- G. Way. Tests on Treatments for Reflective Cracking. TRB, Transportation Research Record 647, 1977, pp. 10-13.
- D. Forstie, H. Walsh, and G. Way. Membrane Technique for Control of Expansive Clays. TRB, Transportation Research Record 705, 1979, pp. 49-53.

 G.F.D. Gonsalves. Evaluation of Road Surfaces Utilizing Asphalt Rubber, Arizona Department of Transportation, Phoenix, Rept. 1979-663, Nov. 1979.

Publication of this paper sponsored by Committee on Theory of Pavement Systems.

Overview of PAVER Pavement Management System

M.Y. SHAHIN AND S.D. KOHN

A brief overview of the PAVER pavement management system and the capabilities it offers its users is presented. PAVER is designed for use by military installations, cities, and counties. The system capabilities discussed are data storage and retrieval, pavement network definition, pavement condition rating, project prioritization, inspection scheduling, determination of present and future network condition, determination of maintenance and repair needs, performance of economic analysis, and budget planning.

PAVER is a pavement management system designed for use by military installations, cities, and counties. The system was developed and tested over the past 10 years and is currently being implemented by several agencies, including Fort Eustis, the Great Lakes Naval Training Center, and the City of Mesa, Arizona. This system was developed by the U.S. Army Construction Engineering Research Laboratory under the auspices of the Office of the Chief of Engineers, U.S. Army Corps of Engineers. It has been extensively tested prior to its implementation. The objective of this paper is to provide an overview of PAVER with emphasis on what is available to system users. Details of the system's development and results of an economic analysis of its implementation have been documented in a paper by Shahin and Kohn (1) and a paper by Kohn and Shahin in this Record.

PAVER provides the engineer with a practical decisionmaking procedure for identifying costeffective maintenance and repairs on roads and streets. The System 2000 is the data base manager. This system and other "interface" programs provide the user with report generation capability for critical information. This information allows objective input to the decisionmaking process.

PAVER provides its users with many important capabilities. These include data storage and retrieval, pavement network definition, pavement condition rating, project prioritization, inspection scheduling, determination of present and future network condition, determination of maintenance and repair (M&R) needs, performance of economic analysis, and budget planning. This paper describes these capabilities and presents example reports for each area.

DATA STORAGE AND RETRIEVAL

The PAVER data base is a custom-designed data structure defined on a commercially available computer data base manager called System 2000 (System 2000 is a registered trademark of the Intel Corporation).

The data structure consists of 12 data groups that are linked together to form a tree structure (see Figure 1). Storing the data in this structure enables the user to retrieve information based on its connection to other data in the data base. Space is available in each data group to store specific items related to that data group. The Pavement Structure data group shown in Figure 2 is an example.

The data can be stored and retrieved through special "interface" programs (FORTRAN or COBOL) or through the access language of the data base manager. Since these programs are interactive, the user has immediate access to the data base. The programs are designed to supply the information in useful format.

DEFINITION OF PAVEMENT NETWORK

An installation's (city's) pavement network consists of all surface areas that provide access ways for ground or air traffic (airfield pavements). This network must be divided and identified in order to use the data base. Networks are divided into branches, sections, and sample units, which can be briefly defined as follows:

 A branch is any identifiable part of the network that is a single entity and has a distinct function, such as an individual street.

 A section is a division of a branch that has consistent structural - composition, construction history, and traffic volume.

 A sample unit is the smallest unit of the network and is an area of the pavement section used during inspection.

The data base provides information on the pavement network through reports such as "lists" or "inventories". Figure 3 shows a typical output of the inventory report. This report provides general information about specific branches or sections, thus providing the user with overall inventory information.

PAVEMENT CONDITION RATING

A key component of any pavement management system is a condition rating procedure. The PAVER system uses the pavement condition index (PCI), a composite index of the structural integrity and operating condition of the pavement. It is a numerical index from 0 to 100, where 100 represents excellent condition. The PCI is determined based on quantity, severity, and type of distress, as shown in Figure 4. The PCI was developed to agree closely with the collective judgment of experienced pavement engineers.

The PCI has been divided into seven condition categories, ranging from "excellent" to "failed", as shown in Figure 5. These categories are useful for developing maintenance policies and guidelines.

