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solved for the case in which E follows a normal 
distribution. The results are given below: 

Probabilit:i::: of Failure (%) 
Loading Condition Uniform E Normal E 

Static 7.4 7.4 
Seismic 

Bayesian 21.9 22.8 
Non-Bayesian 27.7 28.5 

It can be seen that the two distributions of E 

give almost identical values for the probability of 
failure. 

SUMMARY AND CONCLUSIONS 

This paper has presented a probabilistic approach to 
determination of the short-term stability of slopes 
under static and seismic conditions. Two important 
uncertainties were considered: (a) the uncertainty 
in soil strength and its spatial variation and (b) 
the uncertainty in the method of analysis used. The 
developed approach was illustrated in an example, 
and the results obtained were presented and dis­
cussed. 

On the basis of the analysis and results of this 
study, the following conclusions are drawn: 

L The probability of failure of slopes can be 
determined by exploring the uncertainties involved 
in both material strength and method of analysis. 

2. The effect of seismic conditions on the reli­
ability of slopes can be accounted for by using 
Bayes' theorem. 
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Model for Assessing Slope Reliability 

KEVAN D. SHARP, LOREN R. ANDERSON, DAVIDS. BOWLES, AND RONALD V. CANFIELD 

Traditionally, an evaluation of the safety of slopes has been based on com· 
puting a safety factor against failure. In computing the safety factor, the 
geometry of the slope, the soil parameters, and the pore pressures are 
treated as deterministic quantities even though they are known to be ran· 
dom variables. Vanmarcke has developed a three·dlmensional probabilistic 
slope-stability model that treats shear strength as a random variable. The 
model uses the probability of a slope failure as an assessment of slope relia­
bility. A probabilistic slope-stability model that is an extension of Van· 
marcke's model is presented. The model can accommodate zoned embank­
ments of soil in which the strength is described by the Mohr-Coulomb 
strength envelope. Autocorrelation functions are used to describe the spatial 
variation of the mean and standard deviation of the strength parameters, c 
and tan </J. Several examples are presented to illustrate the influence of the 
choice of the statistical soil parameters on the probability of failure. The 
results show that the critical failure surface based on the minimum safety 
factor is not necessarily the failure surface that will yield the maximum 
probability of failure. 

The safety of embankments depends on many factors, 
including the correctness of design assumptions, the 
adequacy of quality control during construction, the 
level of inspection and maintenance, the skill of 
the operators where the embankment impounds water, 
and the occurrence of various natural phenomena such 
as floods, earthquakes, and landslides. A complete 
evaluation of all of the factors that contribute to 
embankment safety is very complex, and procedures 
for developing and using this type of information in 
benefit/cost analyses are still in the formulative 
stages. The Federal Coordinating Council for Sci­
ence Engineering and Technology (.!_) has identified 
the application of probabilistic methods and risk 
analysis to dam project development as an important 
area that needs research. Although progress is be-
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ing made on the estimation of overall embankment 
reliability in relation to a broad range of factors 
(~,l), much of the progress to date has been made in 
the area of probabilistic slope-stability analysis. 
Probabilistic slope-stability analysis is an impor­
tant consideration and more work is needed, but it 
should be emphasized that it is only a small part of 
assessing overall embankment reliability. 

Many researchers (!-il have made contributions to 
probabilistic slope-stability analysis. Vanmarcke's 
probabilistic slope-stability model (i) considers 
the spatial variation of the shear strength along 
the embankment axis. This paper describes an en­
hancement of Vanmarcke' s (_~) model to accommodate 
effective stress conditions in zoned embankments and 
also describes a probabilistic slope-stability com­
puter program based on the enhanced model. The 
model uses the autocorrelation function to evaluate 
variance reduction rather than the scale of fluctua­
tion recommended by Vanmarcke. The probabilistic 
technique was incorporated as an option in a slope­
stability computer program developed by Bailey (.lQ_). 

ANALYSIS OF SLOPE STABILITY 

The safety factor for a particular slope and trial 
failure arc (see Figures 1 and 2) is defined as the 
ratio of the resisting moment (Mrl to the driving 
moment (M

0
) about the trial center "O". For a 

homogeneous embankment of cohesive soil, the safety 
factor can be stated as 

Fb =resisting moment/driving moment= M,,b/Mo,b 
= (suLrb + ~)/Wab 

where 

(1) 

Fb = safety factor where subscript b indicates de­
pendence on length of the failure mass, 

Su = design value of undrained shear strength, 
L arc length of failure surface, 
r radius of failure mass, 

Re contribution of end sections of the failure 
mass to the resisting moment, 

W weight of the failure mass per unit length, 
a = horizontal distance from trial center 0 to 

b 
center of gravity of the failure mass, and 
width of the failure mass. 

Figure 1. Typical cylindrical failure mass of an earth embankment. 

