
42

Table 1. Impact analysis: group 1.

Scenario

Mode 1• 2b

Automobile -1 % -2%
Air +7% +5%
Bus -2% +4%
Rail -2% +4%

ft J:'oamOio• hl t:ome rl es to pctc-cuu.
bGuollnc cons rise SO percent.

3c 4d

-0.3% -2%
-0.3% -5%
-0.4% +27%
+7.4% -4%

C'f'fcqurnc:r of ralJ u rvlce Quf.sjde the northeast doubles.
dsO.. u\ph speed limh rot bu1t11.
CUuJ fares decline by 10 percent.
fRnU fares rlJe by t O percent.

Table 2. Impact analysis: Southwest Corridor.

Scenario

Mode l" 2b

Automobile -1 % -7%
Air +4% +19%
Bus +3% +20%
Rail +3% +17%

DTwo cents per mile ion for auC umo bllo.s.
bTwo-h increase in aucomobile lrnvcl tlm ci .
C70-mph 11·pccd lirnil for automobiles and buses.
diuu rroquency triples.

+4%
-1 9%

+7%
- 9%

5• 6f

-0.1 % +0.1 %
-0.4% +0.1 %
+2.3% +0.2%
-0.5% -2.4%

-0.4%
-0.7%
-1.1%

+18.2%

less true in the Northeast Corridor where service is
already competitive. On the other hand, travel time
is a more important factor in rail demand in the
Northeast.

AS noted above, these sensitivity analyses can be
performed for any scenario affecting model vari­
ables. The model is sensitive to changes in various
costs, travel time, frequency, income, access,
,;tirvice availability, and automobile ownership.
With little additional effort, the changes in demand
can be expressed in policy-relevant terms such as
energy saved, tax revenues earned, change in vehicle
miles of travel, and change in transportation ex­
penditures.

various technical improvements, such as sample
expansion and sensitivity to total demand, have been

Transportation Research Record 835

Table 3. Elasticities for group 1 and corridors.

Mode Cost Time Wait Access

Group 1

Automobile -0.076 -0.303 0.0 0.0
Air -0.618 -0.159 -0.048 -0.107
Bus -0.321 -I.IOI -0.054 -0.061
Rail -0.373 -0.251 -0.463 -0. 100

North'east Corridor

Automobile -0.112 -0.555 0.0 0.0
Air -0.538 -0.163 -0.031 -0.108
Bus -0.267 -0.954 -0.022 -0.062
Rail -0.315 -0.825 -0.050 -0.059

Southwest Corridor

Automobile -0.072 -0.292 0.0 0.0
Air -0.359 -0.164 -0.023 -0.141
Bus -0.311 -0.209 -0.038 -0.070
Rail -0.361 -0.335 -0.419 -0.168

undertaken to expand the applicability and useful­
ness of the model. EVen in current form, it can be
a useful forecasting and policy tool.

ACKNOWLEDGMENT

This research was performed under the sponsorship of
the u.s. Depart ment of Transportation. I gratefully
acknowledge the guidance of Carl N. Swerdloff of the
Office of the Secretary of Transportation.

REFERENCES

l. P. Stopher and J. Prashker. Intercity Passenger
Forecasting: The use of current Travel Forecast­
ing Procedures. Pree., Transportation Research
Forum, 1976, pp. 67-75.

2. P. Stopher, J. Prashker, B. smith, and E· Pas.
Final Report to Amtrak on Intercity Passenger
Forecasting from the National Travel Survey Data
of 1972. Northwestern Univ., Evanston, IL, 1976.

Publication of this paper sponsored by Committee on Computer Graphics and
Interactive Computing.

