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Ridership Response to Changes in Transit Services 

ARMANDO M. LAGO, PATRICK D. MAYWORM, AND J. MATTHEW McENROE 

Evidence on ridership response to changes in transit service is presented. Mean 
values and standard deviations of transit-service elasticities are presented for 
changes in headways, vehicle miles, in·vehicle and out-of-vehicle travel time, 
transfers, and seat availability. A review of the methods used in estimation of 
demand elasticity is presented as well as suggestions on how service elasticities 
can be used in joint transit-fare and service-level planning to improve revenues 
and ridership. 

The demand for public transportation has tradition­
ally been regarded as more responsive to changes in 
transit service (e.g., headways and bus miles) than 
to changes in transit fares. Although on the aggre­
gate level this may be true, recent evidence shows 
that service elasticities vary considerably from one 
area to another by the time of day, type of route, 
service quality, and other classifications, which 
suggests that there may be situations in which 
patronage may be more responsive to fare changes 

than to service adjustments. 
In this paper a summary of the current state of 

knowledge on the size of transit-service elastici­
ties is presented compiled f rem demonstrations and 
demand models. In addition, suggestions are made 
about how service elasticities can be used in joint 
transit-fare and service-level planning to improve 
revenues and ridership. 

APPROACHES TO ESTIMATING TRANSIT-SERVICE 
ELASTICITIES 

Nature of Approac hes to Demand Estimation 

Two broad approaches to estimating service elastici­
ties may be distinguished. These approaches include 
(a) monitoring service changes and demonstration 
studies, or those that rely on data generated either 
by a practical demonstration of an actual change or 
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by monitoring an actual change in service levels, 
and (b) nonexperimental approaches, or those that 
rely on a data base either devoid of an actual 
change in service levels or in which actual changes 
are part of historical trends. 

Approaches in the first category include the 
monitoring of transit-service demonstrations and 
individual service changes such as those that use 
monthly data series. The nonexperimental approaches 
generally include (a) the conventional time-series 
analysis of annual transit operating statistics, (b) 
aggregate direct~emand and modal-split models based 
on cross-sectional data, and (c) disaggregate behav­
ioral mode-choice models based on cross-sectional 
data. All the nonexperimental approaches have in 
common the fact that the data base does not contain 
an actual service change and also that the data base 
is not generated with the objective of controlling 
for nonservice changes. 

The demand-elasticity estimates presented in this 
paper from demonstrations and selected service­
monitoring studies were calculated by using a mid­
point elasticity formula Cl>· The demand-elasticity 
estimates from demand models are point elasticities. 

Methodologic al Note on Specia l P roblems 
of Cros s-Sect ional Models 

In interpreting transit-demand elasticities, some 
problems are posed by overreliance on elasticity 
estimates developed from a cross-sectional data base 
that contains no service change. One cannot rely on 
elasticity estimates from cross-sectional studies to 
provide accurate estimates of annual changes in 
patronage in response to service changes because 
they reflect a different type of behavior from that 
implicit in time-series analysis. This difference 
between time-series and cross-sectional models 
arises because the residuals from both models cannot 
be assumed to belong to the same underlying popula­
tion. In general, cross-sectional estimates repre­
sent behavior that, for lack of a better term, 
economists have labeled "long-run structural adjust­
ments" (~), although it is possible that cross 
sections taken at a time of rapid growth or of 
cyclical change could also reflect s hort-run annual 
adjustments such as those characterized by time­
series relationships. Although cross-sectional 
models have advantages in forecasting structural 
changes in demand, dynamic annual-change-type 
responses cannot be estimated with any degree of 
confidence unless supporting time-series information 
is available to establish a systematic relationship. 

