
Transportation Research Record 818 1 

Setting Frequencies on Bus Routes: Theory and Practice 

PETER G. FURTH AND NIGEL H.M. WILSON 

Since most transit systems have relatively stable route structures and politically 
determined levels of subsidy, one of the main recurrent decisions the transit 
planner must make is the service frequencies to be provided on each route in 
the system. Current practical and theoretical approaches to this problem are re
viewed and, in light of their seeming inadequacies, a new model for setting fre
quencies is developed. The model allocates the available buses between time 
periods and between routes so as to maximize net social benefit subject to con
straints on total subsidy, fleet size, and levels of vehicle loading. An algorithm 
is developed to solve this nonlinear program that can be applied by using a small 
computer program or, simplified in some generally acceptable way, by using a 
pocket calculator. In a case study the model is shown to produce results quite 
different from the existing allocation, which suggests changes that are insensi
tive to the specific set of parameters and objectives. It is shown that the model 
can readily be applied to evaluate the impacts of an alternative vehicle capacity 
and to investigate the value of changing service policies. 

The North American public transit industry has, in 
the past decade, emerged from a long period of stag
nation and decline to become a major focus in stra
tegic planning to deal with the energy problem. In
creasing attention is being given to the problem of 
using the ever-mounting public resources being de
voted to transit more efficiently. This attention 
has revealed an apparent enigma: Although there is 
a wealth of academic research on how transit 
planning should be done, methods in use in the tran
sit industry are generally crude and dominated by 
the planners' experience and judgment, sometimes 
codified into simple rules of thumb. 

In this paper, one important part of the short
range transit planning process is selected and used 
to investigate whether significant differences exist 
between current practice and reasonable theory (]J . 
The topic is setting frequencies on bus routes, a 
problem that must be addressed, either explicitly or 
implicitly, several times each year by all transit 
operators. After a discussion of existing industry 
practice in setting frequencies, prior research is 
briefly reviewed. In light of the weaknesses iden
tified in this prior work, a new model is proposed 
that accurately reflects the objectives and con
straints with which the transit industry must deal. 
Finally, a case study of part of the Massachusetts 
Bay Transportation Authority (MBTA) system shows the 
differences between the actual allocation of buses 
and that suggested by the theory. 

CURRENT PRACTICE 

Methods used by schedulers to set frequencies on 
routes are generally poorly documented and seem to 
vary among operators. Typically, however, only a 
small number of rules of thumb have been used that 
can be overridden by the judgment and experience of 
the scheduler. The best way of assessing industry 
practice is to refer to the service standards that 
have been widely adopted by many operators in the 
past five years. Service standards cover a broad 
range of planning, operations, and management and 
(of interest here) usually include specific guide
lines on service frequencies. These service stan
dards are a result of both codification of existing 
rules of thumb and a statement of policy. As such 
they do not always accurately reflect decisions made 
by schedulers (and others) but are likely to include 
factors traditionally used in decision making. 

Based on a survey of existing service standards 
(2), the most frequently used methods for setting 
f-;equencies are policy headways, peak-load factor, 

revenue/cost ratio, and vehicle productivity. 
of these is described briefly below. 

Policy Headways 

Each 

Policy headways are used by virtually all operators 
and serve as a lower bound on the frequency. Routes 
are categorized by factors such as orientation 
(radial or crosstown), function (line-haul or 
feeder), and location (urban or suburban); and each 
category is assigned a set of policy headways for 
each period of the day. Policy headways are most 
effective in systems that operate principally as a 
low-demand social service. However, in large 
cities, during peak hours, and whenever demand is 
high, policy headways lose their relevance and other 
methods must be used to assign headways. 

Peak-lDad Factor 

The ratio of the number of passengers on board at 
the peak-load point to the seating capacity of the 
vehicle is widely used under heavier demand. A 
lower bound on frequency is based on maximum peak
load factors established by route category and time 
period. These factors are based on the physical 
capacity of the vehicle and on comfort and opera
tional considerations. 

Revenue/Cost Ratio 

The revenue/cost ratio is often used to define an 
upper bound on the amount of service to be provided 
on a route. This ratio is a rough measure of ef
ficiency and equity in the distribution of service 
and has the important advantage of being readily 
understood by both elected officials and the general 
public. 