FAILURE MASS 

Figure 2. Typical cross section of 
failure mass. 
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In conventional slope-stability analysis, it is 
customary to ignore the contribution of Re to the 
resisting moment. Thus, Equation 1 becomes 

F = M,/M0 = suLr/Wa (2) 

Although a minimum safety factor is achieved in a 
conventional slope-stability analysis, the reliabil­
ity of the slope against a failure in slope stabil­
ity is unknown. In computing the safety factor from 
Equation 2, the value of the shear strength (sul 
is generally pessimistically selected on the basis 
of judgment and only limited shear-strength test re­
sults. 

The design engineer calculates the safety factor 
for many different trial failure arcs with different 
center points and radii. The design is then modi­
fied so that the minimum safety factor is equal to 
or larger than the minimum safety factor usually ac­
cepted by the profession. 

PROBABILITY OF SLOPE FAILURE 

In a probabilistic slope-stability analysis, the 
critical failure arc is defined as the arc with the 
largest value of probability (F < 1.0) in contrast 
to the conventional analysis, in which it is defined 
as the arc with the smallest safety factor. The 
consideration of shear-strength variability in the 
probabilistic approach will not necessarily lead to 
the same design as the conventional slope-stability 
analysis, which does not explicitly include varia­
bility in shear strength. 

DEVELOPMENT OF PROBABILISTIC SLOPE-STABILITY 
MODEL 

In order to evaluate the probability of failure, it 
is necessary to determine the mean safety factor (Fb) 
and the standard deviation of the safety factor 
(Fb). 

The mean safety factor for a cylindrical failure 
mass of width b was given as Equation 1 and can be 
stated as 

(3) 

where Mr is the mean resisting moment per unit width 
and M0 is the driving moment per unit width. 

Assumptions 

In calc~lating the standard deviation of the safety 
factor Fb, several simplifying assumptions have been 
made: 

1. The variance of the end-area contribution 
Re is neglected. Vanmarcke (i) gives a detailed 
explanation for this assumption and shows that the 
inclusion of end-area variance has a negligible 
effect on the probability of failure. 

2. Density and slope geometry are treated as 
deterministic parameters. Uncertainties in both 
density and geometry occur in both the driving 
moment and the resisting moment. Alonso (7) shows 
that probabilistic consideration of these parameters 
does not influence the outcome greatly since they 
occur in the numerator and the denominator of the 
safety factor equation. By neglecting the 
uncertainties of density and slope geometry, one can 
consider the driving moment as a deterministic 
variable. Since it is also assumed that the 
embankment cross section is constant along the 
entire axis of the embankment, variations in the 
cross section are not treated in this model. 
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3. Pore-pressure uncertainties are not included 
in the probabilistic analysis. Errors in evaluating 
pore pressures arise from several factors, including 
the inability of the engineer to draw an accurate 
flow net, the assumptions used in derivation of 
pore pressure/flow net theory, the computer method 
used to calculate pore pressures, the variability in 
permeability in the embankment, and the transient 
nature of groundwater tables. A worst-case cond i­
tion is assumed for the analysis as an upper bound. 
Although pore-pressure uncertainties are realistic, 
inclusion of the pore-pressure variances at some 
level below the worst case would merely reduce the 
probability of failure. In addition, neglecting the 
pore-pressure variances greatly simplifies the prob­
abilistic solution and incorporates some conserva­
tism in the analysis. 

4. A normal distribution of the random variables 
has been assumed. Lumb (11) and Matsuo (6) present 
results that justify this ~sumption. -

Va r i ance o f t he Safety Fac t o r 

Based on the given assumptions, the variance of the 
factor of safety can be developed. Vanmarcke (~l 

gives the standard deviation of the safety factor as 

(4) 

~ 

where Mr,b is the s tanda rd deviation of the resisting 
moment of failure mass of width b and Mo, b is the 
deterministic driving moment of the failure mass of 
width b. 

Since all of the variation in 
moment is assumed to be in the 
parameters, the standard deviation 
factor can be obtained from Equations 

the resisting 
shear-strength 

of the safety 
1 and 4 as 

(5) 

where Sub is the standard deviation of the undrained 
shear strength averaged over width b and arc length 
L. 

Variance of Shear Strength 

Variations in strength occur naturally in a soil 
mass; however, the stability of an embankment dam is 
not affected by very small areas of weakness because 
these are compensated for by the strength of the 
adjacent area. Thus, local weaknesses tend to be 
"averaged out" when the strength of a larger area is 
considered, even though the point-to-point variation 
in the shear strength can be quite high. There may 
be several places in the soil mass where the 
strength is low or high but only for a short 
distance. If the average strength over a moving 

Figure 3. Slice geometry in method-of-slices analysis. 
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average length b is calculated along the axis of the 
embankment, the movi ng average of Su is much less 
variable than the point-strength values. As a 
result, the standard deviation of the average values 
(Bubl is less than the standard deviation of the 
point values (sul· As the averaging length bis in­
creased, the standard deviation of the averaged 
shear strength decreases. It is obvious that it is 
the value of the shear strength averaged over the 
failure surface and not the local weak or strong 
values that are important for determining the safety 
factor. It follows that it is the standard 
deviation associated with width b and arc length L 
that is needed in Equation 5 and not the standard 
deviation of the point-strength values. 

