it. 

CONCLUSIONS 

On the basis of results obtained in this study, the 
following conclusions can be drawn: 

1. The statistical approach is useful in sys­
tematically organizing data. 

2. In the sorting of data, histograms that ex­
hibit more than one peak (multimodal) can indicate 
whether one or more populations are present. 

3. Shear-strength characteristics exhibited the 
most variability. This is in agreement with other 
research. 

4. Low coefficients of variation for the classi­
fication parameters may indicate whether one is 
dealing with the same soil type. 

5. The beta distribution was found to model most 
soil properties investigated in this paper. In 
fact, due to its versatility, it could be expected 
to model most soil properties. 

6. Whenever large amounts of data are available 
for a particular soil unit, a statistical treatment 
may provide better insights into the interrelations 
of the various soil properties and help the engineer 
to reduce the amount of judgment necessary in the 
selection of design parameters. 

7. It is important to note that the statistical 
results presented in this paper apply only to clay 
material. If one were dealing with material similar 
in geologic origin and stress history, the results 
presented here could be of value. 
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Use of Point Estimates for Probability Moments 

in Geotechnical Engineering 

V. McGUFFEY, J. IORI, Z. KYFOR, AND D. ATHANASIOU-GRIVAS 

In probabilistic geotechnical engineering, it is often necessary to obtain esti· 
mates of the mean and standard deviation of a function of one or more random 
variables. For this purpose, Rosenblueth first proposed the method of using 
point estimates for approximating probability moments. This method is ad­
vantageous in that it requires neither extensive computer capabilities nor com­
plex mathematical derivations. The point-estimate method is described and 
compared with existing methods, and its usefulness is illustrated with examples 
of its application to common geotechnical functions. 

Analytic expressions are available and can be used 
to evaluate the statistical values (mean, variance, 
higher moments) of soil properties with random 
variation, such as plasticity index, compression 
ratio, and undrained shear strength. Moreover, of 
equal importance in geotechnical practice is the 

determination of the statistical values of functions 
of soil properties. 

As an example, consider the commonly used settle­
ment equation expressed in the following form: 

S = H x CR x log(Pr/P 0 ) 

where 

s 
H 

CR 

Po 

total settlement within a soil layer, 
thickness of the layer, 
compression ratio of the layer, 
initial vertical stress within the soil 
layer, and 
final vertical stress within the soil 
layer. 

(1) 
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CR is a random variable. S is a function of this 
random variable, and therefore its statistical 
values depend on those of CR. 

If the mean and standard deviation of S are 
known, one can infer something about the probability 
with which S receives values within certain limits. 
For example, by assuming a model for the probability 
density function (pdf) of S (e.g., normal), one can 
find (a) the probability that S lies below a certain 
value (S1) by integrating under the pdf from 
to s 1 , (b) the probability that s lies above a 
certain value (S2) by integrating under the pdf 
from S2 to +oo, and (c) the probability that S 
lies within a certain range (S1 to s2) by inte­
grating the pdf from S1 to S2. 

Approximate solutions to the problem of determin­
ing the statistical values of functions of random 
variables are usually possible (!_). Currently, two 
approximate methods are widely used to do this: 
Monte Carlo simulation and Taylor series approxima­
tion. These two methods are briefly described in 
this paper. Since there are disadvantages to both 
of these methods, a third method, first proposed by 
Rosenblueth (1), is also described. It is shown 
that Rosenblueth's method overcomes the disadvan­
tages of the other two methods. Its use is also 
illustrated with examples. 

APPROXIMATE METHODS 

Generally, if Y f (X1, X2, X3, ••• •Xn> and 
each of the variables Xi has a known mean and 
standard deviation, we wish to determine the mean 
and standard deviation of Y. For example, given 
Equation 1 and the means and standard deviation of 
CR, we wish to determine the mean and standard 
deviation of S. 

Monte Carlo Simulation 

The Monte Carlo simulation method determines the 
mean and standard deviation of a function of random 
variables by performing repeated computations by use 
of randomly selected point estimates for the compo­
nent variables. The method is outlined as follows: 

1. Select a random value for each of the compo­
nent variables. The random values are selected to 
conform with the assumed distribution of each vari­
able. 

