
--
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the consumption due to speed changes and idling, 
total fuel consumed has been determined. This 
value, when calculated for an existing intersection, 
will be used as the base for determining the per­
centage reduction for a proposed improvement. For 
example, at an intersection 1000 gal are consumed. 
With the construction of a left-turn lane, 100 gal 
less will be consumed. Therefore, the left-turn bay 
will reduce consumption by 100/1000, or 10 percent. 

For vehicle emissions, Figures 2-4 represent 
total emissions for vehicles changing speeds. To 
simplify the analysis, it is assumed that for exist­
ing intersections most vehicles will experience a 
speed change at the intersection. Thus, for con­
gested intersections, the emissions for idling, 
stopping, and slowing down represent total emis­
sions. Total emissions for the existing intersec­
tion would be used just as in the analysis of energy 
as a base to determine the percentage reduction. 

In the case of an improved intersection, total 
emissions would include vehicles that do not experi­
ence a speed change. The number of vehicles that do 
not stop or slow down can be estimated by equating 
it to the reduction of vehicles stopping when an 
existing intersection is improved. 

For example, if the addition of a left-tum bay 
reduced the percentage of vehicles stopping from 80 
to 70 percent and 4000 vehicles entered the inter­
section during the analysis period, it would be 
estimated that 400 vehicles (10 percent x 4000) will 
experience little interference when traversing the 
intersection. Then, to determine vehicle miles, the 
number of free-flowing vehicles would be multiplied 
by the distance from the intersection where vehicle 
movement is affected. This would be the same dis­
tance estimated for the energy analysis. 

From Figure 5, pollutant emissions in units of 
1000 vehicle miles for vehicles traveling at a 
uniform speed can be obtained. These emission rates 
multiplied by vehicle miles would determine the 
emissions for uniform-speed vehicles. The equation 
is as follows: 
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CO, HC, NOx = (TTEI/1000) x ER (Figure 5) x intersection distance 

x percent reduction of vehicles stopping (25) 

When these emissions are combined with emissions due 
to slowdowns, stopping, and idling, the total emis­
sions for an improved intersection can be calculated. 

SUMMARY 

The procedure described in this paper is designed as 
a sketch planning tool for planners. Whereas the 
critical movement technique is a sketch planning 
tool for analyzing capacity, this methodology is a 
tool for evaluating vehicle emissions and energy. 
It can be applied quickly and can provide reasonable 
estimates of reductions in energy use and vehicle 
emissions. The quick-response characteristics of 
the method are demonstrated by the limited amount of 
data necessary to do an evaluation. 

To simplify the application of the technique, the 
equations given in this paper for pollutant emis­
sions (Equations 9-11, 17-19, 21-23, and 24) and the 
formats shown in Figures 6 and 7 should be used. 
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Improved Demand Estimation for Rural Work Trips 
YORGOS J. STEPHANEDES 

A critical review of the most widely accepted rural demand estimation models 
is performed. Based on data collected in two rural towns, a disaggregate specifi· 
cation for rural work-trip modal choice is proposed. The new model includes 
a set of socioeconomic and a set of policy-relevant variables and can be used for 
implementing a wide range of transportation policies to improve rural transit 
system performance. Model variables produce coefficients consistent with the 
notion, recently found in the literature, that rural commuters are more sensitive 
to fiscal variables than are urban commuters. Results from comparison tests 
suggest that demand prediction with the proposed specification is significantly 
(up to 88 percent) better than with the best of the existing models. 

The evaluation of rural transportation projects that 
operate with federal or state support has been con­
sidered an essential part of government-subsidized 
transportation programs during the past decade. 
Transportation policies that can improve the effi­
ciency and effectiveness of rural transit operations 
have recently been proposed (1), and data on perfor­
mance measures for evaluating such operations are 
now available (l-ll and are being compiled by a num-

ber of states (j_,3.). In response to a need for 
identifying transportation policies that can also 
enhance rural mobility and the need to determine 
whether such policies will, in time, cause changes 
in rural economic development, a project was re­
cently initiated (_§_). An immediate need for a de­
mand estimation specification to estimate work-trip 
modal choice was identified. 