The PAVER data base uses reports such as PCI, Inspect, and Sample to provide PCI information. Figure 6 shows a typical output of the Inspect report, which provides the user with PCI and distress information. The report can be used to prepare desk estimates of repairs and to determine history of pavement condition.

PROJECT PRIORITIZATION

Project prioritization is an immediate payoff of pavement network definition and pavement condition rating. The PCI report can be used for this purpose. It lists pavement sections in an increasing order of PCI. Figure 7 shows an example report out-

Figure 1. PAVER data structure.

Figure 2. Pavement Structure data group.

500+ PAVEMENT STRUCTURE (RG IN 1000)	
25014 DATE CONSTRUCTED (DATE IN 2500)	
25024 LAVER CATEODRY (NAME X(10) IN 2500)	
2303+ LAVER MATERIAL CODE (INTEGER NUMBER 999 IN 2500)	
2504# LAVER MATERIAL (NAME X(20) IN 2500)	
2505. LAYER THICKNESS (DECIMAL NUMBER 99.9 IN 2500)	
25044 TYPE OF COATING (NAME \$(10) IN 2500)	
2507+ LAYER COMMENTS (NON-KEY NAME X(39) IN 2500)	
2508+ PAVEMENT STRUCTURE UPDATE (NON-KEY DATE IN 2500)	
2509# FACTOR 2509 (NON-KEY DECINAL NUMBER 918)-99 IN 2500)	
2510# FACTOR 2510 (NON-KEY DECIMAL NUMBER 9(8),99 IN 25001	
2511# FACTOR 2511 (NON-KEY DECIMAL NUMBER 9(8).99 IN 2500)	
2512# FACTOR 2512 (NON-KEY DECIMAL NUMBER 9(8).99 IN 2300)	
2513# FACTOR 2513 (NON-KEY DECIMAL NUMBER 918).99 IN 2500)	
2514# PSTR-CONCAT INAME \$(19) IN 25001	
3100+ LAYER MATERIAL PROPERTIES (RG IN 2500)	
alote TEST DATE (DATE IN 3100)	
SID2+ TEST TYPE (NAME X(31) IN 3100)	
3103* TEST VALUE (DECIMAL NUMBER 9(5).9999 IN 3100)	
31044 TEST UNIT (NON-KEY NAME X(13) IN 3100)	
3105# FACTOR 3105 (NON-KEY DECIMAL NUMBER 9(8),99 IN 3100)	
3106+ FACTOR 3106 (NON-KEY DECIMAL NUMBER 9(8), 99 IN 3100)	
31074 FACTOR 3107 (NON-KEY DECIMAL NUMBER 9(8), 99 IN 3100)	
3108* FACTOR 3108 (NON-KEY DECIMAL NUMBER 9(8).99 IN 3100)	
3109* FACTOR 3109 (NON-KEY DECIMAL NUMBER 9(8).99 IN 3100)	
31108 THAT-CONCAT (NAME X(2A) TH 3100)	

Figure 3. Example output of Inventory report.

REPORT DATE- 02/18/82

		14	VENTORY		
	NON-F4	MILY	HOUSING P	AVENENTS	
		SURF TYPE	BRANCH	RANK	AREA (SY)
IWASN	WASHINGTON NORTH SECTION OL FROM- ROUTE 105 TO- CL MADISON AVE	ÁĞ	ROADWAY	PRIMARY	4007
	SECTION 02 FROM- CL MADISON AVE TO- N'LY SIDE HINES CIN	AC	ROADWAY	PRIMARY	6651
	SECTION OF FROM- S'LY SIDE HINES CH TO- CENTER OF SOMERVEL	AC 2	ROADWAY	PRIMARY	4000
	SECTION 04 FROM CENTER OF SOMERVEL TO- N°LY EDGE TAYLOR	AC	ROADWAY	PRIMARY	6340
	SECTION 05 FROM- S'LY EDGE TAYLOR TO- N'LY EDGE WILSON	PEC	ROADWAY	SECONDARY	4453
			TOTAL BR	ANCH AREA	25451
- Andrew	A AND A AN AN ANT AND AND A		HOUSE INC. D	AVENENTE	

put. The information in the report can be sorted based on pavement surface type, pavement rank (functional class), traffic type and volume, PCI range, or a combination of factors. Therefore, the report can be used to prioritize projects based on the user's policy.