Interactive UTPS: Implementation Under a

Timesharing Environment

JEROME M. LUTIN AND MATTHEW LIOTINE

This paper reports on the development of interactive computer programs for
the Urban Mass Transportation Administration's Urban Transportation Plan­
ning Systems (UTPS). The programs, originally designed to run under an IBM
360 or 370 OS environment, were executed under a conversational monitor
system (CMS) timesharing environment. The aim was to reduce turnaround
time and explore future interactive capabilities of the programs. Interactive
versions of programs INET, UPATH, UPSUM, ULOAD, UROAD, NAG,
UMATRIX, UFIT, and ULOGIT were developed. The paper describes the pro·
cess involved in creating CMS exec programs to colltrol the program compila·
tion and data set manipulation without any job control steps. Each UTPS pro·
gram exec is described along with other supporting software that was developed.

Finally, a summary of the problems encountered in transforming the software
and data files from CS to CMS is presented.

This paper sununar izes the development of an inter­
active version of several Urban Transportation Plan­
ning System (UTPS) computer programs. UTPS is a
c o llec t ion o f computerized and manual techniques to
aid planners in the assessment of urban transporta­
tion systems. It was developed and maintained by

Transportation Research Record 835

the Urban Mass Transportation Administration (UMTA)
and the Federal Highway Administration (FHWA). The
computerized element of UTPS is a battery of com­
puter programs designed to operate on an IBM 360/370
computer system. These programs were designed to
operate under batch processing (_!). Part of this
research focused on the application of these pro­
grams in an interactive timesharing environment.
The aim was to facilitate an advanced UTPS training
course, where the actual use of the programs would
be provided.

The course was held at Princeton University in
March 1980 and was taught as an advanced use course
for transportation professionals with previous ex­
posure to UTPS programs as a prerequisite. The
course emphasized a more systematic analysis of
transportation system management (TSMi alternatives
through the use of existing and newer UTPS pro­
grams. The programs used were ULOGIT, UFIT, !NET,
UPSUM, UMATRIX, UPATH, ULOAD, NAG, and URCAD <l> .

The course described a typical corridor analysis
for a large metropolitan area and involved intensive
use of the previously mentioned UTPS programs not
covered in the existing one-week course. The case
study was broken down into three phases:

1. Phase !--Build and update networks and build
paths and skims,

2. Phase !!--Calibrate and apply mode split
model and assign transit trips, and

3. Phase !!!--Prepare highway subarea and assign
all trips.

A brief description of the function of each UTPS
program set up on the interactive system is de­
scribed below:

1. INET--Transit network builder. Takes as
input a description of the highway network, transit
routes, and links. Produces as output a transit
data base, network files, and reports on transit
supply parameters.

2. UPATH--Transit path finders. Takes network
files from !NET as input. Produces weighted imped­
ance paths via transit between zones. Produces file
of minimum path trees, and optional interzonal fare
and distance matrices.

3. UPSUM--Impedance summarizer. Takes path file
produced by UPATH and "skims" impedances. Produces
output files containing impedance matrices of tran­
s it wait time, transit in-vehicle time, numbers of
transfers, and total transit travel time.

4. UMATRIX--Matrix manipulator. Takes as input
a variety of data set formats and performs user­
specif ied arithmetic and logical operations. Can be
used to factor trip tables and apply demand model
formulas to produce transit trip tables.

5. ULOAD--Transit assignment program. Takes as
input transit trip tables and interzonal transit
paths. Assigns transit trips to system to obtain
transit line volumes. Assignment rules can be
varied by user.

6. NAG--Network aggregation program. Takes net­
work fi!es and trip tables as input. Allows user to
analyze a portion or "window" of the network in
detail while reducing detail of network outside the
window. Helps simplify output and reduce cost of
analysis. Produces aggregated files as output.

7. UROAD--Highway network model. Takes as input
an historical record file of the highway network
produced by program HR or HNET. Calculates highway
travel times between zones. UROAD also assigns
automobile trip tables to the highway network to
produce link volume reports. Capacity restrained
and stochastic traffic assignments can be per­
formed. Output includes reports and updated network

43

files with speeds and traffic volumes.
8. UFIT--Demand model calibration. Takes as

input card image files or binary calibration files
and performs linear least-squares regressions to fit
models. User can establish conditional expressions
to screen observations and constrain parameters.