The major objective of this study is to determine 
the most reliable rural demand estimation model 
suitable for implementing level-of-service transpor­
tation policies and sensitive to long-term mobility 
and economic changes that may take place in a com­
munity. This determination depends on certain basic 
criteria: (a) the ability of the selected model to 
estimate modal choice for work trips directly, (b) 
inclusion of level-of-service independent variables 
for implementing transportation policies that can 
improve the efficiency and effectiveness of a tran­
sit system, (c) inclusion of mobility and socioeco-
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nomic variables so that long-term changes in resi­
dent mobility and the local economy can be taken 
into account when modal choice is determined, (d) 
data availability, (e) model performance, (f) caus­
ally justifiable independent variables, and (g) the 
potential for model transferability to other rural 
areas. 

A critical review of the most significant exist­
ing demand estimation models is performed first. 
This review includes a summary of performance char­
acteristics that emphasizes effectiveness and the 
drawbacks of each model from the limited tests found 
in the literature. Subsequently, a new demand esti­
mation specification for rural work-trip modal 
choice is proposed and compared with the best of the 
existing models. The comparison tests are based on 
six data sets collected in two rural towns over a 
three-month period. 

The major findings can be summarized in two 
parts. First, results from tests of the performance 
of the existing rural demand models (7,8) are mostly 
in agreement with previous studies - (1-11). More 
specifically, the existing models are found to be 
easy to comprehend but hard to apply to a specific 
trip purpose, as in work-trip estimation. Further­
more, because of the lack of a strong causal justi­
fication and the dearth of appropriate level-of­
service variables, their use for policy analysis is 
not warranted. Finally, they result in significant 
estimation errors; because of this and the above 
characteristics, their potential for transferability 
is questionable at best. These observations rein­
force the need for the development of more rigorous 
and more accurate rural demand estimation specifica­
tions. 

This is accomplished by the proposed specifica­
tion, which, in agreement with recent research find­
ings, results in an increased importance of travel 
cost and household income in rural areas, The tests 
show that the proposed specification performs better 
than the existing ones. 

BACKGROUND 

Review of Rural Estimation Models 

The existing approaches to modeling the steady-state 
demand sector of the rural transportation system 
fall into three general categories: (a) attitudinal 
studies, simple survey tabulations, and rough trip­
rate estimates (12-15) i (b) mathematical techniques 
based on aggregate"° aMlysis (l.-.2.l; and (c) disaggre­
gate mathematical techniques (1), 

Lack of rigorous analysis - does not justify the 
use of approaches belonging to the first category 
for reliable policy analysis. Methods in the second 
category have relied on simple regression techniques 
(l.,1) or used cross-classification techniques in 
combination with probabilistic assumptions (~). Due 
to their structure and assumptions, these methods 
often result in models that are descriptive rather 
than causal, models with large forecasting errors, 
questionable transferability properties, and little 
applicability to policy analysis. When euch models 
are used, the sensitivity of prediction to errors in 
parameter estimates can be high, and the lack of 
emphasis on level-of-service variables makes predic­
tion insensitive to proposed changes in transporta­
tion policy. On the contrary, disaggregate models 
are capable of capturing the Causal relations be­
tween transportation level of service, household 
socioeconomic characteristics, and travel behavior 
and therefore provide a more meaningful analysis of 
various transportation policy options (16). 
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Aggregate Models 

The first comprehensive work in this area (7) aimed 
"to produce forecasting methods at area-wide and 
route levels that are specific enough to enable 
local planners to use [the] method as the basis for 
initial operations of small-scale transit sys­
tems ••• and simple enough to be applied by local 
planning staff personnel." Five econometric models 
were presented, two applicable to fixed-route sys­
tems and three to demand-responsive systems. For 
each kind of system, there are models at the county 
(macro) level, and at the route (micro) level. By 
using regression analysis, route ridership is fore­
cast as a (log) linear function of aggregate route 
characteristics such as total population along 
routes and route length and destination population. 

The choice of independent variables is often 
arbitrary, and specifications are correlative rather 
than causal; e.g., excessive attention is paid to 
achieving a high R2 , but little attention is given 
to identifying variables that cause a specific 
ridership to be created. Ridership estimates are 
not sensitive to changes in transportation policy, 
household socioeconomic characteristics, or compet­
ing alternative levels of service. Furthermore, 
parameter estimates and statistical measures may be 
biased due to simultaneity and zone-size variance, 
respectively; the sensitivity of prediction to 
errors in parameter estimates can be high. It is 
concluded that the models are simple and easy to 
implement but are based on questionable assumptions, 
have limited applicability, do not contribute to a 
better understanding of the transit structure, and 
do not achieve their stated objectives; i.e., they 
cannot be safely implemented for forecasting pur­
poses, and they cannot form a reliable basis for 
initial operations in rural areas (l). 