2. Using the randomly selected values of the 
component variables, compute the function. 

3. Repeat steps 1 and 2 a large number of times. 
The number of times depends on the variability of 
the input and output parameters and the desired 
degree of accuracy. 

4. Compute the mean and standard deviation of the 
function by using the data obtained from the simula­
tion. 

The Monte Carlo simulation requires a high-speed 
computer so that a large number of trials can be 
conducted. Furthermore, computer programs should 
exist that automatically make the necessary repeti­
tions and accumulate values. Such programs, espe­
cially for very complicated functions, are very 
difficult to create. 

Taylor Series Expansion 

Given a function Y 
where each variable Xi 

f(X1, X2, X3, •.• ,Xn), 
is an independent random 

variable with known mean Xi and variance Var 
(Xi), expressions can be derived for the mean and 
variance of Y: 

Y=f(X1,X2,X3, ... Xn)+ 1/2 f (d2y/ClXi2) [Var(Xd] 
i=J 
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(2) 

(3) 

The problem with this method is that partial 
differentiation, performed on even simple functions, 
may result in complex expressions. Furthermore, 
differentials of complex functions may not even 
exist. 

Point-Estimate Method 

A typical pdf of a random variable X is shown in 
Figure 1. Usually, only the first two or three 
moments of the distribution can be estimated accu­
rately. Following a method first proposed by Rosen­
blueth (1) , the pdf of X can be approximated by a 
two-point probability mass function. The mass 
function consists of concentrations P+ and P_ at 
X+ and x_, respectively (see Figure 1). This is 
analogous to representing a distributed load on a 
beam by a force (or forces) acting through a point 
(or points). 

If Y(X) is a function of X, a two-point approxi­
mation for the pdf of Y is obtained by evaluating 
the function Y(X) at X+ and lL: 

Y+ = Y(X+) 

y_ = Y(X..) 

(4) 

(5) 

The concentration at Y+ is the same as it is at 
X+ (i.e., P+>· Similarly, the concentration at 
Y_ is P_. This is shown schematically in Figure 
2. The two-point approximation for the pdf of Y can 
then be used to determine the first two moments of Y: 

E(Y) = P+ Y+ + p_y_ 

Var(Y) = E(Y2) - E(Y)2 

(6) 

(7) 

(8) 

The total mass of the two-point approximation 
must be equal to that of the actual density function 
(i.e., must be equal to one). Also, the first three 

Figure 1. Typical probability density function and two-point probability mass 
function of X. 
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moments of the two-point approximation must be equal 
to those of the actual density function. Thus, 
P+, P_, J4, and lL must satisfy the follow­
ing simultaneous equations: 

P +(X+ - X)2 + P_(X_ - X)2 =a/ 

P+(X+ - X)3 + P_(){_- X)3 = Vxa/ 

where 

x expected value of x, 
ox standard deviation of X, and 
Vx skewness of X. 

If X is symmetrically distributed, then vx 
O and the above expressions yield 

P+=P_=l/2 

X+ =X+ ax 

x_ = x- ax 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

That is, the distribution of X is approximated by 
a two-point mass function, the mass of which is 
concentrated equally at one standard deviation above 
and below the mean value (see Figure 3). 

If Y is a function of two random variables (X1, 
x2), then the joint distribution of the two random 
variables can be approximated with a four-point mass 
function (see Figure 4). In general, if Y is a 
function of N random variables, then 2N points are 
needed to approximate the multivariate mass func­
tion. Hence, the weighing factor (P) for the case 
of uncorrelated random variables with symmetrical 
distributions is equal to (l/2)N. 

The determination of the first two moments of Y, 
when Y is a func~ion of two uncorrelated, symmetri-

Figure 2. Two-point probability mass function of Y. 

y 

Y=Y(X) 

v. ----------

X+ x 

Figure 3. Symmetrical two-point mass function. 

x 
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cally distributed random variables, is given as 
follows: 

Y++ = Y(Xt+, X2+) (16) 

(17) 

(18) 

(19) 

where Y++ is the function y evaluated at (X1+• 
x2+l, etc.: 

E(Y) = l/4(Y++ + Y+- + Y-+ y __ ) 

E(Y2 ) = l/4(Y++2 + Y+- 2 + Y-+ 2 + y __ 2 ) 

Var(Y) = E(Y2 ) - E(Y)2 

EXAMPLES 

Settlement 

(20) 

(21) 

(22) 

A surcharge is to be placed on an area that is 
underlain by a 10-ft-thick layer of clay (see Figure 
5). The initial vertical stress within the clay 
layer (P0 ) is 300 lbf/ft 2 , and the final verti­
cal stress (Pf) will be 400 lbf/ft2 • CR is a 
random variable with a mean value of 0.20 and a 
standard deviation of 0. 05. By using Rosenblueth' s 
method, find the mean and standard deviation of S. 