Another problem is that some recent work on 
disaggregate behavioral models has departed from 
McFadden's (1) original contribution and, as a 
consequence, as shown by Oum (_!) , some of these 
models (a) impose many rigid a priori conditions on 
the elasticities and cross elasticities of demand, 
(b) result in estimates of elasticities that are not 
invariant to the choice of the base or modal denomi­
nators, and (c) possess severely irregular and 
inconsistent underlying preference or utility struc­
tures. Moreover, an estimation problem arises when­
ever simultaneous mode choices concern more than two 
modes. Theil (2_) and Nerlove and Press (&_) argue 
that biased coefficients result when simultaneous 
choices--such as the choices that involve more than 
two transport modes--are estimated by using single­
equation estimation techniques such as the maximum­
likelihood approaches currently used by transpor­
tation mode-choice modelers. 

HEADWAY ELASTICITIES 

Public transportation headway elasticities vary 
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considerably, due in part to the characteristics of 
the route in question, but the mean aggregate values 
show a remarkable similarity. The evidence shows 
that average bus and commuter-rail headway elastici­
ties are equivalent and the mean value for all ser­
vice hours is -0.47 ± 0.17 (16 cases). (The 
standard deviations presented in this paper measure 
the variation of the respective groups of means 
taken from the studies and do not represent a mea­
sure of confidence in the particular means.) 

Bus He adway Elast i c ities 

The information on bus headway elasticities sum­
marized in Table l from a report by F.cosometrics, 
Inc. Cl), from the Detroit Grand River Avenue demon­
stration (.!!_), from the Chesapeake/Norfolk commuter­
route demonstration (1), from the Boston bus headway 
demonstration (10), from the Madison circular-route 
demonstration (11), and from the demonstration in 
Stevenage, Great Britain (g) shows that, although 
the mean bus headway elasticity based on data from 
monitoring service changes is -0.47 ± 0.21 for all 
service hours, each elasticity value appears to 
depend on the route characteristics and on the level 
of service before headway adjustments are made. As 

shown in Table 1, headway elasticities depend on the 
previous level of service for both peak and off-peak 
periods. During the peak period, headway elastici­
ties are -0.58 for low-service routes. These values 
exceed by more than 110 percent the elasticity 
values of -0.27 ± 0.14 for high-service routes. 
The same is true during off-peak periods in which 
the highest elasticities, which have a mean value of 
-0.71 ± 0.11, predominate among low-service routes. 

With regard to differences in headway elastici­
ties by time of day, off-peak elasticities are 
appreciably higher than peak-period elasticities. 
In the Chesapeake/Norfolk demonstration of 1965-1967 
(1), the off-peak elasticities were more than 50 
percent above the mean peak elasticity of -0.57. 
The same is true of the 1962 Detroit Grand River 
Avenue demonstration (.!!_), in which off-peak elastic­
ities were almost 100 percent above th.e peak-hour 
elasticity of -0.13. The limited evidence on week­
end headway elasticities indicates that these values 
are similar to the off-peak weekday elasticities. 
However, the data from the 1975 Madison (11) and 
1962 Detroit Grand River Avenue demonstration ( 8) 
show tha t the bus headway elasticities on Sunday 
were larger than those on Saturday. 

Commute r -Rail Headway Elasticities 

Analysis of the commuter-rail headway elasticity 
values {Table 2 (1, 10)] shows the mean elasticity 
for all hours to be -0.47 ± 0.14, which is congru­
ent with the mean headway elasticity value obtained 
for bus service. Furthermore, most of the generali­
zations made for bus headway elasticities are con­
firmed by similar experiences with commuter-rail 
elasticities. As presented in Table 2, the 
commuter-rail elasticities, which were estimated 
from the five-corridor demonstration in the Boston 
area in 1962-1964 (10) , show an aggregate mean 
off-peak elasticity of -0.65 ± 0.19, approximately 
82 percent above the mean peak elasticity value of 
-0.38 ± 0.16. The comparison of peak with off­
peak elasticities for the Lowell and Reading corri­
dors, which had approximately identical headways for 
both periods, reinforces the conclusion that off­
peak ridership is more respon~ve to service im­
provements, since the off-peak period elasticities 
were 70-76 percent higher than the peak-period 
elasticities in these corridors. 
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Table 1. Bus headway elasticities by service level and time period. 