The second mathematical approach to modeling 
rural transit ridership was a response to the defi­
ciencies of the previous approach. Its objective 
was "to develop techniques of demand estimation 
which are .•• simple to understand, easy to apply, and 
low cost in nature, ••• offer the possibility of 
transferability, [and are] capable of identifying 
the needs generated by specific target populations 
along routes, such as the elderly, carless, or 
households with low income" (~). 

The Poisson model was introduced as a technique 
superior to ones previously <1> used. It is a sim­
ple and appealing model but is subject to criticisms 
similar to those directed at previous research. 
Independent variables used for cross classification 
are rather arbitrary. Ridership estimates are in­
sensitive to changes in transportation policy and to 
the level of service of competing alternatives. 
Although regression methods are criticized, they are 
used to improve on the Poisson model when it proves 
to be a poor performer (and the specification chosen 
is correlative rather than causal). Finally, the 
model is based on questionable assumptions (e.g., 
that the decision to ride the bus is a random event 
or that such events for rural households are inde­
pendent of each other) and does not contribute to a 
better understanding of the transit structure, a 
fact acknowledged by its authors (8), Although some 
of the objectives, such as low co;t, ease of appli­
cation, and need identification, are satisfied, 
three are not met: The model is confusing, it is 
not accurate, and it does not have potential for 
transferability (1). 

A more recent- modeling attempt 1 .. V used simple 
regression and was developed for demand-responsive 
service. It could be criticized along earlier (7) 
lines, The major existing models developed for 
fixed daily rural service that were relevant to this 
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study and could be tested are summarized as fol­
lows: The macromodel (1) is expressed as 

LOG (RTPASS/MO) = -0.353 + 0.407 LOG BMILES 

where 

RTPASS/MO 
BMILES 

FREQ 
RESTRPOP 

COMPBMS 

+ 0.533 LOG FREQ+ 0.611 LOG RESTRPOP 

- 0.123 LOG COMPBMS (1) 

round-trip passengers per month, 
= total vehicle miles per month, 

average monthly round-trip frequency, 
= people who may use the system (OOs), 

and 
= monthly vehicle miles of competing 

systems in the area. 

The micromodel (1) is expressed as 

LOG(OWPASS/DAY)= 6.344 + 0.697 LOG FREQ-2.547 LOG D 

+ LOG POP0 + LOG POPd (2) 

where 

OWPASS/DAY = 

FREQ= 
D 

POPo 

POPd 

one-way passengers per day on a spe­
cific route; 
round trips per day on that route; 
round-trip distance from farthest 
origin point served to main destina­
tion (miles) ; 
population of area traversed minus 
population of largest city, which is 
defined as the destination popula­
tion (00 000s); and 
population of the largest city tra­
versed (00 OOOs). 

The Poisson mode <.!!.> is expressed as 

T = 0.003 05 R t. 396 U°·935 (3) 

where 

T = trip ends per operating day, 
R route mileage, and 
U number of dwelling units within 0,25 mile of 

a route. 

Disaggregate Models 

The inadequacies of aggregate modeling techniques 
for rural transportation demand estimation led to an 
early attempt to formulate rigorous disaggregate 
specifications <!.>. A limited analysis was con­
ducted of the effects on ridership of certain trans­
portation level-of-service attributes and of socio­
economic characteristics of individuals. The 
limited scope of the study could only result in an 
indication that rural residents are more sensitive 
to travel cost than urban residents. This was a 
significant conclusion because previous researchers 
(1-1), using aggregate analysis, had decided that 
this particular characteristic did not play a sig­
nificant role in rural ridership estimation. Fur­
thermore, in the course of the study it became evi­
dent that disaggregate demand estimation for rural 
transportation was feasible. It was determined that 
more work was needed to measure the effect of a 
number of level-of-service variables on demand modal 
choice before such demand models could be used for 
policy analysis. 

PROPOSED MODEL 

Because of the disadvantages of the existing models, 
it was decided that a new model should be developed 
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that should fulfill the criteria set forth at the 
beginning of this paper, In addition, the new model 
should make efficient use of data and should be at 
least as accurate as previous prediction ap­
proaches. Given its known characteristics and 
advantages over aggregate methods, it was decided 
that a disaggregate formulation should be adopted. 