The standard deviation of shear strength (subl, 
averaged over the width of the failure mass b and· 
arc length L, is related to the point standard devi­
ation <sul by 

(6) 

where rs,z(b) is the shear-strength-reduction 
~unction along the e mbankme nt axis and rs,i<Ll 
is the shear-strength-reduction function along the 
failure surface. These reduction factors are 
discussed by Vanmarcke (8) and in the following 
section of this paper . -

Appl i c ation to Method o f Slice s 

Equation 4 applies to homogeneous slopes of cohesive 
soil (the so-called ~ = 0 condition). However, 
many embankments contain more than one material and 
are constructed from soil for which the strength can 
be described by the Mohr-Coulomb strength theory. 
In performing a slope-stability analysis for zoned 
embankments, it is convenient to use a method of 
slices such as Bishop's simplified method (~). 

Based on the method of slices, the mean safety 
factor of a failure mass such as that shown in 
Figures 1 and 2 can be stated as 

(7) 

where 

Si mean shear strength of the soil at the base 
of the ith slice, 

~ti base length of the ith slice, 
Wi weight per unit width of the ith slice, and 
ai perpendicular distance from the line of ac­

tion of the Wt to the center of the 
failure arc. 

The mean shear strength at the base of each slice, 
as shown in Figure 3, can be expressed in terms of 
the Mohr-Coulomb strength theory as 

SOIL • I 

SOIL j 2 
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(8) 

where 

ci mean cohesion for the soil at the base of 
the ith slice, 
normal stress on the failure plane at the 
base of the ith sl i ce, and 

tan H average coefficient of friction for the 
soil at the base of the ith slice. 

The method of slices can be carried out either as an 
effective stress analysis or as a total stress 
analysis. Since pore pressures are treated as de­
terministic in this model, for simplicity the fol­
lowing development will be in terms of total stress . 

For convenience, define an average shear strength 
for each soil type along the failure plane as 

(9) 

where Sbj is t he mean shear stre ng t h o f t he j t h soil 
type averaged a l ong the fa ilure p lane and Lj is 
the l eng th o f t he failure s u rface passing through 
the jth soil type. 

Equation 7 can now be written as 

(10) 

Assuming the strength parameters between soil 
types to be independent, the standard deviation of 
the safety factor from Equations 5 and 10 can be 
expressed as 

(11 ) 

The average shear strength can also be expressed 
in terms of the Mohr-Coulomb strength theory as 

(12) 

where ~bj is the mean cohesion of the jth soil type 

averaged along the fa ilure plane and (a ti; 'lbj is 
the mean frictional strength of the jth soil type 
averaged along the failure plane. 

The expression for the standard deviation of 
shear strength depends on whether or not the 
cohesion and friction strength components are 
statist i cally independent. Matsuo 12l and Lumb (11 ) 
have shown that the cohesion and frictiona l 
components of shear strength have a slight negative 
correlation (i.e., there is a slight tendency to 
have smaller values of cohesion when the friction 
angle is larger). However, in this paper it is 
conservatively assumed that the cohesion and 
friction are independent and that covariance terms 
can be neglected. Therefore, the standard deviation 
can be expressed as 

. 1· 2 ( - ) 21 'h sbi = cbi + a tan tfi bi (1 3) 

Since the shear strength between different soil 
types is assumed to be uncorrelated, the standard 
deviation of the safety factor can now be expressed 
as 

Fb = Mr,b /bMo = r { l: ~ (cb / +(a tan tfi)bJ 2 l} '!'/Mo 

Pro bability o f Failure 

(14) 

Once the mean and the standard deviation of the 
safety factor have been found, the probability of 
failure can be evaluated. The probability of 
failure of a mass of width b in the embankment is 
defined as the probability that the safety factor is 
less than one: 
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Pt(b) = P(Fb < 1) (15) 

It can be shown that Pf(b) can be calculated 
based on a standard normal probability density 
function and the reliability index llb• where 
llb is calculated by 

(16) 

Unlike conventional slope-stability analysis, the 
safety factor depends on the width b of the failure 
mass. Vanmarcke (~) shows that there is a critical 
width be and that it is a function o~ the end resis­
tance Re, the mean resisting moment Mr, and the driv­
ing moment M0 : 

(17) 

This value, be, should be used to evaluate the 
~ean ang standard deviation of the safety factor, 
Fb and Fb. It is interesting to note that the criti­
cal width, be, is not a function of the variance 
properties. 