Peak Hours Off-Peak Hours Weekends All Hours Aggregate Value 

Service No. of No. of No. of No. of No. of 
Level• Mean SD Cases Mean SD Cases Mean SD Cases Mean SD Cases Mean SD Cases 

High -0.27 ±0.14 2 -0.19 ±0.09 3 -0.22 1 -0.25 1 -0.22 ±0.10 7 
Medium NA NA NA -0.49 ±0.20 3 -0.43 ±0.16 3 NA NA NA -0.46 ±0.18 6 
Low -0.58 1 -0.71 ±0.11 3 NA NA NA -0.51 ±0.20 6 -0.58 ±0.19 10 
Aggregate -0.37 ±0.19 3 -0.46 ±0.26 9 -0.38 ±0.17 4 -0.47 ±0.21 7 -0.44 ±0.22 23 
value 

3Levels of service classified as follows: high, <IO-min headways; medium, 10- to SO-min headways; low, >SO-min headways. 

Table 2. Commuter-rail headway elasticities by service level and time period. 

Peak Hours Off-Peak Hours All Hours Aggregate Value 

Service No. of No. of 
Level• Mean SD Cases Mean SD Cases Mean 

Medium -0.38 ±0.16 5 -0.46 ±0.09 2 -0.41 
Low NA NA NA -0.78 ±0.10 3 -0.69 
Aggregate -0.38 ±0.16 5 -0.65 ±0.19 5 -0.47 
value 

3
Levels of service classified as in Table 1. 

VEHICLE-MILE ELASTICITIES 

In this section, aggregate vehicle-mile service 
elasticities are discussed, whether they relate to 
frequency, route length, route density, or service­
hour changes. In fact, little is known about 
differences in elasticities among these components 
of vehicle miles. 

Although most work in estimating vehicle-mile 
service elasticities has been developed from cross­
sectional and time-series studies, two important 
studies that monitored the effects of individual 
fare and service changes were performed for the 
cities of San Diego and Atlanta. In San Diego, Kemp 
(13) and Goodman, Greene, and Beesley (..hi) developed 
vehicle-mile elasticities by using least-squares 
regressions of time-series data over the 40-month 
period, during which service expanded by approxi­
mately BO percent. The aggregate vehicle-mile elas­
ticity varied from +0.75 to +0.85. In Atlanta, 
where more service was available and where service 
expansion occurred over a much shorter period of 
time, Kemp (.12) estimated a vehicle-mile elasticity 
of +0.30. 

The results from transportation demand-modeling 
efforts that use nonexperimental data confirm the 
San Diego and Atlanta results that transit demand 
response is inelastic to variations in vehicle 
miles. The mean service elasticity for all 28 cases 
analyzed in Table 3 (7) is +0.61 ± 0.31, a value 
slightly larger than the mean elasticity obtained 
from studies of headway variations. As shown in 
Table 3, vehicle-mile elasticities during the peak 
period are found to be only half the value observed 
during off-peak hours. Again, this indicates the 
varying ridership responsiveness at different levels 
of service. The mean bus-mile elasticity of +O. 64 
is twice the elasticity of +0.30 observed for rapid­
rail service. This observation must be tempered by 
the lack of cases for rapid-rail service. 

TRAVEL-TIME ELASTICITIES 

Perhaps the most important factor that affects 
public transportation ridership is travel time. 
Unfortunately, measuring ridership response to total 
travel-time changes as well as to changes in trip-

No. of No. of 
SD Cases Mean SD Cases 

±0.09 4 -0.41 ±0.13 11 
1 -0.76 ±0.10 4 

±0.14 5 -0.50 ±0.20 15 

time components is a difficult task. In contrast to 
the previous sections on service elasticities, there 
has been scant experimentation with travel-time 
variations. 