For predicting the choice of transportation mode 
to work from among three modes--transit, drive 
alone, and shared ride--a multinomial logit mod@l 
structure was chosen. The statistical properties of 
the logit model and its successful application in 
analyzing discrete modal choice are well documented 
(17-19) and are not restated here. The particular 
form of the model used was as follows: 

(4) 

where 

P(m:Mt) probability of worker t selecting modem 
from choice set Mt_ {transit, drive 
alone, rideshare}, 

Xmt vector of independent variables for al­
ternative m and worker t, and 

8 vector of coefficients estimated by us­
ing the maximum likelihood method (17). 

The vector of independent variables (Xmt> can be 
expressed in the general form 

(5) 

where Lm is a vector of level-of-service charac­
teristics of mode m and St is a vector of socio­
economic characteristics of worker t. 

VARIABLES AND DATA 

Three level-of-service variables and six socioeco­
nomic variables were included in the logit 
formulation. These variables and their expected 
coefficients are summarized in Table 1. The level­
of-service variables are defined as in urban work­
trip modal-choice models (!!). Of the socioeconomic 
variables, the variable automobiles per household 
worker is introduced as a replacement for automo­
biles per licensed driver and workers per household1 
it is hypothesized that the former is of direct and 
overriding concern in rural areas, where individual 
workers have been found to be increasingly dependent 
on the automobile (10). A dummy variable is intro­
duced to associate home ownership with driving 
alone, which is a significant expense in rural areas 
and would most likely be expected of homeowners. 
Finally, length of residence is introduced to 
account for long delays involved in the decision to 
ride a transit vehicle or share a ride in rural 
areas, a sociological characteristic also pointed 
out in the literature (.!,10). Automobile availabil­
ity per licensed driver for shared ride is not 
assigned an expected sign in Table 1 as a result of 
two observations: (a) It has been shown that in 
urban areas the effect of this variable on shared 
ride is less than it is on drive alone, and (b) 
across-the-board increased automobile availability 
in rural areas, when combined with the previous 
observation, may result in an unpredictable effect 
on shared ride. 

Approximately 500 households from the rural towns 
of Cloquet and Le Sueur, Minnesota, were contacted, 
and household characteristics were recorded for 
those who were potential riders of the commuter 
rural transit service. Sample demographic and 
socioeconomic characteristics are summarized in the 
following table: 
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Characteristic 
Estimated population 
Estimated population growth (I) 
Percentage of total population 

Age (years) 
18-64 
> 65 

Below poverty level (1970 
Census) 

Household income 
People per household 
Workers per household 
Licensed drivers per household 
Automobiles per household 
Own residence (1) 
Length of residence (years) 

Cloguet Le Sueur 
12 000 4200 
5 12 

51.6 50.4 
13 12.2 
6,5 4.2 

19 190 20 120 
2,9 3,8 
1.4 2.4 
1.9 2,5 
1.6 2.1 
98 78 
22 8,7 

These data were supplemented by information on 
level-of-service characteristics of the transporta­
tion system. To minimize the effect of a variety of 
trip choices on the choice of mode to work, only 
simple home-based trips were considered, i.e., trips 
from home to work to home. The final sample of 77 
observations was divided into two subsamples: 40 
Cloquet observations and 37 Le Sueur observations. 
A disaggregate model was then developed for each 
subsample to allow evaluation of model transfer­
ability. Finally, a model was developed for the 
complete sample so that higher statistical sign if i­
cance could be obtained. 

ESTIMATED COEFFICIENTS 

Three basic disaggregate models to estimate rural 
work-trip modal choice were derived from the Min­
nesota data--one from the Cloquet sample (model 1), 
one from the Le Sueur sample (model 3), and one from 
the combined Minnesota sample (model 5). These 
models are presented in Table 2, The previously 
stated hypotheses about the positive influence of 
home ownership on driving alone and of length of 
residence on using transit and carpooling are re­
flected by the parameters associated with variables 
DROWN and RESL, respectively, The two parameters 
have the expected sign and, in the combined sample 
model, are significant at the 8 and 7 percent 
levels, respectively, The two variables were not 
included in the Cloquet model, since almost all 
Cloquet respondents owned their home and length of 
residence was uniform across individuals, A third 
hypothesis being entertained--that automobile avail­
ability per worker has a positive influence on driv­
ing alone and carpooling--is reflected in model 5 by 
the parameter associated with variable AAPW. That 
parameter is also of the expected sign and is sig­
nificant at the 5 percent level, 

For all estimated coefficients, significance 
improved drastically when the sample size increased, 

Table 1. Rural work-trip modal­
choice model: definition of 
variables. Variable Code 

D. 