9. ULOGIT--LOgit model calibration. Takes as
input a binary calibration file of observations of
individual user (e.g., disaggregate) mode-choice
data. Estimates parameters to fit observed mode
choice to an S-shaped (legit) curve. used to cali­
brate disaggregate multinomial legit mode split
models.

A network for the Shirley Highway Corridor in
Virginia, developed at UMTA, was used for the case­
study problem. The network data were shipped to
Princeton on tape, and the Princeton APL graphics
system was used to prepare master maps of the cor­
ridor on mylar film. Zone centroids, load nodes,
access links, and highway links were plotted with
distinguishing graphical conventions. Centroid and
node numbers were superimposed. Two maps were pro­
duced, one showing the entire Shirley Highway Cor­
ridor case-study area, and a second showing downtown
southwest Washington at an enlarged scale. Each
team received several black-line copies of the maps
to lay out transit alternatives.

The course attendees were required to make
changes to a transit system network in order to
achieve better operational characteristics than its
original ones. Within the larger transportation
network, a detailed section of the highway network
was focused on to evaluate the impacts of the
changes previously made. The course emphasized the
instruction of newer UTPS programs as opposed to the
older programs, specifically the use of INET and NAG
in network analysis, the use of ULOGIT and UFIT in
the calibration of demand models, and the use of a
new version of UMATRIX. The actual interactive use
of these programs was featured that had never before
been incorporated in any previous UTPS training ses­
sion. This facilitated actual program use during
the session, and quick turnaround time for output.

OBJECTIVES

There were several objectives sought in the develop­
ment of software to execute the UTPS programs under
a tim~sharing environment. First, the software
would have to allow the user to interact with each
program at a CRT terminal and would enable the user
to operate each program with a minimum amount of
knowledge of job control language and data set ma­
nipulation. The turnaround time and output re­
trieval would be quick. The user would be able to
examine the results of a program run at the terminal
as well as in the form of a paper printout.

The end result of attaining these objectives was
a highly intelligent CMS exec program that would
function with a minimum amount of computer knowledge
on the part of the user. This would allow more con­
centration on the use of UTPS for a particular
analysis without coding job control language (JCL)
steps and little use of the conversational monitor
system (CMS) language. The following sections de­
scribe in greater detail the execs that were de­
veloped.

CMS EXECS

The IBM Virtual Machine Facility 1370 (VM/370) is a
system control program that controls "virtual ma­
chines•. A virtual machine is the functional equiv­
alent of a real computer whereby the user can con­
trol its operation from a terminal using a command

44

language. In effect, the computer simulates for
each user an entire computer system, which appears
dedicated to the user. The language used to operate
UTPS under this environment is called the conversa­
tional monitor system, or CMS (ll·

CMS operates under yet a higher command language,
the control Program {CPj. CP co11trvls the resource::;
of the physical computer machine and also manages
the comm•.mici:!tions among several virtual machines
and between a virtual machine and the physical or
"real" system. CMS is the conversational operating
system designed specifically to run under CP. It
can simulate many of the functions of the IBM Oper­
ating System (OS) .

The file is an essential unit of data in the CMS
system. CMS disk files are unique to the CMS system
and cannot be read or written using other operating
systems. CMS files are named according to a file
identifier consisting of three fields: a filename,
filetype, and filemode. CMS files are written on
disk in 800-byte physical blocks, regardless of
whether they have fixed or variable length records.

CMS is a language of statements consisting of
active verbs and nouns. An exec is a CMS file that
contains many of these executable statements instead
of data items. The statements may be CMS or CP com­
mands or exec control statements. The execution can
be conditionally controlled, have variables, and may
expect arguments to be passed to it . In its most
complex form, an exec can contain thousands of
records and may resemble a program wcitten in a
high-level programming language. It was in this
form that the CMS exec was used to operate UTPS.

