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Impact of Travel Survey Sampling Error 

on Travel Demand Forecasting 

CARMEN DI FIGLIO AND JAMES A. DISBROW 

Alternative models of urban travel demand and the data used to estimate them 
are reviewed. The study focuses on the sampling error in origin-destination trip 
data and the impact that sampling error has on the estimation of a direct-de­
mand travel model. High sampling errors in origin-destination trip data are 
found to significantly inhibit the performance of the direct-demand travel 
model. 

The home-interview origin-destination (O-D) travel 
survey has been developed for most major metropoli­
tan areas as a major data resource for the urban 
transportation planning process (UTPP). The Bureau 
of Public Roads, and later the U. S. Department of 
Transportation, provided funding for the UTPP and 
the home-interview 0-D surveys that the UTPP re­
quired. The sample rates used in the home-interview 
surveys were typically less than 10 percent. The 
sample rate recommended for each urban area was 
based on total urban-area population, as given below 
<.!) : 

Population 
<50 000 
50 000 to 150 000 
150 000 to 300 000 
300 000 to 500 000 

Sample of Households ( I!) 
20. 0 
12 . 5 
10 . 0 

6 . 7 
500 000 to 1 000 000 5. 0 
>l 000 000 4. 0 

Larger cities (>500 000 population) were generally 
sampled at 4 or 5 percent. 

A substantial amount of research was performed to 
guarantee that the chosen sampling strategy would be 
adequate for the UTPP models that the 0-D data would 
be used to estimate. A major study by Sosslau and 
Brokke (2) showed that the chosen sampling strategy 
produced - travel estimates that corresponded to 
screenline crossing data applicable to the corridor 
level. This level of aggregation corresponded to 
the UTPP model system typically used by local insti­
tutions that admini stered the UTPP [metropolitan 
planning organizations (MPOs)]. This model system 
consists of a series of sequential modeling steps: 
(al trip generation, (bl trip distribution, (c) 

modal split, and (d) traffic assignment. Each of 
these models uses the available travel data in dif­
ferent ways. The trip-generation model uses data on 
the number of trip ends produced or attracted to an 
areal zone or district. The trip-distribution model 
is calibrated by using data aggregated to the corri­
dor level (_1). In modal split, the ratio of trips 

by highway or transit is the estimated variable. At 
no point in the conventional UTPP modeling process 
is the accuracy of the zone-to-zone or district-to­
district 0-D trip matrix ever a factor in model 
calibration or application. Consequently, the 
sampling error of the 0-D trip matrix has never been 
examined. 

The sequential modeling system used in the UTPP 
has a serious flaw. The trip-generation model has 
not typically responded to variables that character­
ize the transportation system (3). Since the en­
dogenous variable of the trip-g~neration model is 
the number of trips produced by or attracted to a 
particular zone or district, changes in the trans­
portation system have to be characterized in terms 
of how they affect the accessibility of the zone or 
district to all other zones or districts. Unfortu­
nately, these accessibility measures have not been 
statistically significant variables in trip-genera­
tion models. When trip generation is insensitive to 
changes in transportation supply, the entire UTPP 
model process assumes that total travel demand is 
perfectly inelastic with respect to the quantity, 
quality, or cost of transportation services. This 
is not a novel observation but one that has been 
made before, as illustrated by the following quote 
from Wohl and Martin (.1): 

[In] virtually every study this (calculation of 
trip ends by zone or district) has been accom­
plished independently from the travel conditions 
or the price of travel and with empirical obser­
vation of existing trip generation rates being 
used. Implicitly it has been assumed either that 
the price of travel will not change in the future 
compared with the present or that the demand for 
travel is entirely insensitive to the price of 
travel, i.e., that demand is perfectly inelastic. 

In direct response to this deficiency in UTPP 
models, the direct-demand model was developed to 
make travel characteristics between zones or dis­
tricts an important exogenous variable in determin­
ing not only the ratio of travel demand by automo­
bile and transit but also the total number of 
trips. Direct-demand travel models accomplish this 
by integrating the three submodels (trip generation , 
trip distribution, and modal split) into a one-step 
model. This model has as its endogenous variable 
the demand for travel by a particular mode between 
origin district (or zone) i and destination district 
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(or zone) j. Since in this direct-demand model the 
modal travel demand between any ij pair can be 
readily related to the travel characteristics of the 
modes connecting i and j, total travel becomes de­
pendent on transportation supply. Consequently, 
total travel is not assumed to be inelastic with 
respect to the level and quality of available trans­
portation. 

Despite this considerable advantage, the one-step 
aggregate direct-demand model has not been used. A 
major application of this approach was made by 
Charles River Associates using data for Boston, Mas­
sachusetts (2_). However, the level of explanatory 
power achieved by this model was low, and it did not 
inspire other urban-area applications of the 
method. It is unfortunate for the UTPP that the 
direct-demand model was not more successful, since 
it offered a practical approach to estimating the 
equilibrium level of travel that will occur after 
transportation investments have been made. The 
importance of developing an iterative equilibrium 
between travel demand models and networks was made 
clear by Wohl <il· Without such a process, there is 
no assurance that the travel characteristics assumed 
in estimating travel demand are consistent with 
those implied by the estimated level of travel 
demand and the capacity of the planned transporta­
tion system. Wohl calls for an iterative estimation 
of travel demand and network characteristics until 
the input travel time and cost entered into the last 
demand iteration are approximately the same as the 
output travel time and cost provided by the network 
(2_). However, such a procedure is not feasible 
unless the total travel estimated by the travel 
demand model is sensitive to transportation charac­
teristics and the model can be used expeditiously 
enough to engage in an iteration of travel forecasts. 

The purpose of this paper is to reexamine the 
direct-demand model and, in particular, to evaluate 
whether the available data on which it must be esti­
mated are adequate. Recall that the 0-D matrix has 
not been used in any step of the sequential UTPP 
model process and, in addition, is not used by dis­
aggregate models at all. Therefore, in comparison 
with other travel demand methods, the direct-demand 
model imposes a unique requirement on the accuracy 
of the 0-D data. 

SAMPLING-ERROR ANALYSIS OF TRAVEL DEMAND DATA 

The sampling error inherent in home-interview 0-D 
travel surveys can be analyzed in two distinctly 
different ways. The first is to estimate the confi­
dence interval about a sample estimate of the number 
of trips produced or attracted to a district or 
zone. The second approach is to estimate the confi­
dence interval about a sample estimate of the number 
of trips from a district (zone) to a district 
(zone). We will begin with the first approach for 
work trips. 

Presume that work trips per household are, within 
each district, an independent random variable so 
that the sampled variables Shwhhl (home-to-work 
trips made by household number 1 in district il, 

Shwhhn (household number n in district i) 
have the same distribution with mean Sslis/HHis• 
variance a•, and moment generating function 
M,c(t). If n + m, the limiting distribution of 

(1) 

is the standard normal distribution. If the popula­
tion from which Shwhh is sampled is normally dis­
t ributed, Equation 1 is exact (the assumption that 
n + m and the limiting distribution are no 
longer required). The sampling distribution of 
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Shwhh is normal as long as the population is 
normal. 

A confidence interval about the mean Sslis/HHis 
is provided by Equation (inequality) 2: 

(2) 

where 1 - Za is the probability that (Shwhh - Sslis/ 
HHisl nl/2 /a will assume a value between -za and Za 
and that the integral of the standard normal density 
from za to m is equal to a. Since a in in­
equality 2 is generally unknown, the sample variance 
S 2 must be used to estimate a confidence interval 
for Sslis/HHis = 

where S 2 is the sample variance and 
HHislnl/2;s has a t-distribution 
degrees of freedom. 