For an embankment with an overall length B that 
is less than the critical width be, the probable 
fa ilure mass includes the entire embankment. How­
ever, when the overall embankment width exceeds the 
critical width, there are many possible placements 
of the critical width along the embankment; thus, 
the probability of failure of the embankment in­
creases as the total embankment width increases. 

SPATIAL VARIANCE OF SHEAR STRENGTH 

The Mohr-Coulomb theory, as stated in Equation 8, 
describes the shear strength of soil in terms of co­
hesion, normal stress, and the tangent of the fric­
tion angle. 

The point variance of the shear strength is de­
fined as 

s2 = E (s - s)2 (18) 

where E denotes expected value. In terms of the co­
hesion and friction components, by using Equation 8 
this can be stated as 

82 = E (c +a tan tfi - c - a tan tfi)2 (19) 

or 

s2 = c2 + a2 (tan tfi)2 + 2a cov(c, tan tfi) (20) 

where 

52 point variance of s, 
e:• point variance of c, 

tan ,. = point variance of tan ,, and 
cov(c, tan ') covariance of c and tan ,. 

As discussed earlier, the covariance in Equation 20 
is neglected. 

It was explained in a previous section that the 
standard deviation (square root of the variance) of 
strength values averaged over some distance is less 
than the standard deviation of shear strength at a 
random point. Equation 6 uses reduction functions 
to relate point standard deviations to the standard 
deviation averaged over a surface. These reduction 
functions (in terms of variance) are explained in 
this section. 

The variance of shear strength sz'• averaged over 
a distanc e z, can be stated in terms of the point 
variance as 

(21) 
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where rs,z2 (Z) = shear-strength variance-reduction 
function for the z direction. 

The variance-reduction function describes the de­
cay of variance of a spatial average of a strength 
parameter as the averaging distance is increased; 
As the averaging distance approaches zero, the vari­
ance of the soil parameter is equal to the point 
variance. 

Scale of Fluctuation 

There are many functional forms that may be used to 
model the variance-reduction function. Vanmarcke 
(.2_,.!ll describes an approximate form that uses a 
parameter called the scale of fluctuation ( 0), 
which is a measure of the rate of fluctuation of a 
soil property about its mean value along a line in 
the embankment. The variance-reduction function in 
terms of the scale of fluctuation is 

r,,/ (Z) = 6/Z Z > 6 

r,,/ (Z) = 1 Z.;; 6 

Autocorrelation Functions 

(22) 

(23) 

Other forms of variance-reduction functions make use 
of autocorrelation functions, which describe the 
correlation of strength between two points separated 
by a given distance. Vanmarcke (2_,13) shows a 
graphical comparison of the various forms of 
variance-reduction functions. The model developed 
in this paper uses autocorrelation functions rather 
than the scale of fluctuation. This method appears 
to be more versatile when the method of slices is 
used. Furthermore, the use of autocorrelation func­
tions will allow more flexibility in evaluating 
field data. 

A failure surface of width b and arc length L has 
a strength variance sb'• as defined by 

(24) 

where sb is the average strength at a random 
location along the embankment over the cylindrical 
failure surface (Figure 1) and is defined as 

sb = (r/Lb) fzfe [c(\J!, v) + a(\J!)tan </!('11, v)) d'ltdv (25) 

and sb is the expected value of sb and is defined as 

sb = E(sb) = (r/Lb) f zfo (c + a(\J!)tan qi) d\J!dv (26) 

Assuming that the variance-reduction functions 
may be factored into their spatial components, it 
can be shown that the variance of the strength can 
be expressed as 

sh 
2 = (r2

c
2 /L2 b2

) fzfzPc ,z (v, v')dvdv' fsfs Pc,2('11, \J!')d'ltd'lt' 

+ [r2 tanq,)2/L2/b2 1fzfz Ptan ,p, z (v, v')dvdv' 

fofo a('lt)a('lt')pi.n rp,2 ('11, w')d'ltd'lt' (27) 

where Pc,z<v,v'), Pc,1<~.~·) are autocorrelation 
functions for cohesion along the axis of the 
embankment and along the arc length, respectively, 
and Ptan ~,z(v,v'), Ptan ~, 1 <~,V') are autocorrela­
tion functions for tan ~ along the axis of the 
embankment and along the arc length, respectively. 

Thus, for cohesion, the variance along the arc 
(c1

2 ) can be described as 

(28) 

Thus, the cohesion variance-reduction function along 
the arc length becomes 
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(29) 

It can also be shown that the cohesion variance­
reduction function along the axis of the embankment 
can be expressed as 

(30) 

The cohesion variance over the failure surface can 
now be stated in terms of the cohesion point vari­
ance as 

The variance of tan $ along the failure arc 
[(fa:n ~) 1 2 1 can be shown to equal 

and the friction variance-reduction function along 
the failure arc becomes 

rf an tf>,2 (L) = (r2 /L 2) f sf o a('lt)a(\ft') Ptan l/>,2('11, \J!')d'ltd'lt' (33) 

As in the case of cohesion, the variance of tan ~ 

over the failure mass can be related to the point 
variance by 

(34) 

where 

(35) 

A complete derivation of sb 2 is available from the 
authors on request. 