Under CMS, it is possible to execute many OS
language processors: Assembler, vs Basic, cs
FORTRAN IV, OS COBOL , and OS PL/l . This enabled the
execution of OTPC, whocc programs are mostly written
in FORTRAN IV, but which does have some subroutines
written in Assembler and COBOL. By using CMS, one
can assemble and invoke compilers by using special
commands. Thus, a typical UTPS program such as
UPATH could be implemented in the following fash­
ion. First, a previously compiled object module (a
machine language version of the program) is put
through a linkage editor loader (software that as­
signs the program to certain memory addresses .in the
system) using CMS commands . File definitions must
have been previously m·ade for al.l input and output
files, similar to JCL file definitions. This step
1,m:X:l uces a load module, or load program, which is
yet anot:her form of the original program. Once a
load program is present in a virtual machine, it
could be executed using a CMS command. A CMS exec
was written for each UTPS program that was highly
robust in that it made this process virtually invis­
ible to the user. The exec performed this opera­
tion, overseeing the data file manipulation and
program execution.

SPECIFICATIONS AND PROGRAM DESCRIPTIONS

All of the UTPS programs have some features in com­
mon. A control card file is needed as input along
with other input files. As output, a printout file
is produced along with other files. The execs had
to allow the user: the option of naming all input and
output files or use default names supplied by the
exec. A default-naming convention was developed and
is described in the following section. The execs
also had to allow the user to make changes to the
control card file interactively, and to view the
printout at the terminal screen before deciding
whether a hard paper copy is to be printed.

The execs also had to deal with user errors.
Typing mistakes at a terminal keyboard are inevita­
ble and thus the execs had to alert the user of the

Transportation Research Record 835

error. In addition, a feature was needed to allow
the user to exit the exec at any point and to pro­
vide the option of deciding whether: to proceed with
the program running or to revert back in the exec to
196ke additional changes.

The execs written for each UTPS program were
somewhat ~lm.i.laL· in structu.r;;, but were individually
designed to accommodate the unique features of each
program. Some standard subexecs were written to
perform fu·nctions required by most of the programs.
The following are brief descriptions of each UTPS
program exec and the specifications required of it.

1. !NET. This program operates in two modes:
update and build. In the build mode, the program
reads in a historical record (HR) file and, with
"NET=F" on the control card, produces a transit data
base (TDB) file. In the update mode, the program
expects only the TDB file and produces a new or
updated TDB file in subsequent runs. In either:
mode, if NET=F is specified, five new files are pro­
duced for use by othe r programs . Thus, the exec for
INET queries the user as to whether: he or she wishes
to completely build or update a TOB. It also has
the capability of examining the NET parameter: to see
if NET files are to bP. produced, so that the appro­
priate file definitions could be called. In addi­
tion, the exec accommodates a file of ROUTE cards
and allows the user to make changes to these cards
if necessary.

2. UPATH. This exec was not very complex in
comparison with INET and was designed to resemble a
canned process. The exec expects four NET £iles
from a previous INET run, with the default naming of
these files unchanged from !NET . The exec allows
the user to name the output path file and the two
non-transit link files. It. al >;o examines the con­
trol card options "DIST", "FARE", and "IMPED", to
see if the user wished to output a distance and/or
fare impedance matrix.

3. UPSUM. This exec receives the path file
from UPATH with the same default name and produces a
skim file.

4. OFIT. This exec, like INET, operates in two
modes. Program UFIT reads in a binary calibration
file compatible with program OLOGIT and from this
file creates a new calibration file as output, which
is conditional on the specification of the "FILE:
keyword in the control card file. Thus, the exec
n P. termines whether this keyword is present. Another
modG of operation is the casP. in which the user
wishes to create a new calibration file from card
images. These images are usually attached to the
control card file and are used only if the option
"BUILD=T" is specified. The program then ignores
any input calibration file and processes only the
card images. This feature was compensated for in
the exec by again examining the control card file
for the BUILD=T specification.

s. ULOGIT. This exec is structurally the
simplest since only one file is input in addition to
the control card file and no files are output, ex­
cept printout files. However, a special FORTRAN
program was written to produce a prediction success
table as an optional output.