Definition 

1 for drive alone, 0 otherwise 
1 for shared ride, 0 otherwise 
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as seen in Table 2, with the exception of the in­
vehicle travel time coefficient (IVTT), All other 
coefficients in the combined Minnesota model are 
significant over the 8 percent level. Very short 
commuting trips in Le Sueur probably account for the 
perceived lack of importance of IVTT in that town. 

For the convenience of prospective model users, 
two alternative models were derived for each town 
and these are also presented in Table 2, Models 2 
and 4 differ from models 1 and 3, respectively, in 
that the former two do not use the variable AAPW 
but, rather, its components. In addition, automo­
bile availability per licensed driver (AALD) was not 
found to be significant for work-trip modal choice 
in Cloquet and was not included in any demand model 
for that town. 

The combined Minnesota rural work-trip modal­
choice model is again presented in Table 3 along 
with two existing urban models, An inspection of 
the model coefficients confirms the observation 
found in the literature (1) that rural residents are 
more sensitive to travel -cost than urban residents. 
Furthermore, remaining household income (RHINC) is 
seen as having an influence on rural modal choice 
greater than in urban areas by an order of magni­
tude, which also indicates the increased importance 
of financial considerations for transportation de­
cisions in rural areas, Finally, it should be noted 
that the increased importance placed by urban com­
muters on OVTT in relation to IVTT is also observed 
in rural commuting and is of the same order of mag­
nitude, 

MODEL TESTING AND EVALUATION 

In testing the demand estimation models, six data 
sets were used, The following table summarizes 
these data sets and gives the monthly transit rider­
ship for each data set: 

Round-Trip 
Data Passengers 

Location Set Transit Route eer Month 
Cloquet !} Cloquet-Potlatch 292 

Cloquet-Diamond Match 
Le Sueur !} Le Sueur-Green Giant 157 

Le Sueur-Hospital 
5 Le Sueur-Telex 268 
6 Henderson-Telex 268 

Because of its small size, data set 2 could not be 
used alone but only in combination with data set 1, 
Similarly, data set 4 had to be used in combination 
with data set 3, Six estimation models were 
tested: Macromodel (l), Micromodel (l), Poisson 
model (_2), disaggregate Cloquet model 1, disaggre-

Expected Sign 
of Coefficient 

D, 
OPTC/HINC 
IVTT 
OVTT/DIST 
AALD8 

AALD, 
WPH, 
AAPW,,, 
RHINCa,s 

Round-trip out-of-pocket travel cost(¢)+ household annual income (1968$) 
Round-trip in-vehicle travel time (min) 

Negative 
Negative 
Negative 
Positive 
Unknown 
Positive 
Positive 
Positive 

DROWN8 

RESL1,s 

Round-trip out-of-vehicle travel time (min)+ one-way distance (miles) 
Number of automobiles per licensed driver for drive alone, 0 otherwise 
Number of automobiles per licensed driver for shared ride, O otherwise 
Number of workers in the household for shared ride, 0 otherwise 
Number of automobiles per household worker for automobile and shared ride, 0 otherwise 
Household annual income - 800 (number of persons in the household) for drive 

alone and shared ride (1968$), 0 otherwise 
1 for own residence and drive alone, O otherwise 
Length of residence (years) for transit and shared ride, 0 otherwise 

Note: a= drive alone, s = shared ride (carpool), and t = transit. 