Vehicle Productivity 

Either in the form of passengers per vehicle mile or 
per vehicle hour, vehicle productivity is also oc
casionally used to set upper bounds on the fre
quency. As in the case of the revenue/cost ratio, 
vehicle productivity is used to approximate the 
benefit/cost ratio of a specific service and to 
guard against inefficient allocation of resources. 

Al though service standards are an advance in the 
state of the art of transit planning, this brief re
view shows that they fall far short of ensuring that 
transit resources are allocated most efficiently 
(l). Specifically, the standards focus on upper and 
lower bounds for setting frequencies but say nothing 
about setting frequencies to maximize efficiency 
within these constraints. 

To better understand how frequencies are actually 
established, a set of MBTA routes was analyzed and a 
set of empirical relationships tested by linear re
gression. The 17 routes analyzed all belong to the 
Arborway Garage of the MBTA and include a wide 
variety: radial and crosstown, high- and low-fre
quency, that serve affluent and poor neighborhoods. 
Results show that the midday frequencies are heavily 
constrained by the policy headways; only four routes 
have a higher frequency. 

The following three empirical relationships for 
setting frequencies were tested: 
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F.qual load factor (2-h peak): 

Q= b(PLP) 

Q= a+ b(PLP) 

Equal load factor (30-min peak): 

Q= b(PLP) 

Q= a+ b(PLP) 

Square-root rule: 

InQ =a+ bln(r/T) 

where 

a,b coefficients, 
Q scheduled frequency (round trips/h), 

PLP peak-load-point count (riders/h that pass 
peak-load point), 

(1) 

(2) 

(3) 

r = ridership per hour (total boardings in both 
directions) , and 

T =round-trip run time (min). 

The most important results for the morning peak 
period are shown below (all estimates of coeff i
cients are significant at the 99 percent level): 

Empirical Coeff:i.cients 
Re1:ationshi2 ~ £ R' 
Equal load factor 0.024 o. 85 

(2-h peak) 1.54 0.020 0.93 
F.qual load factor 0.018 0.90 

(30-min peak) 1. 32 0.016 0.95 
Square-root rule 0.43 o. 72 0.82 

It appears that existing frequencies are very well 
explained by setting the peak-load factor equal on 
all routes, particularly during the peak half-hour. 
The average peak load on these routes during the 
peak half-hour was 1.2, which is about 13 percent 
below the policy peak-load factor of 1.4. 

This case study suggests that schedulers do fol
low a clear decision-making process, which revolves 
around the rule of an equal peak-load factor. These 
results are strikingly similar to those found by 
Morlok in Chicago (_!) i the important point is that 
in both cases the equal peak loads were signifi
cantly below actual bus capacity. As demonstrated 
in the next section, this fact makes the rule inef
ficient with respect to the optimization of passen
ger service. 

PREVIOUS THEORY 

The best-known theory for setting frequencies on bus 
routes is the square-root rule, which is based on 
the minimization of the sum of total passenger wait
time costs and total operator cost. In the general 
case when routes of different lengths exist, the 
rule states that the service frequency provided on a 
route should be proportional to the square root of 
the ridership per unit distance (or time) for that 
route (_~). 

Major weaknesses of the square-root rule, which 
explains its lack of acceptance by the industry, are 
that it does not consider bus capacity constraints 
and that it assumes that ridership is fixed and in
dependent of the service frequency. Ignoring the 
capacity constraint means that on some heavily used 
routes not enough capacity will be provided (i.e., 
the solution is infeasible). The assumption of fixed 
demand means that the user benefits are limited to 
minimization of wait time, which is probably only a 
minor part of the public benefit of transit service. 

A second, almost trivial, theory is that if the 
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objective is simply to minimize operator cost, the 
frequencies should be set so that the capacity will 
equal the peak load on each route. If the system is 
at capacity, each route will have the same peak-load 
factors, but if the system is operating below capa
city, efficiency arguments do not lead to equal 
peak-load factors. 