(3) 

(Shwhh - Sslis/ 
with (n - 1) 

As will be shown below, the level of sampling 
error incurred to estimate a variable such as 
Sslis/HHis or a similar characteristic variable 
for a district (e.g., automobiles per household in 
district il is acceptably small when the sample 
rates recommended in the table given earlier are 
used in conducting home-interview travel surveys. 
Generally, sampling errors for such variables are 
not larger than ±5 percent for a 67 percent level 
of confidence or ±10 percent for a 95 percent 
level of confidence. Trip matrices, however, are an 
entirely different matter. If there are n dis­
tricts, there are n 2 district-to-district inter­
changes. This increased disaggregation of trip 
record data will cause trip interchange data to have 
the largest sampling errors of all data collected in 
home-interview 0-D surveys. 

To analyze the sampling error of trip matrices 
derived from home-interview surveys, it is necessary 
to associate all trips with the district from which 
the trip maker's household was sampled. Consider 
trips that originate in district i and have the 
"home" trip purpose at the origin. The trip desti­
nations may be any of the n districts in the study 
area. Let Pij be the actual proportion of trips 
that begin in the home district i and end in the 

nonhome district j. Let Pi· be the proportion of 
trips sampled that began in tfie home district i and 
ended in the nonhome district ;. If the total 
number of trips beginning in home district i is 
designated Si and its sample estimate is designated 

Si, then 

(4) 

and 

(5) 

Equation 4 is definitionally true. Equation 5 
separates the statistical problem of estimating the 
sampling error of sij into two parts: 

1. Estimating the total number of 
home-to-nonhome trips from district i (Sil and 

2. Estimating the distribution of destinations 
of Si (Pijl. 

since the confidence interval about Si is accept­
ably small, we can assume, with relatively little 

error, that Si is known with certainty. Thus, 

The sampling statistic Pij is based on Ni trip obser-
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vations drawn from district i (home district), of 
which Xij trips have t heir destinat i on in d i strict 
j: 

(7) 

The probability of selecting Xij trips out of the 
Ni trips s~mpled is constant and equal to Pij" 
Therefore, Pij is drawn from a binomial distribution 
with tbe single parameter Pi· . If Ni is large , 
the sta-tistic (Xij - NiPijl fiil1Pij (1 - P1j> can be 
treated a s if it were a random variable tnat has the 
standard normal distribution. A (1 - 2a) confidence 
interval for Pij i s 

( jXIJ + ~z.2 
- z0 V [X;i(N; - X;j)/N;] + %z0

1 }/(N; + za2
)) <Pu 

< {Xii+ \iz/ + Za V{Xj j(N; -XiJ)/N;) + lh0~ f/(N; + z,2) (8) 

From F.quations 4 and 5, 

~ ( { X;i + \iz02 ~ z. V [XiJ(N; - Xii)/N;] + %z01} /(N; + z. 2)) < Su 

< S; ( ( X;i + ~z.2 + z. VfXIJ (N1 - XiJ)/Ni] + \4z0 l f /(N; + z.2)) (9) 

Inequality 9 represents a (1 - 2a) confidence in­
terval for Sij and can be used to evaluate the 
sampling error of trip matrices derived from home­
interview 0-D surveys. 

SAMPLING-ERROR ANALYSIS OF MWCOG 
TRAVEL-DEMAND DATA 

The Metropolitan Washington Council of Governments 
(MWCOG) undertook an i nventory of transportation 
supply and demand for the Washington, D.C . , metro­
politan area in 1968. The MWCOG home-interview 0-D 
survey was designed to survey a 5 percent sample of 
households living inside the Capital Beltway (I-495 , 
the circumferential highway surrounding Washington, 
D. C., and a major portion of the Maryland and Vir­
gini a suburbs) and a 3 percent sample of households 
livi ng outs i de the beltway but within the study area 
<1>· Approximately 30 000 households were inter­
viewed to achieve these sample rates. The inter­
views provided i nformation about the trip-mak i ng 
activity of approximately 100 000 individuals. This 
sample of trip information is adequate to reliably 
determine important trip-making characteristics of 
each district in the study area (there are 134 dis­
tricts within the study area). For example , the 67 
percent confidence interval about the number of work 
trips per household (Equation 3) varies between 6 
percent in the district with the smallest number of 
sample observations (115 households) to 3. 5 percent 
in the district with the largest number of sample 
observations (220 households) (8). 

To determine the reliability of the MWCOG home­
interview survey for construct i ng matrices of trips 

Table 1. Trip.record sets selected for 
sampling-error analysis. 

Record 
Set Trip Mode 

I Transit passenger 
2 Automobile driver 
3 Automobile passenger 
4 Automobile person 
5 Transit passenger 
6 Automobile driver 
7 Automobile passenger 
8 Automobile person 
9 Transit passenger 

10 Automobile driver 
11 Automobile passenger 
12 Automobile person 
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from origins to destinations, inequality 9 was cal­
culated for 12 combinations of trip mode and trip 
purpose (see Table 1). In using the notation given 
i n Table 1, the confidence-interval inequa lity is 

Smpis( { Xmpij + \iz8 
2 - Za V(XmplJ(Nmpis - Xmp;5)/Nmpisl + 1-lz.1 ) 

7 (Nmpis + Za 
2
)) < Smpij < Smpis ( {Xmpij + liza 2 

+ Z. V(XmplJ(Nmpis - Xmpis)/N mpisl + 14z/} /(Nmpis + z8
2

) ) (10) 

where m is travel mode (m = 1, transit passenger 
trip; m = 2, automobile dr i ver tr i p; m = 3, auto­
mobile passenger trip; and m = 4, automobile person 
trip) and p i s travel purpose (p = 1, home to work; 
p = 2, home to shop; and p = 3, home to other) • 

Since there are 1 34 MWCOG internal distr i cts, 
there are 17 956 confidence intervals for each mode­
purpose combination. Therefore, inequality 10 in­
volves 215 472 confidence intervals for the 12 sets 
of mode- purpose combinations (m = 1, ••• , 4 and p = 
1, •.• , 3). Obviously, this much i nformation cannot 
be presented o r , if presented, cannot be compre­
hended. In addition, there are other useful ways of 
using the confidence-interval values (a lower and 
upper bound on Smpijl that inc rease the amount of 
i nformation t hat snould be repor ted . Therefore, the 
following aggregation system was used to evaluate 
the data derived from inequality 10. The lower­
bound (= LSmi;>ijl and upper-bound (= USmp i jl 
statistics derived from inequality 10 were aggre­
gated over all trip interchanges from each district 
of origin and were also aggregated over all trip 
i nterchanges to each district of destination. This 
reduces the number of lower- and upper-bound statis­
tics to 134 origin aggregations per mode-purpose 
combination and 134 dest i nation aggregations, or 
3216 aggregations for all 12 mode-purpose combina­
tions. 