Positive 
Positive 
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Table 2. Work-trip 
modal-choice model for 
rural Minnesota. Variable 

o. 
Coefficient 
t-statistic 

D, 
Coefficient 
t-statistic 

OPTC/HINC 
Coefficient 
t-statistic 

IVTT 
Coefficient 
!-statistic 

OVTT/DIST 
Coefficient 
t-statistic 

AALD3 

Coefficient 
!-statistic 

AALD8 

Coefficient 
t-statistic 

WPH, 
Coefficient 
t-statistic 

AAPW0 , 8 

Coefficient 
t-statistic 

RHINC,,, 
Coefficient 
!-statistic 

DROWN, 
Coefficient 
t-statistic 

RESL1,, 

Coefficient 
t-statistic 

Sum_ of chosen probabilities 
L*(O) 
L*(O) 
p 2 = 1-[L*(l))/ L*(O)] 

Cloquet 

Model 1• 

-2 .390 
-0.7153 

-3.192 
-0.899 8 

-77 .620 
-0.513 I 

-0.059 46 
-1.199 

-0.589 0 
- 2.266 

0.290 I 
0.215 2 

0.000 183 
0.573 8 

21.83 
- 29.11 
-43 .94 

0.34 

Model 2 

-1.854 
-0.793 1 

-3.497 
-1.209 

-69. 541 
-0.492 4 

-0.059 00 
-1.1 98 

-0.582 4 
-2 .284 

0.597 4 
0.643 0 

0.000 I 55 8 
0.513 2 

21.89 
-28 .98 
-43 .94 

0.34 
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LeSueur 

Model 3° 

-6 .525 
-2.340 

-8 .694 
-3.150 

-114.72 
-0.732 8 

-0.013 85 
-0.274 5 

-0.494 9 
-2 .324 

1.673 
1.536 

0 .000 508 
1.679 

1.214 
0.887 6 

0.037 46 
0 .530 9 

26 .64 
-16.14 
-40.65 

0.60 

Model 4 

-5 .912 
-2.036 

-5.639 
-1.311 

-155 .88 
-0.974 2 

-0.015 48 
-0.311 3 

-0.461 6 
-2.454 

1.166 
0 .571 7 

- 3.208 
- 0.692 8 

0.247 7 
0.409 9 

0.000 542 
1.778 

0.852 9 
0 .637 5 

0.040 94 
0.576 0 

27 .74 
-1 6.80 
-40.65 

0.59 

Combined 
Minnesota 
Model 5° 

-6.356 
-2.933 

-6.832 
- 3.378 

-136.99 
-1.437 

-0.029 31 
-0.983 3 

-3 .583 
-3 .583 

1.286 
1.667 

0.000 427 5 
2.057 

J.4 7 1 7 
1.406 

0.012 37 
1.500 

49.27 
-47.14 
-84.59 

0.44 

Note: L•(6) = log likelihood at convergence and L•(o) = log likelihood at zero. 
8 Selected for testing and evaluation. 

gate Le Sueur model 3, and disaggregate combined 
Minnesota models. 

Four error measurements were computed for each 
data set and model. These measurements included (a) 
absolute error (AE) and (bl percentage of absolute 
error (PAE), defined as a percentage of actual 
ridership. For data sets that were themselves 
combinations of other data sets, the sum absolute 
error (SAE) was computed to measure the total abso­
lute error of the component data sets. Percentage 
of sum absolute error (PSAE) was also calculated for 
SAE as a percentage of actual ridership. These 
error measurements are defined as follows: 

AE • 1actual ridership - estimated ridership!, 
PAE 1actual ridership - estimated ridership!/ 

actual ridership, 
N 

SAE• E ,actual 
i=l 
ship1 i• and 

N 

ridership - estimated rider-

PSAE • E 1actual ridership - estimated rider-
i=l N 
ship1i/ E actual ridershipi 

i=l 

where N is the total number of component data sets 
within a data set. 

In testing the three aggregate models (Macro, 
Micro, and Poisson) certain application problems 
were encountered, For example, in both Le Sueur and 
Cloquet, the transit systems only serve work trips 

at specific destinations. The market for these 
systems is therefore smaller than the general popu­
lation, The aggregate models tested do not seem to 
be suited for handling these cases since the values 
of independent variables such as RESTRPOP, POP0 , 
and POPd in the Macromodel and Micromodel become 
very small and may lead to inaccurate results. 

Other variables in the aggregate models also 
appear to be unclear in some applications. The 
variable BMILES in the Macromodel makes no distinc­
tion between deadhead miles and miles driven with 
passengers aboard. In certain cases, such as the Le 
Sueur system, which has one route between Le Sueur 
and Henderson 6 miles away, the deadhead miles are a 
significant portion of the total bus miles. In 
Cloquet, all service is with i n the city and deadhead 
miles are also further reduced as twice a day the 
bus drops off workers of one shift and leaves with 
workers from the previous shift without having to 
deadhead to the plant, These two situations are 
quite different, and it is unlikely that this model 
accurately handles both cases. Similar problems 
exist in applying the variable R, used by the 
Poisson model to account for system route mileage. 
Finally, it should be noted that, when applying the 
Macromodel and Micromodel, no corrections were made 
for fare, since in both cities the transit fare is 
the "base fare". 

