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Table 2. Sample priority list for maintenance class 1, 
Section ADT PCR Traffic Interstate. No. per Lane SN PSI PCR Group MUC Category Ranking 

1350 5 000 40 2.5 80 5 8 B 14 
1352 9 000 33 1.6 57 3 2 B 3 
1354 3 000 53 2.2 69 4 8 C 12 
1356 7 500 23 1.6 49 2 1 B 1 
1357 2 200 59 2.6 71 4 8 C 13 
1359 10 000 28 2.5 72 4 6 A 8 
1360 3 500 57 2.5 74 4 8 B 10 
1362 5 500 49 2.4 62 3 2 B 4 
1364 6 100 29 2.2 68 4 6 B 9 
1366 7 200 42 2.5 64 3 4 B 7 
1367 4 200 54 2.0 53 2 2 B 2 
1369 1 700 36 1.6 60 3 2 C 5 
1381 2 900 55 2.2 67 4 8 C 11 
1383 12 000 29 2.3 59 3 3 A 6 

Note: Assume 10 percent PSI= 2.10. 

lected by the maintenance management program about a 
particular roadway section. 

The priority maintenance file would contain a 
listing of pavement sections and maintenance priori­
ties established in accordance with the system 
presented previously. Section priorities can be 
assigned on both a statewide and districtwide basis, 
and sections should be listed by route so that 
district engineers can formulate maintenance proj­
ects by grouping together continuous sections of 
similar PCR groups or priority ranges. This file 
can be easily assembled by taking data from the 
pavement condition file and computing the priority 
by using the criteria shown in Figure 6. There 
should be cumulative mileage calculations for prior­
ity listings to enable early identification of total 
state or district network mileage for each PCR group 
or any given priority. Such listings should be 
completed by late fall or early winter of each year 
and be given to district personnel, together with 
the recommended trigger value of statewide priority 
ranking for maintenance planning, so that agency 
personnel can begin planning maintenance projects 
for sections that have priorities above the 
established value. 
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Prediction of Pavement Maintenance Expenditure by 
Using a Statistical Cost Function 
SUE McNEIL AND CHRIS HENDRICKSON 

Effective management and control of pavement maintenance expenditures are 
becoming increasingly important as the magnitude of these costs increases. 
The use of a statistical cost function as a means of inexpensively and quickly 

forecasting the level of pavement maintenance expenditure is described. The 
statistical cost function predicts the level of real expenditures as a function of 
(a) traffic levels, measured in equivalent single 18 000-lb axle loads, and (b) 
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pavement age, measured as the number of years since the pavement was last 
resurfaced. Calibration of the cost model was performed for several turnpikes 
in the northeastern United States. The function was found to yield average 
errors of less than 10 percent in application to a turnpike section from 1956 
to 1979 and also to an entire turnpike in 1980. Application of the cost 
function to different regions or roadway types may require parameter recali­
bration to reflect these different conditions. 

In recent years, there has been a greater concern 
with planning and control of expenditures for road­
way maintenance. There are several reasons for this 
interest: 

1. Such expenditures are large, approximately 
$94 billion was spent on highway maintenance and 
operation by all units of government in 1978 (ll• 

2 = The paued highwfiy syst~m is not expanding as 
rapidly as in the past, so the average pavement is 
becoming older and, presumably, more expensive to 
maintain. 

3. Budgets have been restricted in recent years, 
and this has spurred efforts to improve maintenance 
practices. 

A critical element in the planning and control of 
maintenance expenditures has been the preparation of 
cost estimates. Traditionally, an engineering cost 
estimate of maintenance expenditure is used for 
estimating budgets and planning. Such estimates are 
obtained by summing the products of input quantities 
and their unit rates. For example, an organization 
might use the average cost per mile for shoulder 
maintenance multiplied by th,a number or miles of 
shoulders as part of an estimate of maintenance 
costs. These cost rates are derived from observed 
costs and quantities, are intended to be specific to 
a given situation, and rarely take into account fac­
tors such as weather, pavement age, and vehicle 
use. These cost estimates are calculated with the 
implicit assumption of linear proportionality be­
tween the input factors and the total cost. 

A statistical cost function is an alternative for 
estimating maintenance costs for budgets and plan­
ning. This paper investigates the use of a statis­
tical cost function for routine roadway maintenance 
based on turnpike data. This cost function relates 
roadway expenditures to traffic levels and pavement 
age, although other explanatory variables are con­
sidered. 

Appropriate and accurate statistical cost func­
tions would be quite useful in roadway management. 
First, they can be used to prepare cost estimates, 
Second, organizations are frequently faced with ex­
plaining large cost overruns, and a cost function 
may be used to indicate the orig in of these over­
runs, such as particularly heavy traffic. Cost con­
trol may also be facilitated by checking that costs 
are not accumulating faster than scheduled or that a 
particular section of road does not have unwarranted 
costs, possibly due to mismanagement. Finally, the 
insights provided by a cost function are difficult 
to obtain any other way. The function captures the 
marginal effect of a change in any of the explana­
tory variables (such as roadway traffic) and the re­
lations between such variables. 

