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Reliability of Soil Slopes 

L. ALFARO AND M.E. HARR 

Results of a study of the safety of soil slopes are reported in which the mea­
sure of safety used is "reliability" (or the "probability of failure"), an a priori 
quantitative estimate of the likelihood of the safety (or failure) of a slope. A 
closed-form solution to determ_ine slope reliability is proposed in which a ma­
terial with two resistance parameters (c and tan t/J) is accommodated. Input to 
the model consists of a bivariate distribution of c and tan t/J for the slope mate­
rial and a line called the "critical boundary", which is independent of the opera· 
tive strength parameters. This line is the locus of points in the c tan tJ.> plane for 
which the slope in question is in a state of limiting equilibrium (factor of safety 
equal to unity). Beta distributions are assumed to model the variability of c 
and tan I/.>. The critical boundary is determined from two-dimensional and 
three-dimensional slope-stability analyses. For the former, the ordinary method 
of slices is adopted because of its simplicity (it requires no iterations) and be­
cause it is the only method that does not make the unrealistic assumption that 
the factor of safety takes the same value along the entire slip surface, thus per­
mitting the analysis to yield some information regarding the failure process. 
For the three-dimensional analysis, Hovland's method is used. In concept, it is 
the three-dimensional equivalent of the ordinary method of slices. Output 
from the model is the probability of failure of the slope, which is information 
dependent and therefore can vary as new information is obtained. These proba­
bilities can then be used to place the problem in the framework of decision 
theory. 

Current procedures for evaluating the safety of 
slopes consist in determining a factor of safety 
(.!_-,!) that is compared with allowable values found 
to be satisfactory on the basis of previous experi­
ence. The factor of safety suffers from the follow­
ing: 

1. Elements of uncertainty in analyses are not 
quantified when the factor of safety is used. 
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2. The scale of the factor of safety (F) is not 
known. For example, a structure with a factor of 
safety of 3. 0 is not necessarily twice as safe as 
another with a factor of safety of 1.5. 

3. Allowable values to be selected for the fac­
tor of safety are the result of experience. In 
dealing with new or different problems for which 
there is no previous experience, there is no allow­
able factor of safety. 

To overcome these difficulties and permit the en­
gineer to predict the performance of his or her de­
signs, the concept of "reliability" or "probability 
of failure" is recommended (5-7) • 

Probability itself is ;: ~ubjective interpreta­
tion. According to the definition of Tribus (~), "A 
probability assignment is a numerical encoding of a 
state of knowledge." A probability is understood to 
be an information-dependent quantity that may not be 
intrinsically related to the physical world. That 
is, the estimate of the reliability of a structure 
may change as new information regarding it is ob­
tained, although the structure itself would remain 
unaltered. 

This paper introduces a procedure to determine 
reliability that involves no approximations (from a 
probabilistic point of view) and can accommodate a 
material with the two customary operative strength 
pararneters--i.e., "c" and "tan ljl" = "t" (tan ljl 

is designated t for simplicity). 
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FORMULATION OF PROBABILITY OF FAILURE 

It is possible to locate points that represent com­
binations of c and t [on a (c - t) or [ (c/yH) - t] 
plane] for which a slope is in a state of limiting 
equilibrium (factor of safety equal to unity) • The 
locus of such points generally demonstrates a curve 
(AB in Figure 1), which will be called the "critical 
boundary". In concept, if the average values of the 
operative material parameters lie on or above curve 
AB, the slope will be safe. Consequently, the prob­
ability of failure is the likelihood that the point 
that represents the average values of the operative 
strength parameters lies below curve AB in the 
shaded region of Figure 1. 

Since the strength parameters (c and t) are them­
selves random variables and not deterministic quan­
tities, their description is given by their joint 
probability density function: f (c, t). In concept, 
the f(c,t) axis is normal to the plane of the paper 
in Figure 1. Random variables c and t will be as­
sumed to be statically independent and to follow 
beta distributions; therefore, the joint density 
function of c and t is equal to the product of the 
marginal density functions of c and t (7,9). Since 
the beta distribution permits the selecti~n of ex­
tremes of the variable (a minimum and a maximum 
value), in the most general case, '1nin ::!_ O, 
cmin .::!. 0' tmax < "' • and Cmax < "' and 
the joint density funct i on of (c,t) will appear as a 
rectangle on the c,t plane (Figure 1). 