In-Vehicle Travel-Time Elasticities 

The only travel-time elasticities available from 
bus-monitoring studies are estimates of ridership 
response to in-vehicle travel-time improvements 
obtained from bus priority demonstrations in three 
cities--Seattle, Miami, and Boston. As shown in 
Table 4 (l,!§..-!fil , the aggregate elasticity from the 
demonstration data is -0.35 ± 0.21. However, the 
aggregate elasticity is dominated by peak-period 
elasticities, which make up 90 percent of the 
observations. 

The results of the 1970 Seattle Blue Streak dem­
onstration (17) can be used to analyze the differen­
tial effects of time periods on the in-vehicle time 
elasticities. Seattle's peak-period reverse-commute 
service elasticity of -o. 55, although smaller than 
the off-peak value of -0. 83, is 25 percent larger 
than the travel-time elasticity of -0.44 obtained in 
the peak direction. 

The estimation of in-vehicle time elasticities 
from mode-choice models results in much higher esti­
mates than those from demonstrations. The results 
of 12 cross-sectional models reviewed by Ecosomet­
rics, Inc. (l ) show mean elasticities of -0. 70 ± 
0.10 (two cases) for rapid rail and -0. 68 ± O. 32 
(seven cases) for bus--estimates twice the size of 
the values from demonstrations. Although slightly 
smaller than the mean, McFadden's <ll bus and rapid­
rail in-vehicle travel-time elasticities (-0.46 to 
-0. 60) are relatively similar and relatively close 
to the demonstration elasticities. Talvitie (11.) 
shows a large mode-choice elasticity for bus service 
of -1.10; however, his elasticities greatly exceed 
those observed from the demonstration projects and 
consequently are suspect. 

In 1977, Hepburn (20) analyzed the commuter-rail 
routes that served the London metropolitan area 
during the period 1966-1971. The in-vehicle travel­
time elasticities he obtained were -0.49 for routes 
shorter than 25 miles and -o. 86 for routes longer 
than 25 miles. 
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Table 3. Vehicle-mile elasticities from nonexperimental data by mode and time period. 

Peak Hours Off-Peak Hours 

No. of No. of 
Mode Mean SD Cases Mean SD Cases 

Bus +0.33 ±0.18 3 +0.63 ±0.11 3 
Rapid rail +0.10 1 +0.25 I 
Bus and rapid rail NA NA NA NA NA NA 
Aggregate value +0. 27 ±0.19 4 +0.54 ±0.20 4 

Table 4. In-vehicle time elasticities by time period. 

Elasticity 

No. of 
Time Period Mean SD Cases Bus Priority Project 

Peak -0.29 ±0.13 9 Miami I-95, Seattle Blue Streak, 
Boston Southeast Expressway 

Off-peak -0.83 1 Seattle Blue Streak 
Aggregate value -0.35 ±0.21 10 All the above 

Ou t-of-Vehicle Time Elasticities 

All the evidence regarding out-of-vehicle time 
elasMcities comes from nonexperimental data esti­
mates, mainly from mode-choice mode.ls. The mean 
elasticity of total out-of-vehicle time is 
-0.59 ± 0.15, a value in general agreement (in 
spite of the fact that its value is derived from 
only three studies) with the headway elaoticity 
values estimated earlier. It is reasonable to 
expect headway and out-of-vehicle time elasticities 
to be similar, since wait and transfer times (the 
major components ::if out-of-vehicle time) are equal 
to half the headway when very frequent transit 
service is provided or when the schedule is unknown 
and passengers arrive at transit stops at random. 

The evidence on component out-of-vehicle time 
elasticities (i.e., walk-, wait-, and transfer-time 
elasticities) is mixed, especlally in relation to 
in-vehicle travel-time elasticities. The value of 
out-of-vehicle time has been estimated by several 
investigators--for example, Quarmby (21)--to be two 
to three times greater than the valueof in-vehicle 
time. A mode-choice model estimated for Stockholm 
and other Swedish cities by Algers, Hansen, and 
Tegner (22) resulted in relative values of waiting 
times that were 3-12 times the in-vehicle travel­
t ime values. This study also indicated that the 
relative waiting-time value will increase rapidly as 
headways are increased, a finding that corresponds 
to the earlier conclusion that the absolute value of 
headway elasticities is directly proportional to the 
level of service. 