Guinn <i> used a linear-programming approximation 
to allocate buses to maximize revenue subject to a 
fleet-size constraint. Although his objective and 
constraint set are too approximate for direct appli
cation, the model presented later in this paper uses 
the same general optimization framework. Scheele 
Ill proposed a more complex mathematical programming 
approach to determine optimal service frequencies in 
the long-run case in which the distribution of trips 
(but not total trip generation and production) is 
allowed to vary in response to the service provided. 

Several models have been developed for the simul
taneous choice of routes and frequencies (8-10). 
The frequency components of these models typically 
minimize passenger wait time subject to capacity 
constraints under an assumption of fixed demand. 
Recent work at the Volvo Bus Corporation (11) has 
resulted in a package for choosing routes and fre
quencies that has been successfully applied in 
numerous cities in Europe and elsewhere. 

Most of these models and theori.es are designed 
for one-time application when the entire transit 
network is redesigned--by definition a major and in
frequent undertaking. Furthermore, only one of 
these models has been applied frequently, and none 
has been accepted for use by transit operators. 
This is both because of their orientatidn to large
scale system change and because they are either 
complex and hard to use or crude and hard to be
lieve. There is need for a model that accurately 
reflects the frequency-choice decision, that is 
simple enough in its data and application require
ments to be used frequently by operators, and that 
focuses on small changes so it can be applied re
peatedly over the years. Such a model is developed 
in the remainder of this paper. 

PROPOGED MODEL 

The fleet-allocation problem can be formulated as an 
optimization in which an objective function is maxi
mized (minimized) subject to a set of constraints. 
Before the formulation is presented and discussed in 
detail, however, it is useful to illustrate the 
style of solution by using a simple example. 

Suppose that a bus company operates three routes, 
charges a flat fare per passenger, and has allocated 
a fixed amount to cover the deficit that will result 
from providing the service. The single objective of 
the company is to maximize ridership by means of al
locating buses, given that fares, routes, and 
operating speeds are fixed. 

The problem can be viewed as a resource-alloca
tion problem: How can the limited resources (sub
sidy) be allocated to maximize the benefit (rider
ship)? As shown in Figure 1, for each route a curve 
that relates net cost (deficit) to benefit can be 
obtained by varying the frequency of service on the 
route. At an optimal allocation, the ratio of mar
ginal benefit to marginal cost should be the same 
for each route. Denoting the benefit of route i by 
Bi, its net cost by Ci, and its frequency by 
Qi, this rule can be written as follows: 

(dB;/dQi)/(dC;/dQi) = (dB;dC;) = (B/C)0 (4) 

As suggested in Figure 1, at the optimum some routes 
may be operating at a profit and others at a loss; 
however, the total benefit cannot be increased by 



Transportation Research Record 818 

Figure 1. Efficiency in subsidy allocation. 

t 
Route I Route 2 Route 3 

shifting resources from one route to another. The 
optimum occurs when the marginal rate of return on 
each route is the same and is sufficient to exhaust 
the available subsidy. 

With this simple example in mind we will now turn 
to the real problem, which will be formulated as a 
mathematical program. In the next two sections the 
objective of the optimization is defined and the 
constraints are specified. 

OBJECTIVE 

Increasing attention has been paid to the objectives 
of transit operators since 1975 when London Trans
port enunciated its objective of maximizing passen
ger miles (12). Defining obj~ctives is an important 
step in developing good management practice in pub
lic transport agencies. Since in general transit 
has been recognized to be an important social ser
vice, presumably the general objective should be 
maximization of the social surplus. In the case of 
determining service frequencies while holding all 
other attributes of the system fixed, the objective 
includes two distinct components--consumer surplus 
and externalities associated with transit ridership. 