Since the i mportance of L5mpij and U5mpij is 
the range of confidence they provide abou t the 
sample estimate of 5mpij , t he following statistics 
involving L5rnpij and 5mpij or U5mpij and 
Smpij were calculated based on aggregations over 
all trip interc hanges from each district of o rigin 
and aggregations over all trip interchanges to each 
district of destination: 

Low (Smpij - LSmpijl for all Smpij t O 
Mean (Smpij - C.Smpijl for all Smpij t O 
Mean (Smpij - LSmpijl foe all Smpij 
I.ow (Smpij - LSmpij J/Smpij for all Smpij ; O 
Mean (Smpij - LSmpijl/Smpij for all Smpij ; O 
Bigh (USmpij - Smpijl for all Smpij I o 
High (USm\)ij - Smpij l foe all Smpij = O 
Mean (USmpij - Smpijl foe all Smpij ; O 
Mean (USmpij - smpijl foe all Smpij 
Mean (Usmpij - smpij l for all Smpi · = O 
Bigh (USmpij smpij)/Smpij fo r alf smpij # O 
Mean (OSmpij - smpi jl/Smpij for a l l smpij t o 

Sampled Home-Trip-
Home Trip Sampled End Trip 

Trip Purpose Ends Trips Variable Variable 

Home to work Nuis X11iJ S11;s Suu 
Home to work N2lis X21iJ 8211s S211J 
Home to work N3lis x3HJ 8311, S311J 
Home to work N4lis x41iJ 84Jis S41ll 
Home to shop N12is Xl2ii S12is S111J 
Home to shop N22is X22ij S22is S221J 
Home to shop Nn;s Xnii 8321, SrnJ 
Home to shop N42is X42ii 842is S421J 
Home to other N1Jis X13ij S131s S131J 
Home to other N23is X23;j S23is SniJ 
Home to other N33is X33;j 833;, S331j 
Home to other N43is x43iJ 843;, S431J 
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Although these statistics cannot be easily listed 
for all combinations of trip mode and trip purpose 
for which they were calculated and for all of the 
134 origin districts and 134 destination districts, 
it is instructive to list these statistics for the 
most important and numerous types of trips between 
the most-traveled interchanges in the Washington 
area. For this purpose, home-to-work trips by tran­
sit passengers (Sllij) and automobile dr i ve r s and 
passe nge rs (S4lij) were s elec ted. In order to 
select a few districts that c ontain the bul k of 
these trips, the destination-based aggregations to 
the 14 districts that constitute the Washington 
central business district (CBD) are listed in Tables 
2-7. All confidence intervals are based on a za 
value of 1.96 providing a 95 percent level of confi­
dence. The average upper-bound and high upper-bound 
statistics are given in Table 2 (transit trips) and 
Table 5 (highway trips). The average lower-bound 
statistics are given in Table 3 (transit trips) and 
Table 6 (highway trips). These statistics are ex­
pressed in absolute terms (number of trips) and as a 
percenta ge of the sample estimate of 5mpij • A 
high observation represents eithe r the l argest ob­
servation of (U5mpij - 5mpij) or (U5mpij -
Smpij)/Smpij observed from al~ origin districts 
(i) to each of the. 14 destination districts (j) 
included in Tables 2 and 5. Likewise, the mean of 
(U5mpij - 5mpij l and of (U5mpij - 5mpij l/5mpij is 
included i n Ta bles 2 and 5. These a ve rages repre­
sent the mean observation from all origin districts 
(i) to each of the 14 CBD destination districts 
(j). In order to discuss all of the 14 CBD destina­
tion districts as a group, several averages over all 
districts for each statistic will be used. Thus, 
"average mean value of (USllij - Sllij) /Sllij" 
will refer to the unweighted average of the last 
column of numbers in Table 2. 

The 14 CBD districts account for a substantial 
portion of all home-to-work travel in the Washing­
ton, D.c., study area. The 14 CBD destination 
districts receive 55 percent of all transit home-to­
work trips and 24 percent of all automobile home-to­
work trips. On average, the CBD districts receive 
transit home-to-work trips from 51.7 origin dis­
tricts (maximum = Bl for destination district 5 and 
minimum = 18 for destination district 6) and receive 
automobile home-to-work trips from 80.1 origin dis­
+-..-iro+-c (m~Y;mnm = 100 fnr nP.Rt:in;"tt:inn fliRtr iCt~ 1 

and 13 and minimum= 25 for district 10). Thus, the 
CBD districts are connected to far more origin dis­
tricts than the remaining non-CBD destination dis­
tricts. 

Despite the high population of trips represented 
in these CBD destination district summaries, the 
estimated error statistics are very high. For ex­
ample, the average mean upper bound (USlli · -
Sllij) for transit trips is 246 percent , and Ehe 
average high upper bound for transit trips is 439 
percent. Furthermore, these percentage errors rep­
resent only the o bservations of S11ij that are 
nonzero, since a percentage error c a nnot be defined 
for estimates of s ll ij that equal zero. The av­
e rage upper bound f o r the zero e s timates of Sllij 
is equal to 56. 6 trips (95 perc e nt confidence in­
terval) . The average maximum upper bound for zero 
transit trip estimates within each CBD destination 
district is 182.6 trips. Consequently, the number 
of cells in the trip matrix that were estimated to 
contain no trips is likely to be overestimated by a 
significant factor. 

The lower-bound statistics for transit trips are 
no more reassuring (Table 3). Since negative trip 
observations are not possible (i.e., the probability 
of Xii o bs e r vations c annot be below zero) , the 
maximum l ower-bound pe r c e ntage is 100 pe rcent . The 
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mean lower-bound error averaged over the 14 CBD 
destination districts for transit passenger home-to­
work trips is 71 percent (95 percent confidence 
interval). Thus, the mean lower-bound error is 
typically only 29 percent better than having no 
lower-bound confidence at all. 

The error statistics for highway trips show a 
similar pattern. The average mean percentage upper 
bound is 241 percent, and the average high observa­
tion is 463 percent. The average mean upper bound 
is 93. 6 t r ips for ze r o estima tes of 5 4li j and 
191. 3 trips for nonze ro e stimates of S4lij . 
Lower-bound statistics i nd i c ate an average mean 
lower bound of 67 percent and a corresponding aver­
age of 74.4 trips. 

The error indicated by these sampling-error sta­
tist i cs significantly reduces the accuracy that can 
be achieved by using a direct-demand model. Any 
model is attempting to explain the variation of one 
or more endogenous variables. If the endogenous 
variable itself possesses sampling error of the mag­
nitude docume nted for the 5mpij variables, there 
will be an upper limit on the amount of variation 
that even a perfect demand model can explain. To 
the extent that noise in the data increases unex­
plained variance, it also increases the standard 
error about the parameter estimates. 

IMPACT OF TRAVEL SURVEY SAMPLING ERROR 
ON ESTIMATION OF DIRECT-DEMAND 
TRAVEL MODEL 

The direct estimation of urban travel between spe­
cific interchanges is an appealing approach to ful­
filling urban transportation planning requirements. 
It can provide estimates of induced travel brought 
about by transportation improvements, be sensitive 
to 0-D transportation characteristics, and be rela­
tively easy to use . All cf these characteristics 
would make possible an equilibration of transporta­
tion demand and transportation supply in the trans­
portation planning process (6) • Direct-demand 
model:s also avoid the problem of aggregation bias, 
since travel forecasts are made at the same level of 
aggregation at which behavioral parameters are esti­
mated. 

The direct-demand travel model was first devel­
oped by Quandt and Baumol <il for interurban travel 
analysis and by Charles River Associates (2) for 
; !" +-r ? • ~ rh:3n +-r::i.uo1 . 'T'ho l ~t-t-Pr mn~P1 i R thP. Rinale 

urban application of the direct-demand travel 
model. Regional planning agencies, consultants, and 
academic researchers have used either aggregate­
sequential models as evolved in the UTPP or models 
developed from disaggregate travel demand data. The 
UTPP-type models are insensitive to transportation 
supply to the point that the elasticity of total 
travel demand to transportation system character­
istics is structurally confined to be zero (_!). 
Disaggregate models have varying levels of sensi­
tivity to transportation system characteristics but 
are difficult to use in such a way as to achieve an 
equilibrium between assumed zone-to-zone travel 
characteristics and travel characteristics implied 
by the allocation of forecast travel on the highway 
and transit networks. The direct-demand travel 
model, unlike any other type of travel demand model, 
has its parameters estimated by fitting to a single 
endogenous variable: the number of trips of a spe­
cific mode and purpose that have origin district i 
and destination district j for all districts or a 
subset of districts in the study area. Conse­
quently, sampling errors in the sampled matrix of 
trips have the most direct impact on a direct-demand 
travel model. 