Results 

The absolute error (AE) measurement for the six 
models tested is presented in Table 4 in two ways. 
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Table 3. Transferability of work-trip modal-choice model: rural versus urban. 

Variable 

D, 
Coefficient 
t-statistic 

D, 
Coefficient 
t-statistic 

OPTC/HINC 
Coefficient 
t-statistic 

IVTT 
Coefficient 
t-statistic 

OVTT/DIST 
Coefficient 
t-statistic 

AALD8 

Coefficient 
t-statistic 

AALD, 
Coefficient 
t-statistic 

WPH, 
Coefficient 
t-statistic 

AAPW8 , 8 

Coefficient 
t-statistic 

Rl-nNCa,s 
Coefficient 
t-statistic 

DROWNa 
Coefficient 
t-statistic 

RESLt s 
Coefficient 
t-statistic 

BW." 
Coefficient 
t-statistic 

DTECA,• 
Coefficient 
t-statistic 

Sum of chosen probabilities 
Log likelihood at convergence 
Log likelihood at zero 
p2 

Rural 
Minnesota 

-6.356 
-2.933 

-6.832 
-3.378 

-136.99 
-1.437 

-0.029 31 
-0.983 3 

-0.480 8 
-3 .583 

1.286 
1.667 

0.000 427 5 
2.057 

1.471 7 
1.406 

0.012 37 
1.500 

49.27 
747.14 
-84.59 

0.44 

Urban• 

New Bedford 

-2 .198 
-2 .648 

-1.535 
-1.535 

-87 .33 
-1.576 

-0.019 9 
-0.484 9 

-0.101 3 
-2.903 

2.541 
3.674 

0.449 9 
0.847 8 

0.187 4 
l.249 

0.000 072 
1.279 

1.026 
3.769 

0.000 60 
0.766 5 
N.A. 

-256.5 
-436.4 

0.41 

Los Angeles 

-2.746 
-4.85 

-1.830 
-3.95 

-24.37 
-2.07 

-0.014 65 
-2.25 

-0.1860 
-4.02 

3.741 
7.19 

0.609 3 
1.58 

0.081 0 
0.46 

0.000 083 
2.31 

0.810 I 
3.28 

0.000 27 
2.23 
N.A. 

-391.2 
-930.0 

0.58 

8Models and variables introduced in report by Atherton and Ben-Akiva (!!.). 

First, the error value is given so that conclusions 
on model performance can easily be drawn; evidently, 
lower errors indicate better model performance. 
Second, each model is compared with the Micromodel, 
and the deviation of its error with respect to that 
of the Micromodel is presented. A negative devia­
tion means that the model in question has a greater 
error than the Micromodel and is therefore less 
desirable. A positive deviation implies that the 
model has a smaller error than the Micromodel and is 
therefore more desirable. Table 4 also includes a 
relative error measurement (PAE), which indicates 
the relative size of the absolute error with respect 
to the actual ridership value. 

From the test results and the relative perfor­
mance comparisons of Table 4, the following conclu­
sions can be drawn: 

1. At all times and for any individual data set, 
performs 

than the 
the proposed disaggregate specification 
substantially (up to 88 percent) better 
Micromodel, To be sure, this conclusion is drawn 
from testing the disaggregate models on a town dif­
ferent from that used in model development. 

2. In testing model performance on combined data 
sets, the sum absolute error (SAE) again reveals the 
superiority of the disaggregate models. This con­
clusion can be drawn from the following table in 

Table 4. Estimation errors of six demand models. 