It can easily be shown that the consumer surplus 
is the saving in wait time that accrues to system 
riders who would have been prepared to ride at lower 
frequencies (and thus endure longer waits). In the 
remainder of this paper, the mean passenger wait 
time will be assumed to be half the mean headway--
based on the sample model of 
rivals, regular headways, and 
close to capacity. If the 
r = r (h) , where r is ridership 
way, the saving in wait time 
follows: 

random passenger ar
buses not operating 
demand function is 
and h is mean head
at headway h* is as 

(5) 

It can be argued that the major motivation for 
subsidization of transit service is not saving in 
wait time. Other, probably more significant, public 
benefits include mobility for those without automo
biles; reductions in congestion, pollution, and 
energy use; and land use effects. These positive 
externalities are largely collinear with the rider
ship, and so a social ridership benefit can be de
fined crudely as being proportional to the number of 
riders. This marginal social ridership benefit 
would logically vary between ridership classes and 
time periods, which reflects the extent to which at
tracting different types of riders contributes to 
the social objectives of providing transit service. 
This term must be weighted to reflect the value of 
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an additional rider as it relates to saving in wait 
time. 

The objective function then consists of these two 
components--wait-time saving and ridership. One of 
the important questions that will be addressed later 
is how sensitive the service frequencies are to 
changes in the relative importance of these two ob
jectives. 

CONSTRAINTS 

Four sets of constraints are included directly in 
the mathematical program--subsidy, fleet size, 
policy headways, and loading. Typically, an opera
tor has a fixed level of subsidy available for the 
planning period (e.g., one year), and the solution 
that maximizes total benefit will inevitably exhaust 
the entire subsidy. Since we are concerned with 
short-range planning, the operator has a limited 
fleet to allocate, which may vary between periods of 
the day because of preventive-maintenance needs. As 
discussed earlier in this paper, two constraints 
currently used by many operators in setting fre
quencies are policy headways (which stipulate a 
maximum allowable headway) and peak-load factors 
(which specify the maximum load at the most heavily 
loaded point on the route). For any route during 
any period clearly only one of these two constraints 
can be binding, and so the mathematical program in
cludes constraints that require that each headway 
satisfy the more binding of these two constraints. 

In addition to these formal constraints included 
in the model, there is another set of constraints 
not included in the model, which can be dealt with 
externally. In general some services may be man
dated for reasons other than social benefit as nar
rowly defined above; buses and subsidy should be set 
aside for these required services before the optimi
zation problem is solved, and these services are 
simply added to the solution to produce the recom
mended set. Often only an integer number of buses 
can be assigned to a route (although interlining is 
a common means to circumvent this requirement) ; this 
constraint can be handled by adjustment of the final 
frequencies. Finally, some interdependencies be
tween routes can be incorporated directly into the 
objective function. For example, if two routes 
should have the same frequencies, e.g., for timed 
transfers, they can be included as a single decision 
variable; this would help to reduce the size of the 
problem. 

PROBLEM FORMULATION AND DISCUSSION 

The problem can be stated as follows: Find the fre
quencies on each of a number of routes that maximize 
net social benefit subject to constraints on total 
subsidy, fleet size, and maximum headways. In the 
following formulation, headway is used as the basic 
decision variable. 

Maximize: 

p N· 

Z= .!: Di .z [(b/2) fh".'. rij(u)du +:q1·ri1·(h;j)] 
1=1 i=l lj 

(6) 

Subject to the following constraints: 

Subsidy: 

(7) 

Fleet size: 

(8) 
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Headway: 

h;;" X;;, j =I, - - - • p 
i= 1, ... , N; 

where 

number of time periods, 
number of routes operated during time 
period j, 
duration of period j, 
value of wait time, 
headway on route i during period j, 
surplus marginal ridership benefit on 
route i during period j (marginal rider
ship benefit minus fare), 
ridership on route i during period j (a 
function of hijl, 
operating cost per run on route i during 
period j, 

c fare on route i during period j, 
n subsidy available, 

run time (round trip) on route i during 
period j, 
fleet size during period j, and 
maximum headway for route i during period 
j. 

(9) 

The objective function (Equation 6) can easily be 
shown to be equivalent to maximizing the wait-time 
savings plus the social-ridership benefit minus 
operating costi this is the net social benefit. 
Equation 7 simply states that the operating cost 
minus the revenue must be equal to the known sub
sidy. Equation 8 is the fleet-size constraint, and 
Equation 9 constrains the headway to be less than 
the policy headway and the headway at which the 
loading constraint is binding. 