S = H x CR x log Pf/P0 = 1.25 CR. 
CR+= 0.25. 
CR_ = 0.15. 
S+ = 1.25 CR.+ = 0.313 ft. 
S_ = 1.25 CR_ = 0.188 ft. 

S = E(S) = 1/2 (S+ + S_) 0.250 ft. 
E(S 2 l = 1/2 cs+• + s_• o.067. 
Var(S) = E(S 2 ) - E(S) 2 = 0.004. 
Os = 0.063 ft. 

Assuming that s is a normally distributed random 
variable, find the probability that the settlement 
will be (a) less than O .10 ft, (b) more than 0. 30 
ft, and (c) between 0.10 and 0.30 ft. 

The pdf of S is shown in Figure 6. The prob­
abilities of the above three conditions are equal to 
the indicated area S: P(S < 0.10) 0.0087, P(S 
> 0.30) 0.2148, and P(0.10 < S < 0.30) 
0.7765. 

Since settlement is a linear function of CR, 
Rosenblueth's method was actually not even re­
quired. However, Rosenblueth' s method is valuable 
when one is dealing with complex nonlinear functions 
or functions of several random variables. 

Bearing Capacity Factor 

r.ambe and Whitman 
factor (Nyl of 
friction angle ~· 

(l.l ilefine 
a soil as 

Figure 4. Four-point bivariate mass function. 

t:hP. hP.aring capacity 
a function of the 
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Figure 5. Settlement problem. 
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Figure 6. Probability density function of S. 

.100 S (SETTLEMENT) 

N-y = 1/2 {!Cl +sin</>)/(! - sin</>)] 512 - [(! +sin</>)/(! - sin</>)) 1/
2

} (23) 

The friG:tion angle 4> is a random variable with 
a mean value of 30° and a standard deviation of 3°. 
By using Rosenblueth ' s method, find the mean and 
standard deviation of ?\· 

4>+ = 33°. 
4>- = 27°. 
Ny+ = 9.68. 
?\- = 4.97. 

N = E(?\) = 1/2 (!\,+ .. ?\- = 7.33. 
E~?\ 2 ) a 1/2 (Ny+' + Ny_ 2 ) = 59.20. 
Var (Ny) = E(?\ 2 ) - E(?\) 2 = 5.47. 
<1Ny = 2.34. 

Shear Strength (Mohr's Theory) 

Estimate the mean and variance of the strength (i:) 
of a soil in accordance with Mohr's theory: 

T =a tan</>+ c (24) 

where a, tan 4>• and c are uncorrelated random 
variables with the following characteristics: 

Variable Mean SD + 
a (lbf/in2 ) 20 l.41 21.41 
tan 4> 0.55 0.24 0.79 
c (lbf/in') 7.94 l.47 9.41 

Since T is a function of 
ables, T must be evaluated eight 

T+++ = 26.32 
T++­
T+-+ 

23.38 
16.05 

T+-- " 13.ll 
'T-++ 24.10 
't-+- = 21.16 
't--+ = 15.17 
't--- = 12.23 

18.59 
0.31 
6.47 

three 
times: 

~ = E(T) a 1/8 ET = 18.94 lbf/in2 • 

E(T 2 ) = 1/8 ET 2 = 384.64. 
Var(T) • E(T 2 ) - E(T) = 25.92. 
aT = 5.09 lbf/in2 • 

random vari-

This problem was solved by Harr (4) by using 
Taylor series approximation. The results are the 
same. 
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Factor of Safe ty (Infinite Slope) 

One geotechnical function that is not often con­
sidered random is the factor of safety (FS). How­
ever, one must agree that, because the FS is a 
function of random variables, it is itself a random 
variable. 

The FS of an infinite slope (see Figure 7) can be 
expressed as 

FS = t an ¢/tan~ (25) 

where 4> is the friction angle of the slope soil 
and a is the slope angle. 