If the critical boundary is represented by 
t = g (c), then the following quantities are defined 
(see Figure 2) : 

Ut = g( Cm;n) (2) 

Given these values, the probability of failure can 
be quantified. 

Figure 1. Interference between the probability density function of the material 
parameters and the critical boundary. 

Ian</> 

1.0 

0 .0!5 

Crlllcal Boundary 

0.10 

Figure 2. Three-dimensional view of Figure 1. 
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The probability of having the average value of c 
along the critical slip surface equal to ci is 

P(c; < c < c; +de)= f(c;)dc (3) 

The probability of having a value of t less than 
ti, where ti= g(ci), is 

('i f(t)dt = F(t;) 
Jtmfo 

(4) 

where F(ti) is by definition the cumulative dis­
tribution function of t. The probability of the 
joint occurrence of these two events is the product 
of their individual probabilities (the assumption of 
independence). Sununing such products (since they 
are mutually exclusive) over the range Crain to Uc, 
the probability of failure is obtained as 

1Uc 
Pf= 

Cmin 

r t=g(c) 

fc(c) Jtmin fr(t)dtdc (5) 

or, alternatively, 

i Uc 
Pr= fc(c)Fr(t)dc 

min 
(6) 

The procedure for determining the probability of 
failure just described presents several advantages 
over other existing methods ClQ.-1§.) : 

1. It offers a closed-form solution that avoids 
the unknown errors in approximate methods such as 
error propagation (7,17). 

2. The concept - of limiting equilibrium is ap­
plied in the only state in which it is really valid, 
i.e., when the factor of safety is equal to unity. 

3. A comparison is made of capacity and demand 
at the level of knowledge of the material parameters 
instead of at unknown stresses as is the case in 
conunon methods. 

4. The procedure provides the means of visualiz­
ing the uncertainties associated with each factor in 
the analysis. 

DISTRIBUTION OF THE DRAINED STRENGTH PARAMETERS 

As stated earlier, it is assumed that c and t follow 
beta distributions. This assumption is supported by 
the results of laboratory tests (l,18) and by the 
following physical arguments: 

1. Since the beta distribution may have finite 
extremes, its tails need not go to -+oo and/or -, 
a characteristic necessary in modeling real material 
parameters Ill . 

2. The beta distribution requires four param­
eters: a mean, a standard deviation, a minimum 
value, and a maximum value. Granted this informa­
tion, it is very versatile and capable of assuming 
shapes that reflect the data themselves Ill· 

The mean value tc;> be used in defining each beta 
density can be determined from experimental data. 
The extremes of each density (minimum and maximum 
values) reflect engineering judgment (19). The 
standard deviation of the distributions introduces 
some difficulties in the calculation of the prob­
ability of failure. One of the following procedures 
is recommended for its estimation: 

1. Use typical values of the coefficient varia­
tion (the standard deviation divided by the mean 
value) reported in the literature (typical values 
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are approximately 50 percent for c and 10-15 percent 
for t) (1.Q.-23). 

2. Assume an unbiased "prior" distribution for 
the standard deviation of each variable (.!!_, 24) and 
"update" it to obtain a "posterior" distribution as 
new information is obtained (new test results) 
through the use of Bayes' theorem (~,_£!). Then de­
termine a weighted average of the probabilities of 
failure found with each discrete value of the stan­
dard deviation, weighti ng the probabilities of fail­
ure with respect to the likelihood of actually hav­
ing such a value of the standard deviation. These 
likelihoods are directly obtained from the (prior or 
posterior) distribution of the standard devi ation. 

DETERMINATION OF THE CRITICAL BOUNDARY 

The locus of the critical boundary is given here for 
both two-dimensional and three-dimensional slip sur­
faces. For the former, the "ordinary method of 
slices" (OMS) was used whereas, for the latter, Hov­
land's method (25) was selected. In each case, the 
minimum factor of safety was determined by investi­
gating a number of potential slip surfaces. This 
provides the expression t • g (c) (for a factor of 
safety of unity). 

The OMS was selected over other limiting equilib­
rium methods for the following reasons: 

1. It is simple to use and involves no itera­
tions to determine a factor of safety. 

2. It is the only limiting equilibrium method 
that does not make the unrealistic assumption that 
the local f-actors of safety are all equal and, in 
turn, are equal to the global factor of safety. 