This;; general formulation could be simplified or 
made more complex (for example, by defining classes 
of riders, each of which has a separate marginal 
benefit) in specific applications, but all important 
facets of the problem are included. Before the 
method developed to solve this mathematical program 
is presented, it is necessary to recognize and dis
cuss perhaps the most important limitation of the 
model--the assumption of the independence of all 
routes in the system. 

It is because both costs and benefits due to a 
headway on a specific route have been assumed inde
pendent of headways on other routes that the problem 
formulation is so straightforward, but this assump
tion is not always true, at least on the benefit 
side. In this model, ridership on a route depends 
on the headway of only that route, whereas, in 
general, ridership will also depend on the headways 
on competing and complementary routes. 

When passengers have a choice among several 
routes, an improvement in service on one of those 
routes will divert riders from the other routes. 
Such route competition is less common in North 
America than in other parts of the world, in which 
an approach that directly considers route competi
tion is called for <1JJ. An improvement in service 
on one route can also raise the demand on another 
route when there is a large transfer volume between 
the two routes. Care must be taken, therefore, both 
in applying the model and in interpreting its re
sults in situations in which strong route competi
tion or complementarity exists. 

THE ALGORITHM 

Optimality (Kuhn-Tucker) conditions can be derived 
as a set of equations that relate headways to the 
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other variables in the modeli these equations then 
become the optimal decision rules for the operator. 
These optimality conditions are applied in the fol
lowing step-by-step algorithm to determine the opti
mal set of headways by route and by period: 

Step 1: Relax the fleet-size and maximum-headway 
constraints on all routes and for all time periods 
not yet constrained and solve the following set of 
equations for the headways, hij' 

(10) 

where X is determined to exhaust the available 
subsidy. If no routes violate their maximum-headway 
constraint, go to step 3. 

Step 2: For routes and periods for which the 
maximum-headway constraint (Equation 9) is violated, 
set hij = Xij• Compute the deficit incurred on 
those routes and reduce the available subsidy by 
that amount. Go to step 1. 

Step 3: Identify time periods in which 
fleet-size constraint (Equation 8) is binding. 
each of these time periods solve the following 
of equations: 

the 
For 
set 

(11) 

where wj is the shadow price of run time during 
period j and is determined to use all available 
buses. 

Step 4: If no routes violate their maximum-head
way constraint (Equation 9), go to 15tep S. Other
wise, for every route that violates its maximum
headway constraint , set hil' = Xij• Compute the 
number of buses requ ired by a 1 such routes in each 
period j and reduce the number of available buses in 
period j by this amount. Go to step 3. 

Step 5: Compute the deficit incurred by the 
fleet-constrained time periods and reduce the avail
able subsidy by this amount. Let Xe = x. 

Step 6: Repeat steps 1 and 2 for the uncon-
15trained time periods to find a new value of X, 
which is Xu. 

Step 7: If Xu:: Xe' stopi otherwise set X = Xu and 

return to step 3. 

The theory behind this algorithm will not be pre
sented in detail here (1) • However, the computa
tional burden of the alg;rithm is very small, since 
it consists basically of a sequence of one-dimen
sional searches that are performed very rapidly. 
Equations 10 and 11 can be solved very efficiently 
by using the Newton method (provided the demand 
function has continuous second derivatives), and 
values of A and Wj can be found by making suc
cessive linear approximations. 

CASE STUDY 

The Arborway Garage of MBTA, which serves 21 bus 
routes, was chosen to illustrate the capabilities of 
the model. Fifteen of these routes were included in 
the analysis i the others were excluded for one of 
the following reasons: incomplete ridership data, 
highly irregularly scheduled runs, and interdepen
dence of routes. 

The most important data and assumptions made in 
the study are summarized here: 

1. Two time periods were examined--the morning 
peak (7-9 a.m.) and midday (10 a.m.-2 p.m.). 
Scheduled headways were approximately constant dur
ing each of these periods. 
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2. Scheduled round-trip running times were used 
with a layover time of 25 percent of the run time. 
This is above MBTA's policy of 10-20 percent of run 
time for layovers but slightly below the average ob
served figure of 28 percent. 