The numerical evaluation of rs, 1
2 (L) along an arc 

length is not convenient, since spatial variance 
functions are measured in terms of Cartesian coordi­
nates. Since sampling techniques for the evaluation 
of variance-reduction functions are not involved 
with sampling along a given arc, it is necessary to 
transform variance-reduction functions evaluated in 
Cartesian coordinates intu polar coordinates. The 
transformation again assumes that autocorrelation 
functions over a surface area can be factored into 
their spatial components so that 

Ps,2('11, '11') = Ps,x(llx) Ps,y(i'ly) (36) 

where s is a shear-strength component (either c or 
tan$). 

The variance functions along an arc can be de­
fined in terms of the autocorrelation functions rep­
resented in Cartesian coordinates as 

(37) 

The variance-reduction functions along an arc can 
be defined in terms of the autocorrelation functions 
represented in Cartesian coordinates as 

Ps,x(llx) = Ps,x(rlcos >Ir - cos '11'1) (38) 

and 

Ps,y(lly) = Ps,y(rlsin \JI - sin \JI' I) (39) 

The proper autocorrelation function to be used 
and its coefficients must be determined from actual 
field data. A combination of two or more simple, 
exponentially decaying autocorrelation functions may 
be necessary to fit the field data curves. Cur­
rently, only one form of the autocorrelation func­
tion is included in the probabilistic slope-
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stability model. These autocorrelation functions in 
each coordinate direction are 

Px(Llx) =exp [-(Llx/k.)2
) 

Py(Lly) =exp [-(Lly/ky)2
) 

p,(Llz) =exp [-(Llz/k,)2
) 

(40a) 

(40b) 

(40c) 

The coeff i c ients kx, ky, and kz may vary for c and 
tan $ for each soil type within an embankment. 
They control the rate of variance decay with 
distance. ,...._,, 

Variance reduction is performed on c2 and (tan ~) 2 

for each soil type along the failure arc within the 
embankment. The intersections of each soil boundary 
with the failure arc are determined in terms of 
polar coordinates. The intersection coordinates are 
then used as the limits of integration for the 
variance-reduction functions. It is not practical 
to use closed-form solutions to the variance func­
tions, since alternative forms may be necessary. 
Numerical techniques are used to evaluate rs,t'(L) 
and rs,z 2 (b) for both cohesion and tan~· 

PROBABILISTIC SLOPE-STABILITY COMPUTER MODEL 

The theoretical model presented above has been in­
corporated into a slope-stability-analysis computer 
program originally developed by Bailey (10). The 
probabilistic analysis does not begin until the 
plane-strain safety factor has been computed; there­
fore, if desired, the program can also be used for 
conventional deterministic analysis. 

There are five main steps in the analysis: 

1. Evaluate the plane-strain safety factor F. 
2. Evaluate the resistance of the end areas. 
3. Evaluate the critical width be• 
4. Evaluate the variance of resisting moment by 

computing the three-dimensional variance-reduction 
functions for cohesion and tan ~· 

s. Evaluate the probability of failure. 

Plane-Strain Safety Faotor 

Bishop's simplified method of slices (12) is used to 
evaluate the plane-strain safety f acto;-F and to com­
pute the normal stresses along the failure arc. The 
format of the program is essentially the same as 
that used in ICES LEASE I (14), and the user-machine 
communication is interactive. 

End-Area Resistance 

A typical cross section of an embankment, a failure 
arc, and the slices used in the deterministic 
analysis are shown in Figure 3. End-area moment 
resistance may be found by integrating the moment 
resistance on a differential element over the end 
area. The moment resistance on a differential 
element is given by 

dM = r(c +Ko CJ tan t/>)dxdy (41) 

where K0 is the coefficient for lateral at-rest 
earth pressure. 

Once the end-area resistance has been computed, 
the critical width can be computed from Equation 
17. The factor of safety of the cylindrical failure 
mass can then be calculated by using Equation 14. 

Variance o f Resist-ing Moment 

The variance-reduction integrals for c and tan ~ 

described in Equations 28-39 are evaluated for each 
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soil type intersected by the failure surface. Val­

~es of the variances of resisting moment, Mr' and 

Mr b'• are computed separately by first evaluating 
st~ and then sb• as previously explained, where 

(42) 

and 

(43) 

Equation 33 shows that the computation of the 
variance-reduction function for tan ~ along the 
arc length rtan ~,t' (L) requires knowledge about the 
stresses normal to the failure s urface. The normal 
stresses evaluated at the base of each slice in 
Bishop's simplified method are used to evaluate the 
variance-reduction functions. Thus, once the safety 
factor has been found, the normal forces may be 
calculated. 