Hovland's method (~) is the three-dimensional 
equivalent of the OMS. Two specific slip sur­
faces--a spherical surface and a cylindrical surface 
[with the axis of the cylinder tilted in the x • 0 
plane (see Figure 3)]--were investigated in thi s 
study. It is felt that such surfaces produce slid­
ing masses that approximate reality better than the 
commonly used assumption (13) that the slidiny mass 
is a cylinder with its axis in the x direction. 

Hovland's method assumes that all movement lead­
ing to failure occurs along the y direction (Figure 
3). A consequence of this assumption is that the 
forces that tend to produce failure are a function 
of the angle between the tangent to the slip surface 
and the horizontal direction in the yz plane (see 

Figure 3. Plan and side view of a slide {top) and a three·dimensional slice 
(bottom I. 

al Plan View bl Sidt View 
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ayz in Figure 3). Those forces that oppose 
failure are a function of the dip angle of the tan­
gent to the slip surface (DIP) (Figure 3). There­
fore, the global factor of safety is given by 

n n n 

F= ~ [Wicos(DIPi)Jtan</J+ ~ cA1/~ W1sinaY'i 
i=l i=l i=l 

(7) 

where 

n = number of slices (of the form shown in 
Figure 3), 
weight of slice i, 
dip (or maximum inclination) of the sl i ce 
base, 
area of the base of slice i, and 
angle in the yz plane between the hori­
zontal and the tangent to the midpoint of 
the base of slice i. 

Expressions for W, A, and DIP are given by Hov­
land (25). Lrom Equation 7, it is possible to ob­
tain a critical boundary as was done for the two-di­
mensional case. 

The inclusion of in situ horizontal !Kol forces 
acting in the x direction was also investigated. It 
was found (19) that they acted so as to reduce the 
probability Of failure (considerably for high values 
of Kol. However, careful consideration must be 
given to these forces because soils with large 
values of K0 are generally overconsolidated and 
are likely to be fissured, thus rendering the pro­
posed slip surfaces unrealistic, since the dis­
continuities in the soil mass would most probably 
control the true shape of the slip surface. 

The critical boundary (shown in Figures 1 and 2) 
was approximated by a straight line. The curvature 
of the critical boundary results from the fact that, 
for every combination of c and t for which the fac­
tor of safety is equal to unity, a different slip 
surface will be critical. The straight-line criti­
cal boundary was obtained by using the critical slip 
surface obtained with the mean values of c and t for 
every combination of c and t in the plane. 'l'his ap­
proximation was made for convenience and can be jus­
tified by noting that the difference between the 
probabilities of failure, when the critical boundary 
is taken to be a straight line and when its true 
shape is considered, was very small. This was found 
to be the case in a number of problems we have 
solved (19). However, if the critical boundary is 
far from~he mean values of the distributions of the 
strength parameters, the probability of failure it­
self will be very small. For this condition, the 
linearization of the critical boundary is not recom­
mended. 

There are four ways in which the critical bound­
ary can intersect the rectangle that represents the 
distribution of material parameters shown in Figure 
1. These are developed in great detail by Alfaro 
(19). Two examples are considered here to illus­
trate the procedure. 

Example 1 

As mentioned above, variations in the standard de­
viations (or coefficients of variation) of the 
strength parameters can greatly affect the probabil­
ity of failure. The latter can change over several 
orders of magnitude, depending on values of the co­
efficients of variation for c and t, even though the 
factor of safety remains a single, constant value 
(2,26). 

Example 1 is intended to illustrate how different 
probabilities of failure can be obtained for four 
slopes that have the same factor of safety and the 
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same coefficients of variation for c and t. 
Two slope angles, a = 30° and 60°, and two 

materials, A and B (see Table 1), were studied for 
the four combinations (see Table 2). The slope 
heights that produced a factor of safety of F = 1.3 
were obtained by using the OMS. The slopes are 
drawn to scale in Figure 4. The resulting prob­
abilities of failure are given in the sixth column 
of Table 2. As can be seen, the difference between 
the probabilities of failure is small for cases 1, 
3, and 4, for which Janbu' s dimensionless parameter 
A (27), 

A.= rHtan<f>/c (8) 

does not vary much. However, for case 2, A 
changes considerably and so does the probability of 
failure. It is also interesting to note that these 

Table 1. Statistics of strength parameters of soils A and B. 