6. UMATRIX. Because of the flexibility in-
volved in the names and numbers of input and output
f ilea, this exec must search the control card file
for: certain characteristics. First, the number of
input J-files is determined by examining the speci­
fications of files Jl through JB. A J9 specifica­
tion alerts the exec of an output file. The exec
then queries the user for the exact name of each
J-file specified .in the control cards . Z-files are
handled in the same manner. •rhe use of look-up
tables can also be accommodated.

Transportation Research Record 835

7. ULOAD. This exec was designed as an almost
canned process, with an extra provision for an
input-loaded legs file from a previous ULOAD run and
the file of selected volumes conditional on the
specification of the "ALINE/CLINE" criteria in the
control card file. In addition, the exec can deter­
mine if the user specified the "GENT" parameter,
eliminating the need for an input Jl trip matrix
file.

a. NAG. The main feature of this exec is the
detection of "NET" and "GENT" parameters in the con­
trol card file that eliminates the need for the user
to input an HR file and trip matrix.

9. UROAD. It was decided that this exec would
not implement any of the plotting features of pro­
gram URCAD and would only address the traffic as­
signment capabilities of the program. For the pur­
pose of this research, the exec only accommodates
the insertion of multiple trip tables. Other fea­
tures will be incorporated later.

10. ULOG. This exec facilitates the printing of
the user's log report after a specified number of
UTPS program runs. This exec allows the user to
specify this number and maintains the log file on
disk for subsequent updating.

GENERAU PURPOSE EXECS AND PROGRAMS

As mentioned earlier, several subexecs were written
to perform general purpose tasks used by most of the
main execs. These execs are listed below and are
briefly described.

1. DEEM. This exec resides on the user's disk
and obtains the default filemode for files used in
the program. As mentioned earlier, CMS file desig­
nations consist of three fields: a filename, file­
type, and f ilemode. A default-naming convention was
developed whereby the user's disk mode serves as the
default filemode for all files. In most cases,
files would maintain a filetype of the name of the
UTPS program that produced them. Filenames, in most
cases, resembled the original filenames contained on
the DD statements in the program's catalogued pro­
cedure. Thus, for example, a file designated as TDB
!NET A is a TDB file produced by program !NET and
resides on a disk in the user's virtual machine that
has been accessed as A, which is the default file­
mode. Route card files and control card files were
handled in a different manner as described in the
following section.

2. UTPS. This exec links the user's disk to
two software disks. The first is a disk containing
the execs and load modules. The second disk con­
tains utility software supported by the Princeton
University computer system.

3. GETFID. This exec responds to an input file
specification by the user and searches all disks in
the user's virtual machine for file and verifies
whether it can be used.

4. REPLY. This exec simply checked to see if a
user's reply was correct or not, i.e., contained no
typing errors for a yes or no reply.

5. CPUNIT. This exec is executed when a pro­
gram begins running and informs the user that this
has occurred.

6. CPUFINL. This exec is invoked at the end of
the program run and informs the user of the CPU time
of the run and the return code if the program ter­
minates abnormally.

7. DISPLAY. This exec takes the printout file
and displays it on the terminal screen. The user
can specify the pages and report of the printout he
or she wishes to view. It also allows the user the
option of printing the file on the system printer.

8. ANTEST. This exec is a subexec of GETFID

45

and, like REPLY, examines the user's entry of a
filename to see if it was typed correctly.

9. PRMCLR. This exec clears all the file defi­
nitions in the virtual machine after the program run.

10. ODSK. This exec is a subexec of GETFID and
determines whether an accessed disk can have infor­
mation written on.

11. ST. This exec intercepts the print file
from the real system printer and spools it to the
user's disk. The return code is also read from the
print file and passed to CPUFINL.

12. STCLEAR. This exec clears the console stack.

TWO general purpose programs were written to supple­
ment the above execs. The first was an Assembler
program called FIND. A key element in the overall
exec structure, FIND was designed to specifically
search the control card file for any character
string argument. This enabled the execs to deter­
mine the required input/output file based on key­
words such as NET in INET or BUILD in UFIT.