Despite these advantages, statistical cost func­
tions have some limitations. The functions cannot 
be reliably extrapolated outside the range of the 
data used for calibration. When variables are not 
explicitly included, the transferability of the 
model is severely limited. For example, the use of 
turnpike data in this paper restricts the applica­
tion of the cost function because each turnpike in 
the sample is always maintained to a high standard, 
maintenance is rarely deferred, and there are few 
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problems of underdesign or overloading. The model 
is only reliably transferable to roads that are com­
parably managed. Similarly, the model might not be 
directly transferable to areas that do not have cli­
matic, topographic, or soil conditions similar to 
those of the areas used for calibration. However, 
coefficients may be estimated for these conditions 
with appropriate data. 

The cost function presented in this paper for 
roadway routine maintenance models the aggregate 
costs of such activities as joint cleaning and seal­
ing, crack filling, drainage maintenance, and minor 
patching. Essentially, these costs pertain to the 
road surface. Drainage maintenance is included be­
cause of the interrelation between the maintenance 
of adequate drainage and a good pavement surface. 
The data were obtained directly from turnpike 
records and inclnde lahor, materials, supervision, 
and equipment costs. 

In this paper, these costs are modeled as an al­
gebraic function of a series of explanatory var i­
ables that influence the extent of maintenance 
required. Broadly, the objective was to develop a 
function that can be used for forecasting routine 
maintenance costs and gives some insight into the 
relations between costs and explanatory variables. 
The model is also used to test the following hypoth­
eses: 

1. Maintenance 
creases, measured 
heavier axle loads. 

2, Maintenance 

costs increase as 
as larger vehicle 

costs increase as 
surface becomes older. 

traffic in­
volumes and 

the pavement 

3, Maintenance costs increase in years or loca­
tions with more severe weather. 

Although these hypotheses are widely accepted, esti­
mation of cost models can yield numerical estimates 
of the amount of cost increases due to increases in 
traffic, pavement age, and roadway area. 

The organization of the paper is as follows: (a) 
an examination of the trends in routine maintenance 
costs over time with and without inflation, (bl a 
discussion of the model formulation, including the 
appropriate factors to be included and the sources 
of data, (c) a description of the estimation results 
and their implications, (d) a description of the use 
of the model for prediction and some experiences in 
validating the model; and (e) conclusions. 

TRENDS IN MAINTENANCE EXPENDITURE OVER TIME 

Pavement maintenance expenditures have increased 
rapidly in recent years, but the extent to which 
various factors are responsible for this increase is 
not clear. The solid line in Figure 1 shows the 
cost per lane mile of maintenance for a 30. 2-mile 
section of the Ohio Turnpike between 1956 and 1979. 

-With few exceptions, the cost of maintenance has in­
creased nearly every year. Over the 24-year period, 
expenditure increased by more than 500 percent, from 
$644/lane mile in 1956 to $3917/lane mile in 1979. 

One major cause of this cost increase has been 
inflation in the prices of the labor and materials 
used in the maintenance process. The extent of this 
inflation can be seen in the increase in the Federal 
Highway Administration Highway Maintenance and 
Operation Cost Index (FHWA MOC) (,1). This index in­
dicates the relative costs of typical maintenance 
inputs in terms of the cost of these inputs in a 
base year, 1967. The price of these typical inputs 
has increased more than 260 percent during the pe­
riod from 1956 to 1979. 

Although inflation has been a major cause of 
maintenance cost increases, it has not been the only 
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Figure 1. Maintenance cost per lane mile for section of Ohio Turnpike from 
1956 to 1979. 
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factor responsible. If the effects of input pr ice 
inflation are removed by multiplying the costs in 
any year by the ratio of the FHWA MOC index in 1967 
to the FHWA MOC index in that year, then maintenance 
expenses are converted to constant 1967 dollars. 
The broken line in Figure 1 shows the resulting 
trend in maintenance expeditures per lane mile in 
constant 1967 dollars on the same section of the 
Ohio Turnpike. Like the curve in which the effects 
of inflation are not removed, the costs tend to in-
crease over time but at a much slower rate. Over 
the 24-year period shown in Figure 1, costs increase 
by 68 percent rather than by the 500 percent that 
occurs when the effects of input price inflation are 
not removed. In addition, the variation of these 
real costs is quite large from year to year. 