3. Costs per run were based on MBTA's figures of 
cost per vehicle mile and per driver hour. 

4. The systemwide average revenue per bus ride 
of 18¢ was used. 

5. The current deficit incurred on this part of 
the system was used as the available subsidy, and 
the current number of vehicles used in the morning 
peak was used as the fleet-size constraint' in each 
period. 

6. Policy headways of 30 min in the peak period 
and 60 min in the off-peak period were used based on 
current MBTA service policies. 

7. MBTA uses two peak-period load-factor stan
dards: For the 2-h peak period, the peak-load fac
tor: should be no greater: than 1.2: for: the peak 
half-hour: it should be no greater: than 1. 4. Actual 
peak loads were estimated for: both periods for: each 
route based on peak-point counts taken over a three
year: period. Only one of these load-factor 
constraints will be binding for: each route. The 
off-peak policy load factor of 1. 0 adopted by MBTA 
was also used. 

8. Bus seating capacity of 45 was used for the 
load-factor constraints. 

9. Current route ridership was taken from a 1978 
on-board survey. 

More-detailed discussion is warranted about the 
demand model and the operator's objectives. A 
binary legit demand model was used that has assumed 
coefficients for wait time taken from another 
study. Estimates of the base transit market share 

Table 1. Frequency on case-study routes: 
Actual actual and recommended . 

Peak 
Frequency \l,.h Load 

5 

were also made based on mode-split characteristics 
of the Boston area. These assumptions implied wait
time elasticities of demand of -0.2 in the peak 
period and -0. 5 in the off-peak period, which ar:e 
within the range observed in other U.S. cities 
(14). It is hoped that advances in the state of the 
art of demand forecasting at the route level will 
soon obviate the need for: such assumptions. In this 
case study, sensitivity analyses demonstrated that 
the results were very robust with respect to these 
parameters. 

The model allows an objective function that con
sists of a weighted sum of total passengers and 
total passenger wait-time savings. The absolute 
coefficients of these terms do not have to be exo
genously specified, but their ratio does. The ini
tial ratio chosen implied a tr:ade-of f of one passen
ger for 12 passenger-min of wait time. 

Table 1 shows the resource allocation between 
routes and between periods as suggested by the model 
compared with the current MBTA allocation. The re
sults in terms of deficit, number: of buses, and 
changes in wait-time and ridership benefits are 
given in Table 2. The most striking result is that 
only 59 of the 70 available buses ar:e used in the 
peak period, and the peak period's share of the 
deficit declines accordingly. Only 44 percent of 
the total subsidy is allocated to the peak period by 
the model compared with 58 percent in the current 
system. The peak period is heavily constrained by 
capacity: nine routes operate at the maximum load 
during the peak half-hour. In general, the shorter 
routes have the smallest loads and so do not neces
sarily have the highest revenue/cost ratio. As ex
pected, midday loads are much lower: than those dur
ing the peak period. 

Several factors contribute to this large shift in 

Recommended 

Peak 
Revenue/Cost Frequency 'h-h Load Revenue/Cost 

Route (buses/h) (passengers) Ratio (buses/h) (passengers) Ratio 

Morning Peak 

21 5.0 63' 0. 55 5.0 63' 0.54 
24 4.0 42 0.50 4.0 42 0.49 
25 5.0 35 0.37 3.7 44 0.47 
28 3.0 54 0.50 3.6 48 0.44 
29 13.3 57 0.60 12.0 63' 0.65 
31 4.0 39 0.30 2.9 49 0.37 
32 15.0 60 0.52 14.2 63' o.55 
35 5.0 53 0.32 4.0 633 0.36 
36 10.0 51 0.49 8.0 63' 0.60 
37 5.0 54 0.42 4.2 63' 0.49 
38 5.5 34 0.39 2.6 59 0.32 
41 6.0 56 0.67 5.3 63' 0.74 
46 2.0 29 0.63 3.1 21 0.46 
50 3.3 59 0.39 3.0 63' 0.41 
51 4.0 SS 0.26 3.3 63' 0.29 