The second program was a FORTRAN program called
REPS2. This program was used in the exec DSPLY and
performed a minor task of determining which UTPS
reports are available on the printout file.

FINAL EXEC STRUCTURE

The final versions of the execs conformed to the
specifications mentioned earlier. Each was designed
to guide the user through the program and demanded
little knowledge of CMS from the user. Implicit in
the design of each exec was the assumption that the
user had at least some knowledge of the UTPS program
use. A virtual machine is established for the in­
teractive UTPS environment. A typical user would
have read or write access to his or her own personal
disk where input and output files could be main­
tained. All of the necessary software, including
the program execs and load modules, reside on an­
other disk from which the user can read only, leav­
ing the software protected and intact. A temporary
disk is also formatted on which the user may be able
to read and write scratch files and temporary data
sets. This disk provides space for scratch files
and any extra temporary space if required by the
user. Since this is a temporary disk, its contents
would be wiped out once the user logs off the system.

The virtual machine configuration is established
when the user invokes the exec called UTPS. Once
this is done, the user can invoke any exec by simply
entering the UTPS program's name.

Each exec called several general purpose execs
and programs described in the previous section. A
general flow-chart for the execs is shown in Figure
1. Each exec follows a process that is summarized
as follows:

1. Input Control Card File. Exec GETFID is in­
voked first, retrieving from the user the name of
the control card file specified. The exec then
seeks to locate this file in the virtual machine.

2. Determine the Required Files. The control
card file is then searched by program FIND for sym­
bolic parameters and keywords that inform the exec
what files are to be either read in or written. For
example, the presence of the keyword BUILD=T in the
INET control card file would inform the exec that
five NET files will be written by the program.

3. Set Up the Required Files. Exec GETFID once
again is invoked. This time it will ask the user to
specify the names of both the input and output
files. Input files are then located within the
virtual machines. The specified names are inserted
in the file definitions so that output files are
written with the names given by the user.

46

Figure 1. General flowchart for UTPS execs.

Input cor':roi card

file.

+
Deterniine from the

control cards what

fi 1 es a re required.

t
Setup the required

files .

Run the program.

Examine the output

at the tenninal.

Exe: GETFID

~
Program FIND

+
Exec GETF!D

•
Run lJTPS

program

t
Exec DSPLY

Gets filename and

filemode from user.

Searches control

cards for symbolic

parameters.

Displays the

program output in

page fonnat.

4. Run the Program. The program's load module
is then called and the program is executed.

5. Examine the Output at the Terminal. The out­
put file is retrieved and, through exec DSPLY, is
displayed on the terminal screen. The user then has
the option of requesting a paper pr in tout of the
file.

Mention should be made of the default-naming con­
vention for route card and c..:unt ,ol card files. un­
like the file convention described earlier, these
files assumed a f iletype of the UTPS program name by
wh i c h t hey we r e to be used. For control cards , a
default file name of CNTRLXX was used. The suffix
XX is substituted by a two-digit code from 01 to 99,
which is assig ned by t he user. For example, a con­
trol card file mi g h t be designated as CNTRL03 UPATH
A. The filename of CNTRL03 designate s th i s as a
control card file. The filemode A is the default
mode of the disk in the user's virtual machine on
which th i s f ile r esides.

The two- digit suffix enables the handling of many
sets of control card files on the user's disk and
provides the user with a convenient way of identify­
ing them. It also facilitates any easy default way
of specifying a particular control card file desig­
nation to the exec. By entering "." followed by a
two-d i g i t number corresponding to the two-digit
numerical suffix in the control card file's file­
name, the exec will locate this file in the user's
virtual machine. For example, if in using program
ULOAD, the user responds to the exec's prompting for
the name of the control card file by entering ".05",
the exec will search for a file designated as
CNTR105 ULOAD A, assuming A is the default file­
mode . If this file is residing on a disk acc essed

Transportation Research Record 835

under a different f ilemode, say B, then the user
needs only to enter " . 05 B". Route card files for
program !NET were handled in a similar manner, with
ROUTEXX as the default filename prefix.