Two alternative functional forms of the direct­
demand model were tested: 
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Table 2. Upper-bound-based statistics for 95 percent confidence interval estimates for transit passenger home-to-work trips with CBD destination. 

CBD 
Destination High (US - S) High (US- S) Mean (US - S) Mean (US - S) Mean (US- S) High [(US - S)/S] Mean [(US - S)/S] 
District for All S ;" 0 for All S = 0 for All & forAUS=O 

1 441 189 118.0 39.8 
2 437 189 109.4 50.l 
3 462 181 11 9. I 35.8 
4 363 152 110.4 47.2 
5 453 189 111.9 44.7 
6 447 152 11 9.3 36.5 
7 250 189 89.4 75.5 
8 250 189 91.5 72.6 
9 322 189 96.6 70.9 

10 217 189 87.9 78.8 
11 474 189 105.4 63.8 
12 269 189 94.0 68.0 
13 415 181 10.5 52.2 
14 336 189 105 .5 56.2 

Table 3. Lower-bound-based statistics for 95 
CBD percent confidence interval estimates for transit Destination Low (S- LS) 

passenger home-to·work trips with CBD District for All S * 0 
destination. 

l 14 
2 14 
3 14 
4 19 
5 14 
6 17 
7 26 
8 26 
9 14 

10 20 
II 17 
12 17 
13 17 
14 19 

Table 4. Miscellaneous confidence interval statistics for transit passenger 
home-to-work trips with CBD destination. 

CBD 
Destination 
District 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

and 

where 

Mean S for Number (US-S) (S- LS) 
AllS*-0 of S *-0 High S for High S for High S 

167.I 
124.4 
179.4 
129.0 
132.5 
159.7 
52.6 
65.5 

120.4 
53.6 

173.7 
63.8 

139.l 
104.4 

74 1010 414 314 
69 912 437 307 
78 1085 462 338 
64 586 340 221 
73 1088 453 328 
81 1049 447 321 
18 164 250 100 
23 164 250 100 
27 456 322 193 
13 148 217 90 
41 1244 474 353 
38 233 269 126 
61 855 415 286 
64 466 336 198 

(11) 

trips by mode m for purpose p between 
origin district i and destination dis­
trict j, 
production characteristic variable for 
origin district i, 
attraction characteristic variable for 
destination district j, 

for All S ;" 0 

181.4 
165.3 
179.0 
179.5 
168.0 
173.5 
178.5 
182.6 
198.2 
172.1 
199.7 
159.6 
180.3 
159.3 

Mean (S- LS) 
for All S * 0 

85.6 
68.6 
90.4 
74.1 
73.2 
83.0 
39.8 
47.9 
71.3 
40.5 
85.I 
45.3 
76.4 
64.5 

for All S ;"O forAUS;"O 

4.294 1.879 
4.333 2.188 
4.121 1.574 
4.275 2.047 
4.379 2.021 
4.019 1.646 
4.596 3.935 
4.459 3.337 
4.439 2.650 
4.579 3.661 
4.439 2.332 
4.585 3.079 
4.348 2.177 
4.426 1.972 

Mean (S- LS) Low [(S - LS)/S] Mean [ (S - LS)/S] 
for All S for All S * 0 for All S * 0 

47.3 0.311 0.653 
35.3 0.337 0.701 
52.6 0.312 0.633 
35.4 0.377 0.681 
39.9 0.301 0.682 
50.2 0.306 0.653 

5.3 0.610 0.795 
8.2 0.610 0.770 

14.4 0.423 0.706 
3.9 0.608 0.790 

26.0 0.284 0.679 
12.9 0.539 0.770 
34.8 0.335 0.681 
30.8 0.425 0.692 

= travel time by mode m = 1 or m = 2 be­
tween origin district i and destina­
tion j, and 
travel cost by mode m = 1 or m = 2 be­
tween origin district i and destina-
tion j. 

However, in all subsequent regressions tested, the 
ln-linear form (Equation 11) performed as well as or 
better than the negative exponential cost function 
(Equation 12). Therefore, results below are only 
reported for the full ln-linear form of the direct­
demand model. 

The production and attraction characteristic var­
iables identified in Equations 11 and 12 depend on 
the purpose of the travel that is estimated. For 
the home-to-work trip purpose, the MWCOG data base 
provides the labor force in the trip origin district 
(Lis> and total employment in the trip destination 
district (TE

6
· ) . For the home-to- shop trip pur­

pose, the fol ~owing variables are available: number 
of households (HHisl in the trip origin district 
and shop a nd service employment (SSEsjl in the 
trip destination district. In addition, the level 
of automobile ownership and mean household income in 
the or1g1n district can potentially affect home 
origin trip demand and are available in the MWCOG 
data base (AORis and HHiis• r e s pectively). All 
trip production and attraction characteristic vari­
ables are defined below in terms of whether they 
apply to the home-trip origin district, work-trip 
destination district, or shopping-trip destination 
district: 

Lis number of employed persons who reside in 
trip origin district i (home-to-work 
trips) I 
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Table 5. Upper-bound-based statistics for 95 percent confidence interval estimates for automobile person home·to-work trips with CBD destination. 

CBD 
Destination High (US - S) High (US- S) Mean (US - S) Mean (US -S) 
District for All Si= 0 for All S = 0 for All S for All S = 0 

1 419 154 180.0 81.3 
2 362 177 167.3 88.4 
3 403 172 183.9 82.9 
4 334 177 153.2 92.9 
5 380 182 160.6 90.2 
6 378 182 183.7 91.5 
7 274 182 128.7 103.0 
8 260 172 131.6 102.4 
9 310 182 139.7 101.3 

10 264 182 121.3 107.6 
II 439 182 172.4 80.8 
12 337 182 146.2 98.2 
13 437 154 172.1 88.0 
14 307 182 150.4 101.4 

Table 6. Lower-bound-based statistics for 95 
CBD percent confidence interval estimates for Destination Low (S-LS) automobile person home-to-work trips with CBD District forAllSi=O 

destination. 
1 17 
2 17 
3 18 
4 17 
5 20 
6 17 
7 17 
8 17 
9 17 

10 17 
11 17 
12 17 
13 17 
14 18 

Table 7. Miscellaneous confidence interval statistics for automobile person 
home·to·work trips with CBD destination. 

CBD 
Destina ti on Mean S for Number (US-S) (S - LS) 
District AllSi=O of S i=O Highs for High S for High S 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

205.0 100 794 419 281 
157.0 97 597 362 228 
228.3 100 738 383 257 
125.9 83 458 334 195 
140.0 94 845 380 268 
156.5 93 672 378 245 
61.5 54 244 274 131 
69.5 59 204 260 117 

103.0 63 406 310 178 
73.6 25 221 256 119 

196.4 98 1008 439 311 
106.5 80 489 337 206 
177.0 100 970 433 304 
122.1 76 399 301 175 

HHis = number of households in trip origin dis­
trict i (home-to-shop trips); 

AORis automobile ownership rate in home-trip or­
igin district i = Ais/Lis for home-to-work 
trips and Ais/HHis for home-to-shop trips, 
where Ais is the number of automobiles 
available to households in district i; 

HHiis = mean household income in trip origin dis-
trict i; 

= total employment in work-trip destination 
district j; and 
shop and service employment in shopping­
tr ip destination district j. 