Midday 

21 1.3 13 0.22 1.8 13 0.21 
24 1. 5 15 0.37 2.5 13 0.30 
25 3.0 11 0.35 3.0 II 0.35 
28b 0.0 0.0 
29 5.0 38 0.85 5.6 35 0.77 
31 1.5 13 0.58 3.4 9 0.40 
32 4.6 28 0.60 4.7 28 0.58 
35 2.0 33 0.48 3.2 26 0.38 
36 2.0 40 0.57 3.5 30 0.42 
37 2.0 24 0.44 3.0 20 0.36 
38 2.7 15 0. 20 2.0 17 0.23 
41 3.5 24 0.66 4.2 21 0.58 
46 2.0 7 0.1 8 1.5 7 0.20 
50 2. 0 20 0.28 2.3 19 0.27 
51 2.0 21 0.23 2.0 21 0.23 

8Capacity constra ined . bRoute 28 is nol operated in the orf-peak period. 
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Table 2. Deficit, number of buses. and change in wait-time and ridership 
benefits : actual and recommended. 

Morning Peak Midday 

Item Actual Recommended Actual Recommended 

Deficit($) 2175 1651 1588 2112 
Buses operating 70 59 27 32 
Change in benefit for 

Wait time ($) -177 607 
Ridership{$) -103 431 

resources from the peak period to midday relative to 
the current system. First, reducing headways in the 
off-peak period, when base headways are higher, is 
more effective in reducing total wait time than ap
plying the same resources to reduce headways in the 
peak period. Second, demand elasticity with respect 
to wait time is higher in the off-peak period, and 
so reducing headways in that period is more effec
tive in increasing ridership. 

Experiments that vary both the demand parameters 
and the objective function weights, described in the 
following paragraphs, consistently suggested shift
ing resources from the peak to the midday period. 
This leads to the strong recommendation that midday 
services be expanded at the expense of the peak 
periods. Such a shift could be expected to reduce 
costs by 10-15 percent and result in a reduction in 
the deficit incurred of about 20 percent. 

Several experiments were run that varied the 
ratio of the wait-time value to the marginal rider
ohip benefit from zero to infinity to study the sen
sitivity of resource allocation between routes and 
periods. The resulting allocations between periods 
were almost identical; changes in number of buses 
and share of the deficit allocated to the peak 
period were less than 2 percent over the full range 
of objective function weights. Variations between 
routes within the same period were of similar magni
tude, which supported the finding that the relative 
weights given to the two objectives have little im
pact on the optimal allocation. This is to be ex
pected, since any action the operator takes to 
decrease wait time will also tend to increase rider
ship, and vice versa. 

Perhaps the greatest weakness in this case study 
is the uncertainty about the demand function and its 
parameters. To test the importance of this un
certainty, a set of experiments was run that varied 
the demand parameters to see whether resource al
location changed significantly. As the headway 
coefficient was varied from zero to 150 percent of 
its base value, the total variation in resource al
location between time periods was less than 5 per
cent, and the variation between routes did not ex
ceed 10 percent. Similar lack of sensitivity to the 
assumed absolute and relative transit-market shares 
between periods and between routes was observed. 

An important observation from these experiments 
is that the results obtained when demand is assumed 
to be inelastic differ little from those when a more 
realistic demand model is used. This lack of sen
sitivity is not altogether surprising, since provid
ing the best service for current customers is usual
ly a good way to attract new customers. When demand 
is assumed tixed, the solution algorithm becomes 
computationally much less complex, since Equations 
10 and 11 can then be solved in closed form, which 
makes this procedure one that could be performed by 
using a programmable calculator or even manually. 

The model was also used to explore one policy 
question, Would higher-capacity buses be beneficial 
on some routes? Striking results were found by in-
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creasing bus seating capacity from 45 to 53; the 
total benefit (the value of the objective function) 
increases by one-third. Only on three routes was 
the capacity constrained, the number of buses re
quired in the peak declined from 59 to 55, and the 
peak period's share of the deficit declined from 44 
to 38 percent. 

This analysis shows the value of the proposed al
location model in policy terms and also suggests 
that in this case real benefits may accrue from 
using larger vehicles. 