Estimation 
Location Data Set Model AE PAE 

Cloquet I and 2• Macromodelb 230 79 
Micromodelb 146 50 
Poissonc 260 89 
Cloquetd 0 0 
Le Sueur• 47 16 
Combinedf 18 6 

Le Sueur 3 and 4• Micro 275 176 
Cloquet 32 21 
Le Sueur 56 36 
Combined so 32 

s Micro 90 34 
Cloquet 81 30 
Le Sueur 17 6 
Combined 27 10 

6 Micro 262 98 
Cloquet 122 46 
Le Sueur 40 IS 
Combined so 19 

~Tri!:a tcd as one d.11111. sot . 
oo-valoped by Durkh11rd1 nnd Lago CTJ, 

~Die-~'°'lo ped by Ncwm1.n 11ncl Byrne(!), 
e Oovolpped with dl1nurozot• doro from Cloqu• I (mod~I 1). 

Improvement Over 
Micromodel (%) 

-58 

-78 
100 
68 
88 

88 
80 
82 

10 
81 
70 

53 
85 
81 

Devc,loped wilh d lnure;i.ue d1:11 a rrom Le Sueur (model 3). 
f Doveloped with dl11.11prci11:iue d11 1n rrom the combln_ed Cloquet-Le Sueur sample 

(model 5). 
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which the Cloquet model, when applied to combined Le 
Sueur data sets, performs substantially better than 
the Micromodel (data sets 3 and 4 are treated as one 
data set): 

Improvement 
Estimation over Micro-

Data Set Model SAE ~ model !%) 
3 and 4, 5 Micro 365 86 

Cloquet 113 27 69 
Le Sueur 73 17 80 
combined 77 18 79 

3 and 4, 5, 6 Macro 652 94 -4 
Micro 627 91 
Cloquet 235 34 63 
Le Sueur 113 16 82 
Combined 127 18 80 

3. At all times and for any data set, the pro­
posed disaggregate specification developed by using 
the combined Minnesota data performs substantially 
better than the Micromodel. 

4. The Macromodel and Poisson model perform 
substantially (up to 78 percent) worse than the 
Micromodel. Although not indicated in Table 4 and 
the table above, the error always represents under­
estimation. This observation supports previous 
remarks on the performance of the Poisson model 
(f,.2} but not on that of the Macromodel (.2_,11). 

CONCLUSIONS 

A disaggregate demand specification was developed to 
estimate rural work-trip modal choice. The incl u­
s ion of a set of policy-relevant variables allows 
the use of the model for implementing a wide range 
of transportation policies to improve transit system 
performance. The inclusion of mobility and socio­
economic variables allows one to take into account 
long-term changes in resident mobility and the local 
economy when determining modal choice. Although 
parameters did not change appreciably across the 
models developed for different towns, their statis­
tical significance in general increased as the 
sample size increased. 

When the rural specification is compared with 
existing disaggregate urban specifications, it is 
seen that variables associated with financial con-
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siderations are more important to rural commuters 
than they are to urban commuters, However, the 
increased importance placed on OVTT over IVTT is 
found to apply to rural and urban commuters in a 
similar fashion. 

The test results suggest that, in the prediction 
of rural work-trip modal choice, the disaggregate 
specification developed here performs better ( up to 
88 percent better) than the best existing aggregate 
models for all locations and at all times. Of the 
existing models, the Micromodel appears to perform 
better than the Macromodel or the Poisson model, 
which consistently underestimate the demand. 

Future work will include further testing of the 
disaggregate specification developed here. In par­
ticular, larger data samples will make it possible 
to identify a system of market segmentation so that 
the model can be tested on aggregate data with small 
aggregation bias. Research is planned toward devel­
oping improved specifications to increase the model 
sensitivity to a larger variety of policy options. 
For example, the model could be extended to handle 
additional modes of work travel or to include addi­
tional policy and socioeconomic variables. Research 
is also needed in developing similar specifications 
for additional trip purposes so that a more complete 
set of travel patterns for rural residents can be 
estimated. 
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Synthesized Through-Trip Table for Small Urban Areas 
DAVID G. MODLIN, JR. 

Research performed to develop an improved and simple-to-use set of models 
that would facilitate the synthesis of a through-trip table for urban areas of less 
than 50 000 population is described. The effects of functional classification, 
average daily traffic, percentage of trucks, route continuity, and urban area 
population were determined to be significantly correlated with through-trip 
patterns. A least-squares analysis led to the development of a set of simple 

multiple regression expressions that estimate (a) the percentage of through­
trip ends at each station and (b) the distribution of these trip ends among sta· 
tions. The relations developed are simple to apply. The introduction of the 
new parameters, especially route continuity, appears to have improved the ac­
curacy of the resulting trip table as compared with previous applications of the 
technique. 