All variables tested in the direct-demand model are 
summarized below: 

Mean (US - S) High [(US - S)/S] Mean [(US - S)/S] 
for All Si= 0 for All S i=O for All Si= O 

213.6 4.438 1.682 
197.3 4.682 2.060 
218.3 4.591 1.708 
190.3 4.639 2.423 
190.6 4.607 2.343 
195.6 4.682 2.077 
166.8 4.682 3.530 
168.7 4.682 3.079 
182.9 4.657 2.749 
180.8 4.649 3.252 
206.1 4.682 2.131 
178.5 4.682 2.581 
200.7 4.586 1.991 
187.7 4.537 2.096 

Mean (S- LS) Mean (S- LS) Low [(S - LS)/S] Mean [(S - LS)/S] 
for All Si=O for All S for All Si= 0 forAllSi=O 

100.9 
83.9 

106.6 
71.7 
75.0 
82.9 
43.2 
48.0 
62.3 
50.6 
92.6 
63.8 
88.1 
71.5 

8Uij 

s41ij 

Sl2ij 

s .. "' .l ..! 
.......... J 

Hllj_s 

Lis 
Ais 

HHiis 

75.3 0.354 0.590 
60.7 0.373 0.633 
79.6 0.304 0.581 
44.4 0.426 0.672 
52.6 0.317 0.661 
57.6 0.350 0.638 
17.4 0.537 0.763 
21.1 0.567 0.740 
29.3 U.438 0.701 

9.4 0.538 0.747 
67.7 0.309 0.631 
38.1 0.401 0.694 
65.8 0.313 0.622 
40.6 0.437 0.651 

= transit passenger home-to-work trips from 
origin district i to destination district 
j, 

= automobile person home-to-work trips from 
origin district i to destination district 
j, 

= transit passenger home-to-shop trips from 
origin district i to destination district 
j, 

" ""tomohile oerson home-to-shoo trios from 
origin district i to destination district 
j, 
total number of households in the district 
of origin i 

a labor force in the district of origin i, 
= total number of automobiles available to 

all households in the district of origin 
i, 

= mean household income in the district of 
origin i, 

= total employment in the district of desti-
nation j, 

= shop and service employment in the dis­
trict of destination j, 

Tlij = total transit 
tricts i and j, 

travel time between dis-

total highway travel time between dis-
tricts i and j, 

clij = transit fare 
and 

between districts i and 

highway cost between districts i and 
(average parking cost in j). 

j, 

Equations 11 and 12 were tested for the endoge­
nous variables Sllij• S4l i j • 812ij• and 842ij by us­
ing the stepwise regression package from the 
Biomedical Computer Program package, version BMDP 
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(1!!). The data set containing all of the variables 
included in the list above was combined with the 
BMDP stepwise regression model in an interactively 
controlled program. This program included the 
ability to screen available observations of all 
variables in the data set used in each equation on 
the basis of the value of each observation of the 
endogenous variable. This feature allows the elimi­
nation of interchanges that contain no observed 
trips or a small number of estimated trips, which 
reduces the number of observations included i n the 
regression from the maximum of 17 822 observations. 
In addition, a second screening procedure was in­
cluded that allowed observations that have large 
confidence intervals associated with the sample 
estimate of the endogenous variable 5mp i j to be 
eliminated from the regression. Two s ampl ing-error 
statistics- -the percentage upper bound and the per­
centage lower bound--were selected to screen obser­
vations of 5mJ?.i j before the entering of the 
regressions used to est imate direct-demand model 
parameters. Recall that USmpij was defined to be 
the upper limit (95 percent c onf idence) of the esti­
mate of 5mJ?.ij and t hat L5mp ij was defined to be 
the l owe r J.1mit of the escimate o f Smpij • The 
percentage uppe r and lowe r bounds for a ny observa-
tion of 5mpij are (U5mpij - 5mpij l /5mpij for all 
Smpij I 0 and <5mpij - LSmpijl/5mpij for all Smpij 
I o. 

The calculat i on of U5mpij and L5mpij is based 
on Equation 10 , where the l ower bound of the 
i nequa lity is d efined to be L5mpi j and the upper 
bound is defined to be usmpij ' The rang e of 
values that (S - LS ) /S c an take is O to l (or 10 0 
percent), and the range of values that (US - S) /S 
can take is O to ""• For this reason, the 
screening process was designed to accept a criterion 
for both the lower and the upper bound independently 
of each other. Since the statistics used to screen 
observations are not defined for observations 
estimated to be zero C5mpij • O), all zero 
obse rvat ions were also excluded when sampling-error 
criteria were applied to regression observations. 

The basic strategy was to estimate the direct­
demand model with three sets of data. The first set 
of data includes all of the trip interchanges re­
gardless of whether trips were actually sampled in 
particular cells of the trip matrix for the travel 
mode and purpose being estimated. There are 17 822 
observations in this data set (134 origin districts 
multiplied by 133 destination districts). The 
second set of data included observations for which 
trips were sampled. All trip interchanges (ij 
pairs) that had zero trips were eliminated from the 
regression. This reduced the number of observations 
from 17 822 to 1524 for transit work trips, 5168 for 
automobile work trips, 161 for transit shopping 
trips, and 1349 for automobile shopping trips. 

A third set of data included trip intercha nges 
for which the estimated sampling error was above a 
prescribed minimum. For the minimum sampling error 
allowed for work trips, the upper bound was between 
75 and 90 percent and the lower bound was between 50 
and 90 percent. For the minimum sampling error 
allowed for shopping trips, the upper bound was 
between 100 and 300 percent and the lower bound was 
90 percent. The criterion used to establish the 
allowed sampling error was to allow the minimum 
possible sampling error yet still have enough obser­
vations left with which to estimate the regression 
parameters without serious colinearity problems. 
That is why the allowed sampling error for shopping 
trips was higher than that allowed for work trips. 

The three data sets tested have substantially 
different average sampling errors for the estimated 
(endogenous) variable. 'when all trip interchanges 
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are included, the zero trip observations dominate 
the data. They represent 91 percent of all transit 
work-trip interchanges, 71 percent of all automobile 
work-trip interchanges, 99 percent of all transit 
shopping-trip interchanges, and 92 percent of all 
automobile shopping-trip interchanges. The average 
upper bound for all transit passenger home-to-work 
trips (S11ijl is 80.3 trips. Since the a ve r age 
number of trips observed for nonzero observat ions of 
S11ij is 99.8 trips, it is clea r that the zero 
observations of transit work-trip intercha nges are 
not reliably estimated. In the case of automobile 
work-trip interchanges, the average upper bound is 
109.0 trips and the average number of trips for non­
zero trips is 123.3. Sampling-error data calculated 
for shopping trips show similar patterns. There­
fore, elimination of the zero observations of the 
estimated variable is likely to improve the perfor­
mance of the direct-demand model, and elimination of 
the nonzero observations that have high sampling 
errors can be expected to improve it further. 

A detailed account of results for all of the 
equations estimated need not be provided. Instead, 
a brief summary will identify the major conclusions 
that can be derived from the results displayed in 
Tables 8-10. When the direct-demand model was esti­
mated by using all observations, the equations pro­
vided very low levels of explanatory power. This is 
evident in Table 8, which provides the model parame­
ters and R2 for each estimation (transit and auto­
mobile, work trips, and shopping trips). The level 
of explained variation (R 2 ) ranged from 6 to 31 
percent. In addition, several irrational parameter 
values were estimated. For example, in work-trip 
estimation (Equation 13, Table 8) a high correlation 
of 0. 79 between highway trave l time (Tu 4) and 
transit f are (Cuj l caused highway trave l t1me to 
take an i rr_ational coefficient o f -0 . 686 . The cross 
elasticity of transit travel with highway travel 
time should be positive, not negative. This corre­
lation also affected the highway travel-time parame­
ter in the transit shopping-trip estimator (Equation 
15, Table 8). Other irrational parameter values in 
Table 8 can also be traced to high correlations 
among the exogenous variables. 