INSPECTION SCHEDULING

The Inspection Schedule report has been developed to maintain current condition data with efficient inspection level. This report produces a plot and list of the pavement sections to be surveyed for the next six years for any type of branch use (roadway, parking, etc.) and surface type (asphalt, portland cement, concrete, etc.).

The schedule is based on two criteria. One is the minimum PCI that a given pavement type is allowed to reach, and the second is the rate of deterioration (loss of PCI points per year). The user inputs the minimum PCI values and the years allowed between inspections for various deterioration rates. The PCI for the selected sections is then predicted by a straight-line extrapolation based on

Figure 4. Steps for determining PCI of a pavement section.

STEP I DIVIDE PAVEMENT SECTION INTO SAMPLE UNITS

STEP & COMPUTE PAVEMENT CONDITION INDEX (PCI) 100-CDV FOR EACH SAMPLE INNT INSPECTED STEP ? COMPUTE FCI DE ENTIRE SECTION (AVERAGE PC'S OF SAMPLE UNITS)

THE COMPANE POLICE ENTINE SECTION INVERGE FORS OF SAMPLE UNITST

Figure 5. Correlation of M&R zones with PCI and condition rating for airfield pavements.

Figure 6. Example output of Inspect report.

REPORT DATE- 09/28/91 PAVEMENT INSPECTION

BRANCH NAME - WASH BRANCH NUMBER - IWAS BECTION NUMBER - 04	INGTON NORTH		SECTION SECTION SECTION	LENOTH - WIDTH - AREA -	2307 LF 24 LF 6340 S
INSPECTION DATE - 11	/08/79 P	C1= 76 F	ATING - VERY DI	000	-
CONDITION- RIDING-C2	SAFETY-CI	DHAINAUE-CI	SHOULDERS-GI	OVERALL-C	4
TOTAL NUMBER OF SAMPL NUMBER OF BAMPLES SUF RECOMMENDED SAMPLES STANDARD DEVIATION OF	LES IN SECTIO RVEVED= TO DE SURVEVE PCI DETWEEN	N= D= RANDOM UNIT	SURVEYED-	24 11 17 15.3	
EXTRAPOLATED DISTRES	S QUANTITIES	FOR SECTION-			
DISTRESS TYPE	SEVERITY	OUANT LTY	DENSITY-PCT	DEDUCT	-VALUE
ALLIGATOR CR	MEDIUM	592 SF	1.03		21.4
DEPRESSION	LOW	5 SF	0.00		4.0
EDGE CR EDGE CR EDGE CR	HIGH LOW MEDIUM	8 LF 13 LF 30 LF	0.01 0.02 0.05		7.4 0.2 4.0
JT REFLECT CR JT REFLECT CR JT REFLECT CR	HIGH LOW MEDIUM	74 LF 128 LF 278 LF	0.12 0.22 0.48		2.6 0.0 3.8
LANE/SHLDR DROP	LOW	49 LF 25 LF	0.08		2.0
LONG/TRANS CR	LOW	512 LF	0.89		1.6
PATCH/UTIL CUT	LOW	192 SF	0,33		0.8
RR CROSSING	LOW	270 SF	0.47		2.0
RUTTING	HEDLUH	150 SF 72 SF	0.26		2.0

Figure 7. Example output of PCI report.