The walk-time elasticities estimated by Pratt and 
DTM, Inc. (£ll for Minneapolis-St. Paul are very 
small, as shown in Table 5. The value for all work 
trips is -0.26, or half the in-vehicle time elas­
ticity; for nonwork trips, the walk-time demand 
elasticity is -0.14. Passenger demand on bus routes 
that lead to the central business district (CBD) was 
estimated by Pratt to be less elastic to changes in 
walk time than the demand on non-CBD-oriented routes. 

The study also shows that wait-time elasticities 
are only slightly larger than walk-time elastici­
ties. As a rule of thumb for planning headways and 
route density, transit planners equalize the average 
wait time at a bus stop to the average walk time to 
the stops <.~.!)· This allocation of buses to routes 
suggests that wait- and walk-time elasticities are 
equivalent, as confirmed by the Pratt model. 

All Hours Aggregate Value 

No. of No. of 
Mean SD Cases Mean SD Cases 

+0.69 ±0.31 17 t-0.64 ±0.30 23 
+0.55 I +0.31 ±0.19 3 
+0.77 ±0.27 2 +0.77 ±0.27 2 
+0.69 ±0.30 20 +0.61 ±0.31 28 

As shown in Table 5, a wait-time elasticity for 
Montreal (25) that is twice the size of the in­
vehicle time elasticity is presented; however, just 
the opposite is shown for San Francisco (3) and the 
results for Minneapolis-St. Paul (11.l suggest that 
the difference is dependent on the trip purpose. 
McFadden's transfer-time elasticities for peak-hour 
service in San Francisco are higher than the compar­
able first-wait-time elasticities. Note also that 
although the rail transfer-time elasticity is 
greater than the values observed for bus service, 
the opposite is true for first-wait time. The 
inconsistencies in Table 5 point out the need for 
controlled demonstrations of transit service on this 
subject. 

TRANSFERS 

By using mode-choice estimation models, Algers, 
Hansen, and Tegner (22) discovered that the overall 
cash value of a transfer was 30 percent higher than 
the cash fare per trip and corresponded to approxi­
mately 24 min of door-to-door travel time. Thus, 
passengers appear to be willing to pay more than 
twice the base fare to avoid having to transfer. 
Their model showed that the value of avoiding a 
transfer was greater for bus than for rail, pri­
marily because of the higher potential discomfort in 
transferring from buses. 

In one of the few studies to focus on transit 
demand and the number of transfers, Pratt and D™, 
Inc. <11.> estimated a transfer elasticity of -o. 59 
in their nonwork mode-split model for Minneapolis­
St. Paul. This value is much larger than the wait­
time and transfer-time elasticities estimated from 
the same three-mode choice model (-0.24 and -0.17, 
respectively) ; this confirmed the previously men­
tioned studies that showed that avoidance of trans­
ferring is more important to the user than the time 
spent waiting for a bus. 

SEAT AVAILABILITY 

The importance of seat availability for transit 
users has been documented in several studies. For 
example, Algers, Hansen, and Tegner (22) attempted 
to quantify the value of getting a seat-"by introduc­
ing a dummy variable into their logit mode-choice 
models to test the hypothesis that those who do not 
get a seat value their travel time more than those 
who get a seat. They found that the trip value for 
individuals who do not have a seat was 40-75 percent 
higher than the travel-time value for people who 
have a seat. 