When zero observations of the endogenous variable 
were excluded from the regressions, the level of 
explanatory power increased substantially but still 
remained below 50 percent for all equations, as 
Table 9 indicates. An unexpected benefit of elimi­
nating zero observations was to reduce colinearity 
among several exogenous variables. Partly because 
of this, no irrational parameter values were pro­
duced in this set of estimators. In addition, the 
parameter estimates indicate elasticities of travel 
demand with respect to modal characteristics that 
are more consistent with other studies <ill· For 
example, the elasticity of transit work travel 
demand with respect to transit travel time increases 
from -o. 086 (Equation 13, Table 8) to -o. 368 (Equa­
tion 17, Table 9) and the demand elasticity with 
respect to transit fare drops from -1.043 to 
-0.412. Another improvement is the approximate 
equality of the parameters that measure the impact 
of labor force in the trip origin (Cisl and total 
employment in the trip destination (TEsjl· 

All of the estimates presented in Table 9 do not 
include the variable mean household income (HHiislr 
which failed to pass the partial F-criterion. Un­
screened regressions generally included this vari­
able with an irrational sign and/or with a disturb­
ing influence on the estimate of the elasticity of 
travel demand with respect to automobile ownership. 
This result occurs because of the reduced coline­
arity among HHiis• AORis• and Lis· 

The level of explanatory power of each trip esti-
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mator has increased substantially by screening zero 
observations of 5mpij• as given below: 

Endoge-
nous R• Increase 
Variable Unscreened 5meij 0 Screened (%) 

811ij 0.252 0.447 77 

s41ij 0.314 o. 450 43 
Sl2ij 0.059 0.149 153 
S42ij 0.180 0.316 76 
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The improved performance of the direct-demand 
estimators can be attributed largely to the reduc­
tion of sampling error associated with the survey 
sample estimation of low-level interchanges. But 
the entire data set of trip observations has high 
sampling errors, and there is substantial sampling­
error variation. The average percentage upper con­
fidence interval for all nonzero observations of 
Snij (home-t o-work t ransi t passenger trips) is 
278 pe rcent , a nd the high sampling error is 461 

Table 8. Parameters and t-statistics for direct-demand model: all trip Interchanges regressed as observations. 

Equation 
No. 

Parameter 

13 
14 
15 
16 

t-Statistic 

13 
14 
15 
16 

Notes: 

Endogenous 
Variable 

S11ii 
s4lii 
S12ii 
S42;j 

Suii 
S4lii 
Sl2ii 
S42;j 

0.566 
1.107 
NA 
NA 

35.4 
44.3 
NA 
NA 

HH;, 

NA -0.396 
NA -1.225 
0.046 NS 
0.080 -0.203 

NA -18.9 
NA -37.1 
9.2 NS 
5.7 -11.9 

AOR;, 

-0.204 0.152 NA -0.086 -1.043 
0.890 0.427 NA NS NS 

-0.077 NA 0.009 -0.016 NS 
0.405 NA 0.090 NS 0.450 

-6.8 16.9 NA -14.3 -15.4 
18.9 30.5 NA NS NS 
-7.7 NA 3.0 -8.0 NS 
12.3 NA 12.9 NS 6.3 

AORis = Als/Lis for estimatoD u( S t t[J and S41_iji AORis = Ab;/ HHts for NlinlBIOrs of St2ij end S421j. 
NS= estimated parameter value ~lll1 or not significent or variable dbl not p:us pmrtlDJ· F criterion to enter equation. 

-0.686 
-2.923 
-0.294 
-2.584 

-10.1 
-47.9 
-19.6 
-40.4 

Table 9. Parameters and t-statistics for direct-demand model: nonzero trip interchanges regressed as observations. 

Equation Endogenous 
No. Variable L;, HHis AOR;, TE,; SSE,; T1;j Clii T2ii C2;j 

Parameter 

17 Su;j 0.413 NA -0.270 0.360 NA -0.368 -0.412 NS 0.011 
18 s4lii 0.448 NA 0.476 0.382 NA NS NS -0.783 NS 
19 S12ii NA 0.188 -0.244 NA 0.201 NS NS NS NS 
20 S42;j NA 0.319 0.890 NA 0.232 NS NS -0.949 -0.055 

t-Statistic 

17 Su;j 18.8 NA -7.1 14.4 NA -9.4 -7.8 NS 2.8 
18 s4lii 40.7 NA 17.6 38.2 NA NS NS -43.5 NS 
19 S12ii NA 3.0 -2.5 NA 3.4 NS NS NS NS 
20 S42;; NA 11.8 12.2 NA 10.1 NS NS -20.6 -9.2 

Notes: AUKis = Ais/ Lis t'or estimators ot ~llij ana .::>4tj_i; AUKts = f\.is/Httts ror esumators or i:>l2iJ anu -=>42IJ• 
NS= estimated parameter value either not significant or variable did not pass partial-F criterion to enter equation. 

Table 10. Parameters and t-statistics for direct-demand model: sampling-error screening of endogenous variable. 

Equation Endogenous 
No. Variable L;, HH;, AOR;, TE,i SSE,i Tlii clii T2ii C2ii 

Parameter 

21 S11ij 0.464 NA -0.126 0.448 NA -0.263 -0.539 NS NS 
22 Su;j 0.532 NA NS 0.378 NA -0.442 -0.650 NS NS 
23 S4lii 0.396 NA 0.230 0.294 NA 0.134 NS -0.585 -0.018 
24 S12;; NA 0.384 -0.386 NA 0.174 NS -0.529 NS NS 
25 S42;; NA 0.444 1.044 NA 0.222 NS NS -0.727 -0.047 
26 S42;j NA 0.485 0.994 NA 0.151 NS NS -0.541 NS 

t-Statistic 

21 Snii 15.5 NA -2.l 13.2 NA -5.5 -7.0 NS NS 
22 Snii 11.8 NA NS 4.6 NA -4.9 -4.2 NS NS 
23 S41;; 17.2 NA 5.8 9.2 NA 3.2 NS -11.3 -4.5 
24 S12iJ NA 5.5 -3.2 NA 2.8 NS -3.3 NS NS 
25 S42ii NA 15.3 12.6 NA 6.9 NS NS -13 .0 -5.9 
26 S42ii NA 13.9 7.6 NA 3.2 NS NS -6.4 NS 

Notes: AORis = Atni /Lls for estlm11Un. orS u ij 1nd S41N; AORis 1;;- AIJ/H Bls for es Ut11 11to1s of S12ij and S4'11J· 
NS= estim r'llCfl parRmeter vn1nn 4'ifh1u nt1t signi ca.nt or vnrfohla <1111not111111n Jlflrdal-F criterion 10 ru'Her equation. 

0.244 
0.197 
0.043 

-0.055 

37.4 
19.7 
21.5 
-9.2 

R2 

0.447 
0.450 
0.149 
0.316 

R2 

0.555 
0.842 
0.500 
0.347 
0.397 
0.499 

0.052 
0.314 
0.059 
0.180 

No. of 

No. of 
Observations 

17 822 
17 822 
17 822 
17 822 

Observations 

1524 
5168 

161 
1349 

Maximum Sampling 
No. of Error 
Observa-
tions (US - S)/S (S - LS)/S 

474 0.75 0.75 
105 0.75 0.50 
481 0.90 0.90 
135 3.00 0.90 
705 2.50 0.90 
267 1.00 0.90 
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percent. The average percentage upper confidence 
int erval for all nonzero obs e r va t i ons of S41ij 
(home-to-work automobile per so n trips ) is 281 per­
cent, and the high sampling error is 468 percent. 
It is likely that a screening of observations based 
on the sampling error estimated for each observation 
of the endogenous variable would result in further 
improvements in direct-demand estimation. We used 
the sampling-error statistics (US - S)/S and (S -
LS)/S defined above for this purpose, using the 
interactive software developed for this project. 