REPORT DATE- 09/28/81

BRANCH	BRANCH	SECTION			SURFACE		ECTION	PAVENENT
NUMBER	USE	NUMBER	PCI	RATING	TYPE	A	REA/SY	RANK
PBENE	PARKING	01	10	FAILED	AC		440	SECONDARY
	12/04/79	LFRON1 PAR	KING	AREA	ETOJ I	PLDO I	002	
PBENE	PARKINO	03	10	FAILED	AC		440	SECONDARY
	12/04/79	[FRON] PAR	KING	AREA NA BLD	ET01 0	1001		Another and
PSTER	PARKING	03	13	VERY POOR	PCC		868	TERTIARY.
	10/17/79	[FROM] PAR	RINO	LOT	(TO) H	LDG 5	15	
PBENE	PARKING	02	19	VERY FOOR	AC		440	SECONDARY
	12/04/79	CEROM3 PAR	KING	AREA NA BLD	[[01]	1 1004		
I BACK	ROADWAY	01	21	VERY POOR	AC		5135	TERTIARY
ageneral.	02/11/01	CERONI E E	DOE I	HARRISON RD	CTOJ N	EDGE	MULBRY	IS RD
PBENE	PARKING	04	25	VERY POOR	AC		440	SECONDARY
	12/04/79	(FROM) PAR	KING	AREA NR BLD	CT01 0	1005		
PCOND	PARKINO	01	25	VERY POOR	PCC		550	SECONDARY

PC1 REPORT

Figure 8. Example case of PCI prediction when PCI was previously determined.

the maximum slope from either the last inspection or construction-overlay date (see Figure 8). Sections reaching the minimum PCI within six years of reaching the time limit based on the rate of deterioration are selected for inspection in the appropriate year.

Figure 9 shows a typical Inspection Schedule output with plot and list of cases. The example shown is for primary roadways with asphalt concrete surfaces. By using this report, the engineer can keep the pavement network data base up to date with minimal effort.

Figure 9. Example output of Inspection Schedule report.

TOTAL NO. OF SECTIONS SECT. NOT MEEDING REPAIRS NO. OF MISSING VALUES 0 .

Figure 10. Example output of PCI Frequency report for January 1982.

PCI FREQUENCY REPORT REPORT DATE: 81/09/28. BRANCH USE: ROADWAY PAVEMENT RAMK: P SURFACE TYPE: AC PCC FAMILY HOUSING: B VR4 1982/01 NO. SEC. CONDITION 2.50% FAILED 0.00% V.POOR 0 0 0.00% POOR 4 10.00% FAIR 14 35,002 3000 14 35.00% V.000D 7 17.50% EXCEL ************************* 40 á 12 16 NO. OF SECTIONS LIST OF SECTIONS IN PCI FREG REPORT VR= 1962/01 BRANCH USE ROADWAY ROADWAY ROADWAY ROADWAY ROADWAY -10-BRANCH CUR SECT. FROM ND. 04 05 03 02 02 01 01 FCI 29 65 64 57 68 82 72 PC1 CENTER OF SOMERVELL H'LY SIDE ANDERSON S'LY SIDE HINES CIR N EDDE HILSON AVE CL MADISON AVE ROUTE 105 ROUTE 105 N'LY EDGE TAYLOR HINES CIR CENTER OF SOMERVELL ENTR PINES GOLF CLB N'LY SIDE HINES CIR BUS STA ENTRANCE CL MADISON AVE INASN 0 47 49 52 52 56 59 INASN IMULB IWASN IWASS TOTAL NO. OF SECTION: AVERAGE PCII NO. OF MISSING VALUE: 40

DETERMINATION OF PRESENT AND FUTURE NETWORK CONDITION

An overall PCI Frequency report has been developed to help plan future M&R and to inform management of

Figure 11. Example output of PCI Frequency report for January 1983.

Figure 12. Flow diagram of decision process for determining M&R needs.

the network condition. The report shows an estimated frequency of condition (based on the PCI scale) for the year requested. The pavement sections included in the report can be selected based on branch use, pavement rank, and surface type.

The frequency is estimated as in the Inspection Schedule report by using a straight-line extrapolation of the PCI. Figures 10 and 11 show typical outputs of this report. These two figures show the estimated frequency of occurrence for the same set of pavement sections for two different years. The extrapolation presumes that no major repairs (such as slab replacement or overlay) have occurred between the last inspection and prediction dates. Thus, the impact of performing no major repairs can be seen.

Figure 13. Example output of Condition History report.