The numerical integration of rs,t' (L) involves 
subdividing the arc length into finite segments. 
The value of the normal stress at each segment is 
then found by interpolating from the normal forces 
at the midpoint of each slice. 

Probabillty of Failure 

The standard deviation of the safety factor and the 
reliability index are computed from Equations 11 and 
16, respectively, following the evaluation of the 
variance of the resisting moment. Vanmarcke (i) 
shows that the probability of failure of a mass of 
width b is directly related to the reliability index 
Bb· Thus, Bb is a measure of the probability of 
failure. The value of b that minimizes the relia­
bility index does not necessarily maximize the prob­
ability of failure because Pf(b) and Bb have a non­
linear relation. A curve of Pf (b) versus b 
generally has a relatively flat peak, and it has 
been found that the value of b that minimizes the 
reliability index closely maximizes Pf(b) for all 
practical considerations. 

The value of the probability of failure can be 
computed from the mean and the standard deviation . of 
the safety factor, and it can be assumed that the 
safety factor follows the normal probability density 
function. This can be evaluated from the probabil­
ity integral p(x) of a standardized normal probabil­
ity density function: 

p(x) = (21T) -1'> J:'!,., b exp (-t2 /2)dt (44) 

Two infinite series, given by Dwight <!.il, are used 
in the computer program to evaluate p(x). 

The probability of failure of the entire embank­
ment of length B must consider an infinite combina­
tion of overlapping . failure masses of width b (Fig­
ure 1). A moving average of strength is associated 
with failure surfaces of width b that have center 
z0 and end coordinates z0 ± b/2, where z0 is ran­
domly located from b/2 to B - b/2. 

The probability of failure of the embankment 
[PF(B)J can be calculated based on the rate of 
decay of reliability per unit length and the 
probability of survival of the embankment <i>· 

APPLICATION OF THE COMPUTER MODEL 

The use of the computer model requires data input 
for a conventional deterministic analysis as well as 
the statistical parameters required for the 
probabilistic analysis. The data required for the 
conventional analysis include (a) cross-section 
geometry 1 (b) soil parameters, including unit 
weight, cohesion, and friction angle (for a 
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probabilistic analysis these parameters must be mean 
values) , (c) pore-pressure data J and (d) 
specifications for the location of the failure 
surface. The parameters required for the 
probabilistic analysis include (a) the standard de­
viation of the strength parameters c and tan q, for 
each soil type, (b) variance decay parameters for 
cohesion and tan q,, and (cl the total length of 
the embankment, 

The program is currently limited to circular 
failure surfaces. We are currently enhancing the 
probabilistic slope-stability analysis to accommo­
date other shapes of failure surfaces. 

Illustrative Examples 

Several example problems were chosen to demonstrate 
the effects of the variances, the autocorrelation 
coefficients, and the location of the failure sur­
face on the probability of failure of an embankment. 

Example 1 

The embankment shown in Figure 4 illustrates a base 
failure in a cohesive soil. The embankment is 9.1 m 
in height and has a 1. 5: 1 slope. Mean strength 
properties are shown in Figure 4 and given below: 

Propetty 

c (kPa) 
Soil 1 
Soil 2 

tan <!> 

Soil 1 
Center of rotation point 
Embankment width (m) 
End-area resistance Re (kn•m) 
Radius (m) 
£ritical width be (m) 
F 

Fb 

34.97 
43.11 

0.213 
A 

229 
2.95xl0 5 

17.98 
36.9 
1. 35 
1.71 

Figure 4. Slope geometry and failure arcs 
for examples 1 and 2. 1 

; 

E 
v 

oi 

E 
0 

cO 

Table 1. Results of computer trials for c/c tan <f>/tan <f> 
example 1. (%) (%) 

Soil Soil Soil Soil 
Trial 1 2 I 2 

1 27.4 41.7 16.4 0 
2 27.4 41.7 16.4 0 
3 27.4 41.7 16.4 0 
4 27.4 41.7 16.4 0 
5 17.4 31.7 6.4 0 
6 27.4 41.7 16.4 0 
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The plane-strain safety factor calculated by 
Equation 2 is 1. 35 for the center of rotation at 
point A. For a cylindrical failure surface, the 
critical width calculated from Equation 17 is 36.9 m 
and the safety factor calculated from Equation 10 is 
1. 71. 

For the failure arc of radius 17.98 m (critical 
point), as shown in Figure 4, several computer 
trials were run in which the standard deviations of 
the strength properties were held constant and the 
autocorrelation coefficients were varied . The 
results, given in Table 1, list the standard devia--tion of the safety factor (Fb) , the reliability index 
<ab>• and the probability of failure. Each set 
of results is tabulated with the coefficients of 
variation and the variance decay parameters used. 
The results indic!te that, as the variance decay con­

stants increase, Fb increases, thus increasing the 
probability of failure. It can be seen that the 
value of these constants plays an important role in 
the magnitude of the probability of failure. 