As part of a service-improvement demonstration 
between Vancouver (Washington) and Portland 
(Oregon), sponsored by the Urban Mass Transportation 
Administration (UMTA) Office of Service and Methods 
Demonstrations, seating capacity on TRI-MET's Line 5 
was increased by more than 40 percent by adding a 
trail er bus to six peak-period runs (26). The 
increase in ridership a~tributable to th-;- availa­
bility of seating resulted in an elasticity of 
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Table 5. Comparison of in-vehicle time and 
component out-of-vehicle time elasticities. 

Montreal Bus 
and Rapid 

Type of Elasticity Rail 

In-vehicle time -0.27 
Out-of-vehicle time 

Walk NA 
Wait -0.54 
Transfer NA 

+0.65. We calculated this elasticity from the data 
presented by Systan, Inc. (26) and assumed that the 
percentage of passengers seated was equal to the 
probability of getting a seat. This relatively high 
value is approximately 40 percent larger than 
McFadden's bus in-vehicle time elasticity. 

INTERACTIONS OF TRANSIT FARES AND SERVICE LEVELS 

The service elasticities presented in this paper and 
fare elasticities presented elsewhere (7, 27, 28) 
indicate that transit demand is inelastic toboth 
fares and services. Consequently, independent 
variations of fares and services will not by them­
selves increase both revenues and patronage at the 
same time. For example, an increase in service-­
without a corresponding fare change--will probably 
not result in revenue increases large enough to 
cover the extra costs of the service improvement 
because the proportional change in patronage is less 
than the proportional changes in service. 

Aggregate service elasticities (measured in vehi­
cle miles), however, are twice as large as aggregate 
fare elasticities, which suggests that passengers 
are more responsive to service changes than to fare 
changes. On the aggregate levels, this is true. 
However, because both fare or service elasticities 
vary considerably from one area to another and by 
the time of day, type of route, and other classifi­
cations, this generalization is not always true. 
For example, by using the data presented in this 
paper, the mean bus headway elasticity on routes 
that have less than 10-min headways is -0.19 during 
off-peak hours. The average off-peak fare elas­
ticity for bus service, however, may be only -0.35. 
Since the service elasticity is so low, a transit 
operator cannot hope to increase ridership and 
revenues substantially by further headway improve­
ments. If headway adjustments are contemplated, 
then they should be reduced and the operating-cost 
savings should be applied either to other corridors 
that have relatively poor service or to the same 
route in the form of a fare reduction. 

Patronage losses associated with attempts to 
increase revenue can be minimized by increasing 
fares only for users who exhibit small demand 
elasticities, such as commuters. The service saved 
as a result of reduced demand, albeit small during 
the peak period, could be applied to routes that 
have relatively poor service and result in further 
revenue increases if the patronage gained by the 
service adjustment is greater than the patronage 
lost due to the fare increase. Since the marginal 
cost per vehicle hour of operation during off-peak 
periods is at least 30-50 percent lower than that 
during the peak period (~,1Q.) , the cost savings due 
to the reduction in peak service should be applied 
to off-peak routes that have infrequent service, 
which would make possible a further gain in total 
ridership and revenues. 

If the disaggregate fare and service elasticities 
are known for a particular transit market, the 
ridership or revenues generated by a particular 
action or set of actions could be improved by manip-
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San Francisco Minneapolis-St. Paul 

Bus Bus Rapid Bus Bus 
(two-mode) (three-mode) Rail (work) (non work) 

-0.46 -0.60 -0.60 -0.52 -0.12 

NA NA NA -0.26 -0.14 
-0.17 -0.19 -0.12 -0.32 -0.21 
-0.26 -0.29 -0.66 NA NA 

ulating both the fare and the service levels. If, 
for analytical purposes, the revenues generated by 
an improvement in service are assumed equal to the 
additional costs of providing that service (i.e., a 
situation in which operating costs break even) and 
if the fare and service elasticities are not numer­
ically equivalent, then transit ridership can be 
increased with no net effect on revenues by proper 
fare and service adjustments. These adjustments 
will in turn cause the demand elasticities to change 
if the elasticities are assumed variable and de­
pendent on the respective fare and service levels. 
Opportunities for further ridership increases will 
cease when the fare and service elasticities are 
equal (l!_, 32). Thus, when the service elasticity 
for a particular market is larger than the fare 
elasticity, a transit agency should raise fares and 
use the revenues produced to finance service im­
provements. Conversely, if the fare elasticity is 
larger than the service elasticity, then fares 
should be decreased and the revenue loss covered by 
the cost savings of a simultaneous service reduction. 