DETERMINATION OF MAR NEEDS

A decision process has been devised for determining the M&R needs of a pavement section, Figure 12 shows a flow diagram of this process. A first-level decision can be made, based on the PCI value, type of distress, and deterioration rate. PAVER provides reports such as PCI and Condition History to help the user make the first decision. The PCI report is an ordered listing of sections ranked by PCI (Figure 7). The Condition History report can be used to determine the rate of deterioration; the report plots the PCI over time for a given section. The plot shows the PCI at each inspection date and linearly extrapolates a point five years beyond the last inspection date. Figure 13 shows an example of this report. The type of distress can be determined from the inspect report, shown in Figure 6.

If a pavement section does not require further analysis, routine maintenance practices can be continued. Routine maintenance includes practices such as spall repair and crack filling. By using maintenance guidelines for specific distress types, such as those given in Table 1, the user can input a repair policy. This policy is used in a program called MRG (Maintenance and Repair Guidelines) to estimate the type and cost of routine repair to specific sections. The MRG report can also be used to compute the cost of overlay after distress repair. Figure 14 shows an output of the MRG report.

If a section requires further analysis, an evaluation summary is completed for the section. The evaluation is based on structural capacity, roughness, skid problems, and other relevant factors, as shown in the top half of Figure 15. Complete guidelines for performing the evaluation are presented elsewhere (1). Feasible M&R alternatives are identified based on the results of the evaluation, as shown in the bottom half of Figure 15. This figure is an output of the Evaluation Summary report that was developed based on input from many experiences (maintenance engineers). The output from the report is general. Therefore, the engineer needs to select specific alternatives and perform the design based on the user agency policy. This may include using nondestructive testing.

2

PERFORMANCE OF ECONOMIC ANALYSIS

Several repair (or construction) alternatives may be considered feasible for any given pavement section. To help select the appropriate alternative, an Economic Analysis program has been developed and added to the system. The program allows the user to input initial costs, periodic maintenance costs, and separate future maintenance costs. Figure 16 shows a typical input, and Figure 17 shows a corresponding

Table 1. Maintenance guidelines for asphalt pavement distresses.

	M&R Method									
Distress Type	Do Nothing	Crack Seal	Partial- Depth Patch	Full- Depth Patch	Skin Patch	Pothole Filling	Apply Heat and Roll Sand	Apply Sur- face Seal Emulsion	Apply Rejuvena- tion	Apply Aggregate Seal Coat
Alligator cracking			M,H					L	L	
Bleeding	L						L,M,H			
Block cracking	L	L,M,H							L	L.,M
Bumps and sags	I.		M,H	M,H	M,H					
Corrugation	L		M,H	M,H						
Depression	L		M,H	M,H	M,H					
Edge cracking ^a	- L.	L.M	M,H	M,H						
Joint reflective cracking	L	L,M,II	н							
Lane-shoulder drop-off ^b	L									
Longitudinal trans- verse cracking	L	L,M,II	н					L	Ľ	L,M
Patching and utility cut	L	М	Hc	He						
Polished aggregate	A									A
Potholes			L	L.M.H		L.M.H				
Railroad crossing	L			Concert.	L.M.H	CASEL				
Rutting	1.		L.M.H	M.H	L.M.H					
Shoring	T.		M.H		Sen and					
Slippage cracking	L	L	M.H							
Swell	L		and a second	M.H						
Weathering and raveling	Ĩ.		Н					L.M	J.	M.H

Note: L = low severity; M = medium severity; H = high severity; and A = has only one level of severity.

a if predominant, apply shoulder seal, e.g., aggregate seal coat. bif predominant, level off shoulder and apply aggregate seal coat. c Replace patch.

Figure 14. Example output of MRG report.

MEPONT DATE - 81/10/05.

MAINTEMANCE AND REPAIR OUIDELINES

				TOTAL	-	1000		1847	-
			OVERLAY	120				_	19030
		975 LF	CRACK FILLING	171	0.0	- 4	0 0	0	630
LONG/TRANS CR	н	1682 SF 975 LF	SHALLON PATCH	120	841.0	10093	2 336	1967	13136
ALL IGATOR CR	M	1442 SF					100	100	
DISTRESS TYPE	DIS	DIST-OTY	NORK TYPE	MATL	LABOR	LABOR	MAT'L	EQUIP	-
INSPECTION DA	TE -	02/11/81			90	CTION	PCI	-	29
BRANCH NHER BRANCH NHER SECTION NHER	- 14	NANINGTON NASN	NORTH			CTION CTION CTION	WIDTH MIDTH AREA	+	307 LF 24 LF 340 BY

Figure 15. Example output of Evaluation Summary report.