The last set of trials in Table 1 demonstrates 
the effect of the point variances on the probability 
of failure . The autocorrelation coefficients were 
held constant while the coefficients of variation -- "-' --(c/c and tan q,/tan q,) were decreased by 10 percent. 
The probability of failure predictably decreased, as 
indicated in Table 1. 

Example 2 

The embankment of example 1 was also used in example 
2. The variance properties were held constant while 
the radii and the location of the center of rotation 
were varied along a grid, as shown in Figure 4. 
Table 2 gives the variance properties for example 2, 
and Table 3 gives the pertinent data that were used 
for points A and B. It should be noted that the 
maximum probability of failure does not coincide 
with the failure surface with the minimum plane-

kx, kz 
(m) 

Soil 
l 

5.33 
8.53 

10.67 
21.34 
10.67 
10.67 

SOI L I - -
Y · 2043 kN/m3 

c=34.97 k Pa 

cf>. 12. 

SOIL 2 
y • 16.07 kN/m3 

!:"•431lkPa 
</:i: 0. 

SOIL 3 -
y . Z l.Z2 kN/m3 

c. 0 

cf> • 45° 

k 
(~) 

Soil Soil Soil 
2 I 2 

7.62 1.5 2 0.76 
12.19 2.44 1.22 
15 .24 3.05 1.52 
30.48 6.10 3.05 
15.24 3.05 1.5 2 
15.24 3.05 1.52 

;._, 

Fb ~b PF(B) 

0.173 7.22 9.lxl0-12 
0.219 4.70 2.8xl0-5 
0.244 3.88 9.0xl0-4 
0.331 2.37 8.3xl0-2 
0.184 5.13 3.lx!0-6 
0.244 3.88 9.0xJ0-4 
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Table 2. Soil properties for example 2. 
Soil c (kPa) c/c <%l tan <fl 

1 34.97 27.4 0.2 13 
2 43.11 41.7 0 

Note: Embankment width= 229 m. 

Table 3. Results of computer trials for 
Center of example 2. 

Trial Location R(m) 

1 A 17.98 
2 A 16.92 
3 A 15.70 
4 A 14.48 
5 B 15.54 
6 B 14.02 
7 B 12.50 
8 B 10.97 

strain safety factor. This illustrates that the 
probability of failure depends not only on the 
plane-strain safety factor but also on the variance 
decay (dependent on the arc length) and the contri­
bution of the end resistance. A comparison of 
trials l and 7, as given in Table 3, indicates a 
much higher probability of failure for trial 7 
(5.9x10-') than for trial l (9.0xio-•) even 
though the safety factor for trial 7 is higher than 
that for trial l (1.45 compared with 1.35). 

General Discussion of Results 

The values chosen for c and 'tar; $ in the example 
problems for each soil type are considered to be 
realistic . Lumb (1§.) and Matsuo (_§_) have reported 
the coefficient of va r iation for tan$ [(~ ~/ 
tan ill to be from 5 to 20 percent and for cohesion 
[(c/c)] to be from approximately 15 to 40 percent. 

There is little information available concerning 
the typical appropriate values to be used for vari­
ance decay parameters. The appropriate values of 
the probabilistic parameters to be used in the 
analysis must be determined from rather extensive 
field studies. The actual form of the autocorrela­
tion function depends on the soil characteristics 
and its manner of placement. A field study spon­
sored by the U.S. Bureau of Mines is currently under 
way . The study involves the variance and correla­
tion properties of mine tailings dams and assessment 
of their reliability. Preliminary results on a 
tailings dam have shown the vertical correlation 
distance, ky, is much smalle r t ha n the horizontal 
correlation distance. Futu re studies may produce 
more information regarding the spatial variance 
properties of particular soil types. Pooling of in­
formation from many such studies could assist design 
engineers in estimating the probabilistic parameters 
without the need for extreme field studies on any 
site. 

CONCLUSIONS 

A computer model has been developed to perform prob­
abilistic slope-stability analysis. The model is 
based on an extension of Vanmarcke' s probabilistic 
slope-stability model (9) and can accommodate zoned 
embankments and soils f~r which the strength parame­
ters are described by the Mohr-Coulomb strength en­
velope. The model currently uses a cylindrical 
failure surface but can easily be extended to other 
failure-surface shapes by using different formula­
tions for the autocorrelation functions along the 
failure surface and along the embankment axis. In a 
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tan <fl /tan <fl(%) kx, kz (m) ky (m) 

16.4 10.67 3.05 
0 15.24 1.5 2 

be (m) F Fb Fb ~b PF(B) 