The friction angle 4> is a random variable with 
a mean value of 30° and a standard deviation of 3°. 
By using Rosenblueth's method, find the mean and 
standard deviation of FS. 

4>+ = 33°. 
4>- = 27°. 
FS+ = l.393. 
FS_ = l.093 • 

FS - E(FS) = 1/2 (FS+ + FS_) = 1.243. 
E(FS 2 ) • 1/2 (FS+2 + FS_2 ) = 1.568. 
var(FS) = E(FS 2 ) - E(FS) 2 = 0.023. 
aFs = 0.151. 

Assuming the FS is a normally distributed random 
variable, find the probability that FS will be less 
than one. 

The pdf of the FS is shown in Figure 8. The 
probability that the FS is less than one is indi­
cated by the shaded region: P(FS < l) = 0.0537. 

To say that the FS is less than one is to say 
that the slope will fail. Therefore, the prob­
ability that the FS is less than one is the prob­
ability of failure (Pf). The Pf has been pro­
posed as an alternative to the FS as a measure of 
safety. 

CONCLUSIONS 

The method of point estimates for probability mo­
ments has been presented and compared with the Monte 
Carlo simulation technique and the Taylor series 
approximation. Unlike the Monte Carlo simulation, 
the point-estimate method requires no extensive 
computer capabilities. Unlike the Taylor series 

Figure 7. Infinite slope problem. 

FS = ~ 

Figure B. Probability density function of FS. 

fFs(FS) 

1.0 FS 
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approximation, the point-estimate method requires no 
complex derivations. Yet the point-estimate method 
is as accurate as the Taylor series approximation. 

The normal distribution is not the only type of 
distribution that can be assumed. since most geo­
technical properties can never take on negative 
numbers, the lognormal distribution may be a more 
appropriate model. Another suggestion is to use a 
symmetrical beta distribution, which is bounded by 
zero and twice the mean. 

In this paper, it was assumed that input vari­
ables were symmetrically distributed and, in the 
case of two or more variables, uncorrelated. How­
ever, Rosenblueth' s method is not limited by these 
conditions. 
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Short-Term Reliability of Slopes Under Static 

and Seismic Conditions 

AKIRA ASAOKA AND DIMITRI ATHANASIOU-GRIVAS 

A simplified probabilistic approach to the determination of the short-term 
("<f>u = 0") reliability of clayey slopes under static and seismic conditions is 
presented. The uncertainties associated with (a) the undrained strength of 
soil and its spatial variation and (b) the analytic procedure used to assess the 
safety of the slope are considered, and probabilistic tools are introduced for 
their description and amelioration. The probability of the failure of a slope 
under static loading is first determined. The effect of an earthquake on the 
slope is introduced through an equivalent horizontal peak acceleration (deter· 
ministic), and the new probability of failure is obtained by using Bayes' theo­
rem. Finally, the developed procedure is illustrated in an example, the results 
of which are presented and discussed. 

The factor of safety F5 of a slope of cohesive 
soil under undrained ("<I> u = 0 ") conditions, 
determined from equilibrium of moments around the 
center of a circular failure surface (see Figure 1), 
is given as 

F, = RfLc;,dL/aW 

where 

R 
L 

radius of the circular failure surface, 
length of the failure surface, 

Figure 1. Slope geometry. 

l 
w 

(a) Infinite Depth Case 

(!) 

R 

Cu undrained shear strength of soil, 
a = distance between W and the center of the 

circle, and 
W weight of the sliding soil mass. 

From Equation 1, it is seen that the total un­
drained shear strength of the slope is obtained by 
integrating cu along the length L of the failure 
surface. If the soil medium is homogeneous and 
isotropic, then Cu is constant throughout the 

medium and the total resistance is equal to cuL· 
In this case, the critical failure surface (i.e., 
the slip surface for which Fs becomes minimum) can 
be determined analytically. Thus, by expressing the 
equilibrium of moments around center 0 (Figure 1) as 
aw = RLi:, or 

aW= RL(N-yH) 

where 

y 
N 

H 

mean shear stress along the slip surface, 
unit weight of soil, 
stability number !!), and 
height of the slope, 

a 0 
A<----..i 

(b) Finite Depth Case 

(2) 