CURRENT VALUES ARE AS FOLLOWS	-
1 PCI /= 29	
2 LOCAL VARIATION(Y/N)	= N
3 SYSTEMATIC VARIATION(Y.N) 1	= N
A SHORT TERM RATE OF DETERIOR	ATTON(L.N.H) I
S LONG TERM PATE OF DETERTORA	TTON (L.N.H) IN H
4 MA IOP COUPCE OF DISTREESE(1.0	AD CLINATES - I
a HHOUR SUDRUE OF DISTRESSILU	HUIDLINHIE/ NA L
7 LOAD CARRYING DEFICIENCY (Y)	N) I = Y
8 SURFACE ROUGHNESS(L, M, H)	
9 SKIB/HYDROPLANING PROBLEMS	L.M.H) = L
10 PREVIOUS MAINTENANCE(L,N,H)	I= N
SELECT(A-D) 1=	
DC	
DATE 1= 10 FEB 02 FEAS	IBLE M&R ALTERNATIVES
BASE 1= M Y SHAHIN	FEATID LE WASH PCILE 29
FEATNM I . WASHINGTON BLVD	M&R REPAIR ZONE 1= MAJOR-OVERALL
***** RECOMMENDED MAI	NTENANCE ALTERNATIVES *****
1 I= RECONSTRUCTION	
2 IM OVERLAY STRUCT	URAL AC
4 ## OVERLAY PCC	

END

7

Figure 16. Typical input to Economic Analysis program.

	NUR ACTIVITY DESC	YEAR	CONT	TIME-SPACING
1	& IN DRAN. #10/TON	1982	32630.00	0
2	PRIME . S. 27/SY	1982	3802.00	0
3	4 IN AC . #30/TON	1992	38704.00	0
4	REP 2 X.L.5 INT COST	1987	3754.00	5
5	PATCH & MAINT 05/SY	1788	704.00	1
6	SURF SEAL 1/SY	1989	1409.00	0
7	SURF DEAL . 0. 1/6Y	1996	1409.00	0

Figure 17. Economic Analysis output for Input shown in Figure 16.

DATE:= 62/02/18.	PROJEC	TED COST ANALYSIS	DET	AIL
	SECTION	101-TH		
ALTERNATIVE = 4 IN A	AC/ & IN C	RAN SECTION	AREA(S. Y.)	14080.0
LIFE OF ALTERNATIVE	- 20 INTE	REST RATE!= 10.0	INFLATION RA	TEI= 0.0
M&R ACTIVITY	YEAR	COST(S)	PRESENT VAL	UE (9)
& IN GRAN. &LO/TON	1982	32630.00	32630.00	
PRIME. 8. 27/SY	1982	3802.00	3802.00	
4 IN ACTOSOFTCH	1232	98704.00	88704.00	
	TOTAL	125136.00	125136.00	
REP 2%, 1.5 INT COST	1987	3754.00	2330.94	
PATCH & HAINT, . 05/5	1968	704.00	397.39	
PATCH & MAINT 05/5	1989	704.00	361.26	
SURF SEAL 1/SY	1989	1408.00	722.53	
10 million (10	TOTAL .=	2112.00	1083.79	
PATCH & MAINT 05/S	V 1990	704.00	328.42	
PATCH & MAINT 05/ST	¥ 1991	704.00	298.56	
REP 2% 1.5 INT COST	1992	3754.00	1447.33	
PAICH & HAINT 05/SY	Y 1992	704.00	271.42	
	TOTAL :=	4458.00	1710.75	
PATCH & MAINT 05/5	Y 1993	704.00	246.75	
PATCH & MAINT 05/S'	1994	704.00	224.32	
PATCH & MAINT 05/S	1995	704.00	203.92	
PATCH & MAINT 05/5	V 1996	704.00	105.39	
SURF SEAL . 1/SY	1996	1408.00	370.77	
	TOTAL .=	2112.00	556.16	
		a contra la		
REP 2%.1.5 INT COST	1997	3754.00	898.60	
PATCH & MAINT 05/5	Y 1997	704.00	168.53	
	TOTAL	4450.00	1067.21	
PATCH & MAINT 05/S	Y 1998	704.00	153.21	
PATCH & MAINT 05/S'	Y 1999	704.00	139.20	
PATCH & MAINT 05/5	Y 2000	704.00	126.62	
PATCH & MAINT 05/5	¥ 2001	704.00	115.11	
INITIAL COST(#):=		125136.	00	
PRESENT VALUE (#) 1=	in the second second	134126.	43	
EQUIVALENT UNIFORM	ANNUAL COS	ST(#)]# 15754.	44	
EUAC PER SQ. YD. (\$		Lin on analast	12	