As an example, Table 6 presents two fare- and 
service-adjustment strategies to increase total bus 
ridership with no change in net revenue, based on 
disaggregate fare and service elasticities. For 
convenience in analysis, the model assumes a situ a­
t ion in which operating costs break even, so that 
revenue-cost considerations can be deemphasized 
<Bl, and aggregate fare and headway elasticities 
are -0.35 and -0.47, respectivelyi adjustment 
factors presented by Ecosometrics, Inc., are applied 

<l>· 
The two strategies presented in Table 6, however, 

are not the only fare- and service-adjustment op­
tions available for increasing patronage. The peak 
to off-peak cross-subsidy scenario described earlier 
is an example of such an alternative. Whatever 
service-adjustment decision is made, the premise on 
the extent to which transit riders are willing to 
pay more for improved service or trade one service 
attribute for another must be based on the disaggre­
gate fare and service elasticities. 

In spite of the obvious need for more analysis of 
the interactions between fares and services, most of 
the demand approaches, whether from monitoring 
demonstrations or the more sophisticated mode-choice 
models, explicitly ignore the possibility of analyz­
ing fare and service interactions by assuming 
constant-elasticity models (i.e., assume the inter­
actions to be zero). These constant-elasticity 
models should be deemphasized in favor of variable­
elasticity models that have interaction effects, 
such as the translog models (]]) • 

SUMMARY 

This paper has shown that transit demand is service­
inelastic. Evidence of this less-than-proportional 
response of changes in patronage to changes in tran­
sit service is provided by the fact that all demon­
stration studies and modeling efforts reveal service 
elasticity values less than 1.0. 

As we have shown elsewhere (llr service elastici-
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Table 6. Example of bus-fare and service interaction strategies. 

Peak Period• Off-Peak Period" 

Disaggregate Disaggregate 
Service Service 

Bus Headway Level Elasticity Strategy Elasticity 

Frequent(< I 0 min) -0.15 A -0.26 
Medium (IQ.SO min) -0.31 B -0.54 
Infrequent(> 50 min) -0.39 B -0.68 

Note: A= finance a fare reduction with the cost savings from a service reduction; 
B =finance a service improvement with the revenue from a fare increase. 

8Fare elasticities of -0.21 for peak and -0.48 for off-peak periods. 

Strategy 

A 
B 
B 

ties are generally larger than fare elasticities, 
which suggests that passengers are more responsive 
to service changes than to fare changes. However, 
because service elasticities vary considerably from 
one area to another and by the time of day (with 
off-peak elasticities 50-100 percent higher than 
those observed during the peak), type of route, 
service quality (with larger elasticities in low­
service areas), and other classifications, this 
generalization is not always true. Fare elastici­
ties, for example, may be larger than service elas­
ticities when bus headways of less than 10 min are 
present. The differences in disaggregate fare and 
service elasticities may present transit operators 
with opportunities for ridership and revenue im­
provements. 