Parameter Statistic Soil A Soil B 

c 400 lbf/ft2 100 lbf/ft2 

Ve 50 percent 50 percent 
Cmin 0 0 
Cmax . '750 lbf/ft2 200 lbf/ft2 

0.268 0.577 
Vt 10 percent 10 percent 
tmin 0.19 0.4 
tmax 0.35 0.75 

Table 2. Results of analysis in example 1. 

Slope 
Case Angle (0

) Soil A. F2 Pf2 F3 

I 30 A 2.91 1.30 0.234 1.40 
2 30 B 31.75 1.30 0.021 1.30 
3 60 A 1.58 1.30 0.306 1.38 
4 60 B 5.24 1.30 0.241 1.43 

Note: The subindex (2 or 3) refers to two- or three-dimensional analyses. 

Figure 4. Slopes analyzed in example 1. 
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probabilities of failure are very high for what 
would normally be considered a tolerable factor of 
safety. 

Example 2 

Example 1 is repeated by using three-dimensional 
spherical slip surfaces. The same centers of the 
critical circles used in example 1 were used in this 
example. This was found to produce a negligible er­
ror in the determination of the probability of 
failure. 

The last two columns in Table 1 compare the re­
sulting probabilities of failure and the three-di­
mensional factors of safety with the corresponding 
values obtained from the two-dimensional analyses. 
The differences are seen to be smalli however, it is 
noteworthy that only for case 2 is the probability 
of failure from a three-dimensional analysis greater 
than that from a two-dimensional analysis and this 
only slightly so, 

The cylindrical sliding surface investigated 
(with the axis of the cylinder tilted in the x = 0 
plane) was found to be less critical than the 
spherical slip surface for every case that was 
examined. 

CONCLUSIONS 

The following conclusions can be drawn from the work 
reported in-this paper: 

1. Different probabilities of failure can be ob­
tained for slopes judged equally safe by conven­
tional factors of safety. 

2. For a given factor of safety, slopes with 
smaller values of Janbu's dimensionless parameter 
;\.(:\. = yH tan ~/c) have higher probabilities 
of failure. This is because the "c parameter" of 
strength abounds in uncertainty. 

3. From three-dimensional analyses, it was found 
that spherical slip surfaces have higher probabili­
ties of failure than cylindrical ones (with the axis 
of the cylinder tilted in the same plane as the 
slope profile). 

4. In materials that have low values of ;1., 

circular two-dimensional slip surfaces yield 
slightly higher probabilities of failure than 
spherical three-dimensional slip surfaces i however, 
the latter is certainly more rational, since it ap­
proximates better real failed surfaces. Only minor 
differences were noted between two- and three-di­
mensional analyses in this studyi however, the in­
troduction of in situ lateral stresses (perpen­
dicular to the slope profile) can decrease the prob­
ability of failure considerably. 
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Risk Reduction Versus Risk Assessment: A Case for 

Preventive Geotechnical Engineering 
THOM L. NEFF 

The topic of risk analysis has become greatly sophisticated in recent years. 
Owners and regulatory agencies have the ultimate concern of cost-effective risk 
reduction. Uncertainty and risk do not lend themselves to precise quantifica· 
tion, a fact that has resulted in some risk analyses finding a less than enthusias· 
tic response from clients. All facilities rest on geologic materials and thus have 
a degree of uncertainty that often expresses itself most strongly in geotechnical 
elements of the project. This "natural" problem, and consideration of synergy 
and entropy, logically leads one to emphasize prevention rather than precise 
prediction of event sequences. Other professions, notably medicine and den· 
tistry, have recognized the importance of preventive efforts and have formu· 
lated formal preventive programs. The size, complexity, and cost of many 

modern facilities suggest that a prudent approach to continuing acceptable 
facility performance should include formal preventive efforts, even in the plan· 
ning stages of the project. A conceptual outline of a preventive geotechnical 
engineering program for a constructed facility is presented. 

The field of risk analysis has qrown rapidly in 
recent years, incorporating sophisticated mathe­
matics, theory of probability, and modeling tech­
niques (.!,). The costs of failures remain so high 