output. As shown, the user is provided with the initial cost, present value, equivalent uniform annual cost, and equivalent uniform annual cost per square yard. The Economic Analysis program allows the user to vary interest rates, inflation rates, repair costs, and timing so that their effect on alternatives can be easily analyzed.

BUDGET PLANNING

A budget planning report was developed to provide an estimate of the rehabilitation dollars required over a 10-year period for a given level of condition. The report is based on the user's input of minimum PCI levels for various branch uses and pavement rank. The user also inputs unit repair costs based on pavement surface type and the PCI scale; i.e., the cost of repair can be varied, depending on the PCI value. Thus, the increased cost of differing rehabilitation can be anticipated. The program also takes into account the inflation rate. Figure 18 shows an example output of this report.

This program predicts, for each pavement section, the year in which the minimum PCI is reached and calculates the cost of repair. The prediction is the straight-line prediction procedure explained in the Inspection Schedule report.

SUMMARY

This paper has presented a brief overview of PAVER, a pavement management system for military installations, cities, and counties. PAVER assists engiFigure 18, Example output of Budget Planning report.

		BUDD	SET PLANNI	NG REPOR	T RE	PORT	ATEL 6	91/09/28.
MANOU INT	-	HON			AL			
BRANCH USE PAVEMENT R SURFACE TY INFLATION FAMILY HOL	PEI AC RATE: /SING	10.00 B						
COST	FY TO REPAIR	2						
		÷						
384, 63	1981	·····						
132.10	1982							
12.07	1983							
0.00	1984	4						
60.21	1985							
178.01	1986				****			
11.22	1987	4						
3.60	1988	1.						
91.03	1989							
45.12	1990							
0.00	1991	i i						
		2						
917.99				*******	197		2	49 39
		~			cost	IN T	HOUSAND	R.
			LIST OF	CASES IN	ORT		neconne	4
FY REPA 1981 1981	TO IN	RANCH WHBER LEEB MULB	BRANCH USE ROADWAY ROADWAY	SECT. NG. 05 02	PAVE. RANK P	SUT AC AC	SEC AREA 7698 12551	COST TO REPAIR(#1000*S 55.74 96.02
1901	5 S	WASN	ROADWAY	01	P	AC	4007	26.45
1981	-	WASN	ROADWAY	02	P	AC	6651	47.22
1981	1	WASN	ROADWAY	04	P	AC	6340	64.03
TOTAL NO	, OF SI T NEED	ING REPA	IR1 20 9					
NO. OF H								
NO. OF H	ни	NTHUH PC	TABLE					

SUT UNLT COST TABLE COST/S0Y0 PCJ 0-20 21-40 41-80 61-80 91-100 12.00 10.00 8.00 7.00 5.00 SUT AC.

neers and planners with pavement management by providing the data base and computational capabilities. These capabilities are data storage and retrieval, pavement network definition, pavement condition rating, project prioritization, inspection scheduling, determination of present and future network condition, determination of M&R needs, performance of economic analysis, and budget planning.

ACKNOWLEDGMENT

The views expressed in this paper are ours and do not necessarily reflect the views of the U.S. Department of the Army or the U.S. Department of Defense.

REFERENCE

1. M.Y. Shahin and S.D. Kohn. Pavement Maintenance Management for Roads and Parking Lots. U.S. Army Construction Engineering Research Laboratory, Champaign, IL, Tech. Rept. M-294, Dec. 1981.

Publication of this paper sponsored by Committee on Pavement Maintenance.