CONCLUSIONS 

In this paper the allocation of buses to routes, one 
component of the short-range transit-planning prob
lem, has been discussed. A model was proposed that 
treats the problem as a constrained resource-alloca
t ion problem. The objective was that net social 
benefit, which consists of ridership benefit and 
wait-time savings, be maximized subject to con
straints on total subsidy, fleet size, and accept
able levels of loading. An algorithm was developed 
to solve the resulting mathematical program, which 
can be implemented on a computer or on a pro
grammable calculator. 

The case study of one garage of the MBTA system 
produced a number of important findings: 

1. The best allocation of buses (and resources) 
is very robust with respect to the objectives and 
parameters assumed, 

2. Existing rules of thumb used in the transit 
industry may not be as efficient as a formal model 
that uses a consistent objective, and 

3. The proposed model can be useful in policy 
analysis, for example, in the development of service 
policies and vehicle procurement. 

This study leaves a number of important topics 
for further research: 

1. Better understanding of the objectives and 
constraints currently used by transit schedulers, 

2. Relaxation of the assumption of route in
dependence embodied in the model, and 

3 . Pilot implementation of these ideas in a 
transit agency. 

More broadly, with the encouraging results ob
tained in this study, a new look at the role of 
more-formal methods for improving short-range tran
sit planning seems badly needed. 
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Strategies for Improving Reliability of 

Bus Transit Service 

MARK A. TURNQUIST 

Four major classes of strategies for improving reliability of bus transit service 
are analyzed: vehicle-holding strategies, reduction of the number of stops made 
by each bus, signal preemption, and provision of exclusive right-of-way. The 
principal findings are that (a) strategies to improve service reliability can have 
very substantial impacts on overall service quality, including improvements in 
average wait and in-vehicle time as well, and (b) the best strategy to use in a 
particular situation depends on several factors, but service frequency is the 
most important. For low-frequency services (less than 10 buses per hour), 
schedule-based holding strategies or zone scheduling is likely to work best. For 
midfrequency services (10-30 buses per hour) zone scheduling or signal pre
emption is likely to be most effective, although headway-based holding can 
also work well if an appropriate control point can be found. In high-frequency 
situations (more than 30 buses per hour), an exclusive lane combined with 
signal preemption should be considered. 

The concept of service reliability has come into in
creasing prominence in recent years as an important 
characteristic of the quality of service provided by 
transportation systems. A basic definition of re
liability, as the term is used here, is the var ia
bili ty of a system performance measure over time. 
The focus is on stochastic variation in performance 
rather than on more-traditional engineering concepts 
of probability of component or system failure. The 
level-of-service measure most clearly subject to 
variation is travel time, and this variability is 
often described in terms of nonadherence to schedule. 

Service reliability is important to both the 
transit user and the transit operator. To the user, 
nonadherence to schedule results in increased wait 
time, makes transferring more difficult, and causes 
uncertain arrival time at the destination. The im
portance of some measure of reliability to trip
making behavior has been emphasized in several atti
tudinal studies. For example, Paine and others !1) 

found that potential users ranked "arriving when 
planned" as the single most important service char
acteristic of a transit system. This finding has 
been substantiated in further studies by Golob and 
others (~) and by Wallin and Wright (l). 

In addition to its importance to transit users, 
unreliability in operations is a source of reduced 
productivity and increased costs for transit opera
tors. This is due to the need to build substantial 
slack time into timetables in order to absorb devia
tions from the schedule. This leads to reduced use 
of both equipment and personnel. The recent report 
by Abkowitz and others (!) provides an excellent 
summary of the major issues in transit-service 
reliability from the perspectives of both the user 
and the operator. 

In light of the current need for more cost
effective public transportation in urban areas, it 
is important to understand the sources of unrelia
bility and to investigate the potential of several 
alternative control strategies to improve both the 
quality of service provided and the productivity of 
the equipment and the personnel in the system. 

The research on which this paper is based has had 
four major objectives: 

1. Investigation of the sources of service
reliability problems in bus transit networks, 

2. Identification of potential strategies for 
improving reliability of service, 

3. Development of models to allow these strate
gies to be analyzed and evaluated, and 

4. General evaluation of the relative effective
ness of these strategies. 