36.90 
31.52 
26 .35 
20 .22 
36.39 
28.40 
22.9 1 
16. 16 

1.35 1.71 0.244 3.88 9.0xl0-4 
1.39 1.77 0.203 3.78 1.Sxl0-3 
1.42 1.85 0.231 3.66 2.7xl0-3 
1.51 2.02 0.264 3.86 l.6xl0-3 
1.35 1.70 0.18 7 3.72 l.7xl0-3 
1.40 1.80 0.221 3.63 2.8x!O-J 
1.45 1.90 0.258 3.47 5.9xl0-3 
1.58 2.16 0.292 3.96 l.3xl0-3 

statistical sense, the model is three-dimensional 
because the spatial variation of the strength param­
eters is considered. The mechanics of the model, 
however, are two-dimensional except that the resis­
t ance at the ends of the cylindrical failure mass is 
considered. Pore pressures are treated as determin­
istic parameters and are computed from the location 
of a piezometric surface from a construction pore­
pressure parameter. By determining the probability 
of failure for various positions of the piezometric 
surface, a critical pore-pressure condition can be 
determined. Pore pressures can then be monitored in 
the field and compared with pore pressures that 
would produce an unacceptable probability of failure. 

A more extensive field and laboratory program 
will be necessary to define the probabilistic soil 
parameters than would be required for a conventional 
analysis. We are currently conducting an extensive 
field investigation to establish the statistical 
soil parameters for a tailings dam. As more experi­
ence is gained in this area, it should be possible 
to develop specific guidelines as to the required 
extent of such an investigation. 

Probabilistic analysis appears to be a more ra­
tional way to evaluate embankment stability than the 
conventional safety-factor approach. It has been 
pointed out that it is possible to have a case in 
which the probability of failure for one slope is 
higher than that for a second slope even though the 
second slope has a lower safety factor. Further­
more, the example problems suggest that the critical 
failure surface based on the safety factor is not 
the same as that based on the probability of fail ­
ure. Probabilistic analysis in itself provides a 
rational method for evaluating the reliability of 
slopes, and it will become even more valuable as 
methods for risk-benefit analysis of earth struc­
tures are further developed. 
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Reliability of Soil Slopes 

L. ALFARO AND M.E. HARR 

Results of a study of the safety of soil slopes are reported in which the mea­
sure of safety used is "reliability" (or the "probability of failure"), an a priori 
quantitative estimate of the likelihood of the safety (or failure) of a slope. A 
closed-form solution to determ_ine slope reliability is proposed in which a ma­
terial with two resistance parameters (c and tan t/J) is accommodated. Input to 
the model consists of a bivariate distribution of c and tan t/J for the slope mate­
rial and a line called the "critical boundary", which is independent of the opera· 
tive strength parameters. This line is the locus of points in the c tan tJ.> plane for 
which the slope in question is in a state of limiting equilibrium (factor of safety 
equal to unity). Beta distributions are assumed to model the variability of c 
and tan I/.>. The critical boundary is determined from two-dimensional and 
three-dimensional slope-stability analyses. For the former, the ordinary method 
of slices is adopted because of its simplicity (it requires no iterations) and be­
cause it is the only method that does not make the unrealistic assumption that 
the factor of safety takes the same value along the entire slip surface, thus per­
mitting the analysis to yield some information regarding the failure process. 
For the three-dimensional analysis, Hovland's method is used. In concept, it is 
the three-dimensional equivalent of the ordinary method of slices. Output 
from the model is the probability of failure of the slope, which is information 
dependent and therefore can vary as new information is obtained. These proba­
bilities can then be used to place the problem in the framework of decision 
theory. 

Current procedures for evaluating the safety of 
slopes consist in determining a factor of safety 
(.!_-,!) that is compared with allowable values found 
to be satisfactory on the basis of previous experi­
ence. The factor of safety suffers from the follow­
ing: 

1. Elements of uncertainty in analyses are not 
quantified when the factor of safety is used. 
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2. The scale of the factor of safety (F) is not 
known. For example, a structure with a factor of 
safety of 3. 0 is not necessarily twice as safe as 
another with a factor of safety of 1.5. 

3. Allowable values to be selected for the fac­
tor of safety are the result of experience. In 
dealing with new or different problems for which 
there is no previous experience, there is no allow­
able factor of safety. 

To overcome these difficulties and permit the en­
gineer to predict the performance of his or her de­
signs, the concept of "reliability" or "probability 
of failure" is recommended (5-7) • 

Probability itself is ;: ~ubjective interpreta­
tion. According to the definition of Tribus (~), "A 
probability assignment is a numerical encoding of a 
state of knowledge." A probability is understood to 
be an information-dependent quantity that may not be 
intrinsically related to the physical world. That 
is, the estimate of the reliability of a structure 
may change as new information regarding it is ob­
tained, although the structure itself would remain 
unaltered. 

This paper introduces a procedure to determine 
reliability that involves no approximations (from a 
probabilistic point of view) and can accommodate a 
material with the two customary operative strength 
pararneters--i.e., "c" and "tan ljl" = "t" (tan ljl 

is designated t for simplicity). 