UTILITY EXECS

Several utility execs were written during the soft­
ware development to perform gene ral tasks. One is
an exec called SCOPY, which enabled the transfer of
files formatted as variable block spanned (VBS) from
one disk to another. The normal CMS "COPY " command
tends to disrupt the format of these files and thus
SCOPY was used in lieu of this command. The origi­
nal version of SCOPY was written at UMTA.

SUMMARY OF PROBLEMS ENCOUNTERED IN SOFTWARE
DEVELOPMENT

Implementing the UTPS programs, which were origi­
nally designed to ope r ate in an OS batch environ­
ment, in a timesharing environment was not a direct
process. Certain inherent OS features of the pro­
grams that are not handled by CMS had to be overcome.

A problem arose with respect to data files. It
was unclear in the case of files that were origi­
nally formatted as VBS as to what the proper data
control block (DCB) parameter was required in the
CMS file definition. By using the original parame­
ters from the DD card in the catalogued procedure
failed in most cases. The problem was resolved by
literally guessing at the record format, using a
trial-and-error procedure that iterated different
permutations of the RECFM parameter until a suc­
cessful run was obtained. VBS files also presented
a problem mentioned earlier, whereby they could not
be transferred by using a normal CMS c..:u~y c..:onunand.
A special exec was required to copy files.

problems arose in INE'l' with respect to sorting.
Within its internal structure, INET makes several
calls to the IBM OS Sort/Merge routine. Under
VM/370, this utility is unavailable. A counterpart
to this is the CMS SORT utility that is called in
lieu of the OS SORT. However, !NET uses, in add i­
t ion to the OS SORT, a UTPS sorting routing called
SORT. Problems arose in calls to this routine. It
was later discovered that the calls to this routine
were identical to the CMS SORT and thus the calls
had to be changed.

A problem occurred in ULOAD with respect to the
sorting of the loaded legs file. This file is
passed through two subroutines, El5 and E35, which
are user e ntr ie s in the OS SORT routine. El5 pro­
cesses the input loaded legs file for the OS SORT
while E35 processes the output file. These routines
were designed to process a blocked file. The CMS
SORT failed to sort this file due to this character­
ist ic. Thus, El5 and E35 wer e r eplace d by two
routines, UNBLK and BLK, that, respectively, un­
blocked and blocked the file.

Program NAG produc es an output trip table in a
compressed format that deletes rows for which all
cells are zero. UROAD did not accept this file. A
modification to the file was done by using UMATRIX.
UMATRIX will insert a row of zeros where rows are
deleted. It was also used to change the file format
by using the keyword "OUTPBT".

CONCLUSIONS AND RECOMMENDATIONS

The interactive implementation of UTPS was not a
direct process. Before proceeding on this endeavor,
a knowledge of the use of the UTPS programs in
transportation system planning as well as computer
science must be obtained. The transportation plan­
ning and UTPS experience enabled the specification

Transportation Research Record 835

of the exec structures. Implementation of the execs
involved a substantial degree of knowledge of the
IBM VM/370 system, CMS, several OS compilers, and
UTPS. Although this process, in general, did not
warrant the entering of the UTPS internal source
code, in some instances it was unavoidable. Because
the execs were developed with the intention of being
used as an instructional tool for a one-week course,
many of the accessory features of the programs, such
as the plotting capabilities, were not incorporated
into the execs. The end result was an exec that
required little knowledge of CMS and VM/370 on the
part of the user but some knowledge of the use of
the UTPS programs in transportation planning.

It is recommended that this process be further
crysta1ized and documented so that typical users may
find it easier to implement UTPS in a CMS or any
other timesharing environment. Interactive comput­
ing is now gaining widespread interest, and any
interactive capabilities of software would thus make
it more attractive.

The interactive software described in this paper
has been turned over to the OMTA Office of Planning
Methods and Support and is undergoing further de­
velopment. It is expected that interactive versions
of many UTPS programs will be used in further ad­
vanced UTPS training sessions.