Application of the screening procedures described 
above to the direct-demand model estimate for tran­
sit passenger home-to-work trips resulted in Equa­
tion 21 (Table 10) after various levels of (US -
S) /S and (S - LS) /S used to screen observations of 
Sllij were tested. Explanatory power is increased 
to S-6 percent, or 24 percent higher than a regres­
sion that only eliminates zero observations of 
Sllij (Equation 17, Table 9). The parameter val­
ues of these two equations are similar. The most 
significant difference is the reduced elasticity of 
transit trip demand with respect to the automobile­
ownership rate (Ais/Lis> • Automobile-ownership 
elasticity drops from -0.2700 to -0.126 and the 
t-value drops to a low but marginally significant 
value of -2.1. However, the correlation of the 
automobile-ownership rate with transit travel time 
and cost has i ncreased to 0. 49 (w ith Tlij l and 
0 . 63 (with Clij). Lower t values for all t hree 
variables <Ats/ Lis • Tlij, a nd Cujl par tly 
reflec t t he incr easing difficu lty of isolating the 
specific impact of each variable as correlations 
between them increase. The increased correlations 
result from the reduced data set (474 versus 1524 
observations) remaining after the screening pro­
cedure. 

Further tightening of the lower confidence inter­
val to 0.50 reduces the number of accepted observa­
tions to 105 for Equation 22 (an additional 57 
percent reduction from the number of observations 
accepted in Equation 21). The automobile-ownership 
rate does not pass the par t ial F-test to enter the 
regression and is also more correlated (negatively) 
with labor force at the trip origin (Lis> than in 
previous regressions (correlation = 0. 53). Correla­
tions of Ais/Lis and transit travel character­
istic variables remain high. Parameter values for 
the four accepted variables change somewhat with an 
increased elasticity of transit travel with respect 
to transit travel time (T1i i: - 0. 263 to -0.442) 
and transit fare (Cli j: -0.412 t o - 0 . 650). The 
overall exp l a natory po wer of the equation increases 
to a very high 84 percent, or 88. 4 percent higher 
than Equation 17 (Table 9) , which only screened 
observations of Slij = 0 from the regression. 
However, it is not entirely clear that Equation 22 
is a better estimator than Equation 21, which has a 
lower R2 (0.56). Colinearity among variables is 
probably responsible for the absence of the 
automobile-ownership rate in Equation 22. Coline­
arity is a more serious problem, since Equation 22 
is estimated with 105 observations compared with 474 
observations accepted for Equation 21. In addition, 
as mentioned above, correlations between the 
automobile-ownership rate and other exogenous vari­
ables happen to be larger among the 105 observations 
accepted for Equation 22 than among the 4 74 obser­
vations accepted for Equation 21. The smaller 
number of observations combined with higher coline­
arity involving Ais/Lis would lead one to be-
1 ieve that the automobile-ownership rate should 
still appear in Equation 22 and that its absence may 
bias the p a r ameters f or t he va riables L1 8 , Tlij, 
and c lij • However , any bias is likely to be 
slight , s ince t he pa r ameter s f or these va riables do 
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not differ substantially from those estimated in 
Equation 21, which includes the automobile-ownership 
rate as an exogenous variable. 

Application of sampling-error confidence-interval 
screening to the estimator of automobile passenger 
home-to-work trips does not affect the overall level 
of explanatory power as significantly as when obser­
vation screening was applied to transit passenger 
home-to-work trips. 

Exactly the same variables are included in Equa­
tion 23 (Table 10) as were included in Equation 18 
(Table 9), and the parameter values calculated for 
them are quite similar. The elasticity of home-to­
work automobile person trips with respect to highway 
travel time (T2ij) d ecreases slightly, fro:m -0. 783 
to -0.613, whereas othe r parameters remain more 
similar. The increase in explanatory power from 
0.450 to 0.499 (an 11 percent increase) is modest 
but represents a significant improvement. The data 
set used to estimate Equation 23 has a reduced cor­
relation between Clij and T2 ij of 0 . 6 44 and a 
consequent reduced propensity f o r Clij t o enter 
the regression with a negative a nd irratio nal coef­
ficient. The upper and lower bounds that produce 
this data set are both equal to 0.9. In the regres­
sion used to estimate Equation 23, transit fare 
(Clijl becomes the only mode characteristic vari­
able that does not enter because it does not meet 
the partial-F test. The elasticity of automobile 
demand with respect to highway travel time (T2ij) 
remains at approximately the same value estimated in 
earlier regressions. A slight but significant elas­
ticity of automobile travel with respect to parking 
cost is estimated at -0.018. More important, a 
significant and reasonably large cross elasticity of 
automobile travel with respect to transit travel 
time (T1ijl is estimated at 0.134. 

When zero o bse rvations of transit passenger home­
to-shop trips were screened from the regression 
analysis, no travel characteristic variables were 
accepted into the regression. The percentage of 
explained variation of this estimator was 14.9 
percent. The only variables accepted were house­
holds in the trip origin district (HHislr the 
automobile ownership rate (Ais/HHis>, and shop 
and service employment in the destination dis tr ic t 
(SSEgjl· When observations are screened on the 
basis of sampling er r or , the results are improved 
substantially. Explanatory power increases from 15 
to 35 percent, a 133 percent increase (Equation 24, 
Table 10). Even though observations are reduced by 
16 percent, the F-ratio increases from 9 to 17, and 
t-statistics improve overall for the three variables 
common to both equations (HHis, Ais/HHis, and 
SSEsj>• Fur t hermore, a significant elast icity of 
transit t ravel with regard to transit fare (-0.529) 
is estimated. 

Application of sampling-error criteria to the 
estimation of home-to-shop automobile person trips 
yields estimators with similar parameter values as 
before but with a substantial improvement in ex­
plained variation of the endogenous variable (Equa­
tions 25 and 26, Table 10). 

Use of the estimated sampling-error confidence 
interval to screen o bserva tions of 5rnpij has re­
sulted in the i mp r ovements in overall explanatory 
power given in Table 11. 

CONCLUSIONS 

The analysis and data presented above provide a com­
prehensive basis for evaluating direct-demand urban 
travel models and the data required to estimate 
them. Because of the uniform survey sampling pro­
cedures used in urban transportation data-collection 
projects, the MWCOG data base used in this project 
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Table 11. Improvements in overall explanatory power resulting from use of 
estimated samplin~rror confidence interval to screen observations of Smpij· 

Endogenous Unscreened 
Variable (A) 

0.252 
0.314 
0.059 
0.180 

Confidence Interval 
Screened R 2 

Increase ( % ) 
Smplj ; 0 Screened 
(B) R2 Over A Over B 

0.447 
0.450 
0.149 
0.316 

0.842 234 
0.500 59 
0.347 488 
0.499 177 

88 
II 

133 
58 

is typical of transportation data available for any 
urban area in the United States. Therefore, many 
conclusions that derive specifically from the tested 
data can be expected to hold for direct-demand 
models when they are applied to any urban area in 
the United States. 

One objective of this study was to determine 
whether the potential benefits of direct-demand 
urban travel models could be realized and, if not, 
what factors prevent direct-demand models from ful­
filling their potential. Direct-demand models, 
being a simultaneous or one-step determination of 
trip generation, mode split, and trip distribution, 
allow 0-D travel characteristics to affect total 
travel estimation in addition to estimation of modal 
split and trip distribution. In contrast, the UTPP 
model system is structurally incapable of estimating 
induced travel. Although simultaneous disaggregate 
models can account for induced travel, they are 
substantially more difficult to use in the forecast­
ing mode. They require the application of aggrega­
tion bias estimation in order to use disaggregate 
models with forecasts of socioeconomic and travel 
characteristic data. This is required because 
disaggregate-model parameters are estimated by using 
household-level data whereas forecasts of the ex­
ogenous variables are generally available only at 
more aggregated levels (districts). Furthermore, 
aggregation bias techniques are difficult to use and 
complicate the use of travel demand models to assist 
in the UTPP. In contrast, direct-demand-model 
parameters are estimated at the same level of aggre­
q ation as that available for future forecasts of 
exogenous variables. But it is exactly this differ­
ence in the level of data aggregation between aggre­
gate and disaggregate models that causes the direct­
demand model to have problems. If sampling errors 
are present in aggregate 0-D trip data, the accuracy 
of the direct-demand-model parameters and the 
achieved goodness of fit are adversely affected 
whereas the disaggregate model would not experience 
similar problems. 