Finally, this paper has noted a general consis­
tency of headways, bus miles, and in-vehicle time 
elasticities from service demonstrations and incon­
sistencies in results from mode-choice models, par­
ticularly in out-of-vehicle time values such as 
walk-, wait-, and transfer-time elasticities. 
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Early Responses to Taxi Regulatory Changes 

in Three Cities 

PAT M. GELB 

Taxi regulatory changes and preliminary responses to them in San Diego, Cali­
fornia; Portland, Oregon; and Seattle, Washington, are discussed. The full ef­
fects of the regulatory and industry changes are being evaluated. Each city re­
laxed its entry restrictions in some way; all provided for increased latitude in 
rate setting, but the specific provisions have varied. The impetus for regulatory 
revision was generally similar-to transfer the responsibility for regulating entry 
and establishing rates from the city government to the marketplace. The regu­
lators hope to produce a greater range of improved taxi services. by increasing 
competition and providing for flexible rate structures. Implementation of the 
new regulations and the earliest responses in terms of local industry size and 
rate structures are the main topics here. Preliminary analysis suggests that 
these first responses relate to conditions in the local setting. Problem areas 
identified during the implementation phase are highlighted, and a number of 
transferable implications that suggest themselves to other regulatory entities 
are presented. Findings of the analyses of the effects of the regulatory changes 
on the supply of and demand for taxi services are anticipated soon. 

This paper reports on taxi regulatory changes in San 
Diego, California; Portland, Oregon; and Seattle, 
Washington. The implementation and effects of these 
changes are being evaluated by De Leuw, Cather and 
Company under contract to the Transportation Systems 
Center (TSC) of the U.S. Department of Transporta­
tion as case studies under the Urban Mass Transpor­
tation Administration (UMTA) Service and Methods 
Demonstration program. Each city adopted its new 
taxi regulations during 1979, so sufficient time has 
elapsed to permit identification of the early re­
sponses in terms of industry and rate structures 
while the analysis of operating and ridership data 
proceeds. 

The impetus for regulatory change was similar in 
each city. Local regulators had experienced diffi­
culties in administering their taxi regulations. In 
one case, alleged misconduct in the approval of a 
rate increase precipitated a citywide scandal that 
ultimately involved the indictment of every city 
council member. The regulators also began to doubt 
that the existing code provisions offered any guar­
antees of a balance between supply of and demand for 
taxi services or between operating costs and rates 
of fare. Population ratios were insufficiently sen­
sitive to demand, whereas the data required to 
demonstrate the need for rate increases were diff i­
cult to interpret, costly to assemble, and required 
the regulators to rely on documentation supplied by 
the regulated service providers. Concepts like per­
centage rate of return on invested capital and 

ratios of overall operating costs to revenues ap­
peared simply to guarantee that taxi rates would go 
up with costs. 

The regulators also doubted that the existing 
laws served to preserve adequate levels of service. 
Financial difficulties had plagued the local indus­
tries during the 1970s, but one city rate analyst 
had demonstrated that taxi ridership had declined 
with each recent rate increase and asserted that 
rising fares produced a net loss in revenues. Some 
of the existing regulations inhibited taxicabs from 
serving a wider transportation market by preventing 
shared riding, fixed-route services, or differential 
pricing. Limited entry was charged with contribut­
ing to monopoly values in taxi licenses and sup­
pressing competition, which impeded the very kinds 
of pricing and service innovations that these regu­
lators saw as essential to the salvation of a de­
clining industry. 

The following sections describe the regulatory 
revisions and industry characteristics before and 
after the changes in each city. The responses to 
date across sites as well as of some of the problems 
that have arisen during and since the implementation 
phase are both discussed. The final section summa­
rizes some transferable implications that have been 
found for other regulatory entities. 

Evalution is in progress of the full effects of 
the regulatory changes on taxi operators in terms of 
trips per shift or fare or lease revenues or on taxi 
riders in terms of taxi availability or response 
times. At this writing, the collection of operation 
and ridership data was nearing completion in San 
Diego and had just begun in Seattle. (The Portland 
case study is a lower-level monitoring effort.) 

SAN DIEGO 

Regulatory Changes 

The taxicab regulatory revisions adopted in San 
Diego have two major elements: (a) effective 
January 1, 1979, the previous ceiling on taxi per­
mits was removed and entry was opened at a specified 
rate of new permits per month to independent owner­
operators as well as to companies; (b) beginning 
August 1, 1979, competitive pricing, by which opera­
tors could charge individual rates up to an estab-