ACKNOWLEDGMENT

This research was sponsored by UMTA's Office of

47

University Research and Training. We wish to sin­
cerely thank Philip Hughes, Nathaniel Jasper, and
Judy Z. Meade of the Office of policy Research for
their support of this work. A large measure of
credit for the short-course development goes to
Larry Quillian of UMTA·'s Office of Planning Methods
and Support. Ed DeLong, Chief of the Software Sup­
port Division, played a major role in helping debug
the sys·tem. Most o f the programming was done by
William Collins, a 1981 graduate of Princeton uni­
versity.

REFERENCES

1. M. Liotine and J.M. Lu tin. Report on the De­
velopment of the Workshop on Interactive Appli­
cations of UMTA/FHWA Planning Tools. Urban Mass
Transportation Administration, U.S. Department
of Transportation, Sept. 1980.

2. Urban Transportation Planning System Introduc­
tion. Urban Mass Transit Administration, U.S.
Department of Transportation, Feb. 1980.

3. IBM Virtual Machine Facility 1370: CMS user's
Guide, 3rd ed. IBM Corp., White Plains, NY,
March 1979.

Publication of this paper sponsored by Committee on Computer Graphics and
Interactive Computing.

Interactive Model for Estimating Effects of Housing

Policies on Transit Ridership

JEROME M. LUTIN AND BERNARD P. MARKOWICZ

This paper reports on computer graphics developed as part of an interactive
computer model designed to assess the impact of housing policies on transit
ridership in urban transit corridors. A set of programs was written in APL to
lmplomont tho model in en interactive computer environment, with computer
graphics used for both Input and model output. A mode-split model that uses
U.S. Bureau of the Census data predicts ridership for ·the transit line, based on
discrete combinations of mode and access mode including walk-and·ride, park·
and·ride, klss-nnd·ride, and focder bus. The program permits the analyst to in·
put alternative residential patterns, with rospoct to location and density, In tho
transit corridor and to ovaluatc tho effects on transit ridership by comparing
various alternative housing policies. Computer graphics are used et two levels.
First, as an input mode, graphics allow the planner to create new transit route
alignments and station locations by using a screen cursor. The program then
models station choice from the zones, on the basis of a number of variables, In·
eluding driving or walking ti mos to stations, transit fares, lino-haul travel t imes,
etc. As an output modo, graphics aroused to display socioeconomic data, mode·
split results, or any algobralc combinations of input or output data. Different
types of graphic displays are used for data presentation at the zone level or sta·
tion level . Throughout the development of tho graphics, special attention was
given to tho readability of the output. The paper reflects the general effort to
produce moro visually attractive and commonly under$tandable outputs. In·
cludad In the paper are a description of the program design and organi:lmtion,
examples of graphic output, and o discussion of the ability of the model to
provide useful output to policymakers.

Planners and urban policymakers have long recognized
that a strong relationship exists between urban
development forms and the existence of rapid transit
systems in cities. In recent years, new transit

systems have not l ed to significant positive changes
in urban development. It is believed that the
existing high level of automobile accessibility
tends to obscure the increases in mobility achieved
by transit. Many planners and policymakers believe
that transit systems can be more effective in meet­
ing the travel needs of the public, more energy ef­
ficient, and require less subsidy if land use plan­
ning in transit corridors can be coordinated with
the planning of the transit system itself.

mo achieve better coordination between transit
planning and land use planning, the Urban Mass
Transportation Administration (UMTA) has been making
grants to cities to encourage urban development in
transit corridors. However, t here are major ques­
tions that need to be answered about the kinds of
policies to be implemented. Planners need to know,
for example, what kinds of housing should be en­
couraged in transit corridors. Should land close to
transit stations be reserved for high-density
apartments or be kept open to provide large lots for
park-and-ride patrons? Given that land use regula­
tions are difficu1t to enact and enforce, how does
noncompliance with the plan affect the desired re­
sult? Because of the many unanswered questions,
this research was directed toward the development of
some quantitative tools that would provide planners