This study has documented very large sampling 
errors in the 0-D trip data collected for the Wash­
ington, D.C., metropolitan area. Screening observa­
tions to eliminate high sampling errors has signifi­
cantly increased the level of explained variance 
that the direct-demand model can provide. However, 
unless practically all observations are eliminated, 
the sampling error of the accepted observations is 
still high. In addition, as pointed out above, the 
reduced data sets that remain after sampling-error 
criteria have been tightened often have more coline­
arity among exogenous variables. With fewer obser­
vations, the increased colinearity results in an 
inability to identify important variables in the 
estimator. Direct-demand models are therefore 
limited in their ability to provide reliable esti­
mates of the response of travelers to transportation 
system characteristic variables by the high sampling 
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errors contained in the travel demand data available 
for estimation of direct-demand models. 
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Discussion 

Kevin E. Heanue 

Difiglio and Disbrow have done a very thorough job 
in examining the impact of survey sampling errors on 
travel demand forecasting. The paper is particu­
larly useful in its coverage of statistical pro­
cedures. I am concerned, however, with the assump­
tions made regarding how survey data are actually 
used in travel demand forecasting. In general, the 
treatment of this aspect of forecasting does not 
track too well with actual practice. 

The authors looked at the use of conventional 
major travel surveys and found them inadequate to 
the task of calibrating direct-demand models. They 
also found that conventional approaches to travel 
estimation are inadequate because induced demand is 
not separately estimated. I cannot support these 
conclusions. 

In the recent past, competent analysts have 
tended to use special surveys rather than large sur­
veys when attempting to calibrate direct-demand 
models, and they have been careful to eliminate 
coefficients based on small segments of their 
samples from the final models. They have also sup­
plemented their direct-demand estimates with more 
conventional approaches to fill in the gaps where it 
was not possible to develop direct-demand coeffi­
cients. 

The subject of induced demand is one that has 
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been debated for some time, and I would argue that 
induced demand, although not separately estimated, 
is inherently accounted for in the combined 
generation-distribution effects. In using trip-
generation procedures that consider increases in 
income and/or car ownership, induced travel is 
partially accounted for by increases in mobility 
(trips) that result from increases in vehicle 
supply. Similarly, as travel-time savings occur in 
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the highway network, trip lengths increase and again 
induced travel is indirectly accounted for. 

In conclusion, I recommend the paper to any 
student of travel demand forecasting but suggest 
that the problems of survey error can be and are 
overcome through the use of appropriate calibrating 
strategies. The results of well-calibrated fore­
casting models, when tested against measured travel 
volumes, are adequate for most planning applications. 

Vanpool Energy Efficiency: A Reevaluation and 

Comparison with a Brokered-Carpooling Concept 

AXEL B. ROSE 

Since the first employer-operated vanpools began operating in 1973, much has 
been made of the considerable energy savings possible through vanpooling and 
it has been generally accepted that vanpools are the most efficient commuter 
transportation mode available. The analyses that formed the bases for these 
conclusions have seldom involved more than simple comparisons of the line· 
haul energies of vanpools and average commuter automobiles; rarely, if ever, 
have vanpools been compared with other innovative and efficient commuting 
modes. Based on data available through a recent survey of vanpool riders in 
Chattanooga, Tennessee, a more detailed calculation of vanpool energy in· 
tensities is presented that incorporates the line-haul, access-egress, and 
indirect energy uses of vanpools as well as a calculation of the energy uses 
arising from the use of pool vehicles for private purposes. The resultant 
energy intensity of vanpools is calculated at 1508 kJ/passenger·km (2300 
Btu/passenger milel, which represents an increase of more than 100 percent 
over the line-haul energy intensity. Concurrently with the calculation of the 
van pool energy intensities, values are calculated for an alternative commuting 
mode essentially identical to vanpools with the exception that efficient 
subcompact and compact automobiles are used instead of vans. In the final 
analysis it is shown that efficient brokered carpools could save up to 60 
percent of the energy used by vanpools and also offer significant advantages 
over vanpools in ease of implementation and possible penetration of the 
commuting market. 

In recent years, it has become a widely accepted 
conclusion that vanpools are the most efficient mode 
of commuter transportation and that consequently 
they should play a major role in any petroleum 
conservation program. Unfortunately, these conclu­
sions have been largely based on incomplete or dated 
investigations of vanpool energy use; rarely, if 
ever, have vanpools been compared with other innova­
tive commuter transportation modes. Within this 
context, this paper presents a more complete analy­
sis of vanpool energy use and then compares the 
resultant energy uses with those of an alternative 
commuter transportation mode that has the potential 
of considerable energy savings over vanpool opera­
tions. 

A vanpool can be described as a commuter ride­
shar ing transportation mode in which a group of 
people who live and work in proximity to each other 
commute together in an 8- to 15-passenger van. In 
return for a free ride and limited personal use of 
the van, one person in the group, typically the 
driver, assumes responsibility foi:: the vehicle and 
its operation. The other pool members (and in some 
cases the employer and/or the government) share the 
costs of the whole operation. Three general types 
of vanpools are currently in operation: (a) em­
ployer-sponsored vanpools, in which the employer 
purchases the vans, furnishes them to the employees, 

and over time recovers the costs through the fares; 
(b) third-party-sponsored vanpools, in which a third 
party purchases the vans and acts as a broker be­
tween employees and employers; and (c) individually 
owned and operated vanpools. 

The first employer-sponsored vanpool program 
became operational in April 1973 at the Minnesota 
Mining and Manufacturing (3M) Company in St. Paul, 
Minnesota. By April 1979, 4382 vanpools were known 
to be operating in addition to the 3000-5000 pri­
vately owned vanpools believed to be in existence 
(_!, p. 6). From the first to the third quarter of 
1980, the Tennessee Valley Authority (TVA) expanded 
its vanpool operations from 219 to 413 vans. By 
1990, 1.15 million vanpools are forecast to be in 
operation in the United States (~, p. 10). Sub­
stantial government programs are under way to 
further r idesharing and vanpooling. Investment tax 
credits are being granted for the purchase of vans 
for pooling purposes, Highway Trust Fund money is 
available for the purchase of vans, and special 
lanes, to be reserved for high-occupancy vehicles, 
are being constructed in several areas. In summary, 
it can be stated that vanpooling has made substan­
tial headway in the past few years toward penetrat­
ing the commuting market and that a variety of pro­
grams have been implemented that are aimed at 
increasing the growth of vanpooling in the future. 

The impetus behind the movement can be found in a 
variety of perceived vanpool benefits frequently 
cited in the literature. Vanpool riders enjoy 
reduced commuting costs and the freedom of not 
having to drive, employers and/or localities need to 
provide and maintain fewer parking spaces, and 
everybody benefits from a reduction in congestion, 
vehicle emissions, and gasoline consumption. Of 
these benefits, lower commuting costs and energy 
savings are usually considered the most important. 
In comparison with traditional U.S. commuter trans­
portation modes, a typical vanpool is generally 
credited with saving approximately 18 925 L (5000 
gal) of gasoline per year, reducing emissions by 
1.81 Mg (2 tons) per year, and removing six to nine 
vehicles from the road. 

As stated, vanpool benefits have been calculated 
against a historical status quo. In view of the 
rapidly rising energy costs that tend to move people 
toward more efficient means of transportation and 
the significantly improved fuel economies for cur­
rent and future automobiles, it is highly question-