Clearly, factors other than inflation influence 
the level of maintenance expenditure. For example, 
if the traffic that uses a section of road is found 
from historical records and converted to the number 
of 18 000-lb equivalent single-axle loads (ESALs) 
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that use the road by using the appropriate factors 
(~) to account for the relative damage caused by 
heavier vehicles, the cost of routine maintenance 
tends to increase with increasing ESALs, as shown in 
Figure 2. Unfortunately, graphical analysis is in­
sufficient to capture the simultaneous effects of 
several factors: therefore, multivariate statistical 
techniques are used here to model the effects of 
various factors on maintenance costs. 

STATISTICAL MODEL OF PAVEMENT MAINTENANCE COST 
EXPENDITURE 

Numerous factors could be postulated as affecting 
the amount of pavement maintenance expenditures. 
Among these factors might be the current state of 
the pavement (including age, pavement type, and the 
adequacy of past maintenance), stress on the pave­
ment (including traffic and weather effects), the 
procedures used for maintenance (including the 
amount of mechanization and the type of materials 
used), and various institutional factors (including 
type of management structure, availability of funds, 
and wage levels of workers). Due to lack of data 
and knowledge, it would be difficult to include all 
of these various factors in a cost model. Accord­
ingly, only a few of the most important of these 
factors can be included. Other factors are either 
assumed to be constant (so that their influence does 
not change from one year to the next) or are of 
lesser importance in determining costs. 

For the statistical cost model, the only explana­
tory variables used are those representing the traf­
fic-related stress and the age of the pavement. As 
noted above, it is hypothesized that maintenance ex­
penditures will increase with increases in either of 
these two explanatory factors, which are denoted AGE 
and ESAL. AGE, the age of the pavement, is measured 
by the average number of years since a pavement sec­
tion was last resurfaced. This variable is a proxy 
for the deterioration of the pavement over time due 
to the action of the weather. ESAL, the number of 
equivalent 18 000-lb axle loads, is used as the mea­
sure of traffic-related stress. The axle-load 
equivalency factors (ESALs) represent the relative 
effects on the pavement of axle loads of different 
weights (].) . The number of ESALs reflects the ef­
fects of both increased vehicle volumes and heavier 
axle loads. 

Several other factors and different measures of 
traffic were explored as additional or alternative 
explanatory factors. A later section in this paper 
describes the results of these alternative model 
forms. As noted above, a major problem with adding 
these additional factors is obtaining adequate data 
and variation in the explanatory factors to identify 
their actual effects. 

In order to calibrate the model of maintenance 
expenditure, detailed data on expenditures, traffic 
volume (in ESALs), and pavement age were required, 
even without considering additional factors. Un­
fortunately, the accounting practices and volume­
counting programs of many highway agencies do not 
report these three pieces of information at a suf­
ficiently disaggregated level to permit meaningful 
model estimation. Fortunately, many turnpikes rou­
tinely gather the required information. Traffic 
volumes by vehicle types and pavement sections are 
recorded as part of toll-collection records. Main­
tenance expenditures and dates at which resurfacing 
is undertaken are also available by section since 
the original construction of the turnpikes. The 
various sources of the calibration data are given in 
Table 1, where observations are assembled for each 
year and each roadway section. McNeil and Hendrick­
son (]) include a detailed description of the 
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Table 1. Sources of turnpike data. 

Total No. of 
No. of Years of No. of Length Observa-

Turnpike Sections Data Lanes (miles) tions 

Ohio 8 1956-1979 4 241 192 
Pennsylvania 5 1978-1979 4 469 10 
West Virginia I 1955-1979 2 88 25 

sources and the preparation of the data. 
The choice of a model form is also necessary in 

specifying a statistical cost function. A linear 
and a log-linear functional form are used for the 
cost function presented here. These forms may be 
interpreted as first-order approximations to any 
function, but both forms have some disadvantages. 
The linear function implies that there ace constant 
marginal effects that are independent of the level 
of any variable. A marginal effect in this model is 
the change in real maintenance cost associated with 
a unit change in traffic or pavement age. The log­
linear form, so called because it is linear in the 
logarithms of the variables, does not allow any of 
the variables to take a zero value. 

ESTIMATION RESULTS 

The models were estimated as follows: 
linear equation, 

For the 

COST= 596 OH+ 3525 WV A- 476 PA+ 0.0019 ESAL + 21.7 AGE (1) 
(1.50) (5.29) (0.35) (3.93) (1.93) 

and, for the log-linear equation, 

Qn(COST) = 4.22 OH+ 4.94 WVA + 4.58 PA+ 0.37 Qn(ESAL/100) (2) 
(7.19) (8.71) (7.44) (5.38) 

+ 0.066 Qn(AGE) 
(2.06) 

where COST is the cost per lane mile (in 1967 dol­
lars) for routine pavement maintenance: OH, WVA, and 
PA are dummy variables: and the remaining variables 
are as already defined. OH, WVA, PA take on the 
value one if the data refer to the Ohio, West Vir­
ginia, or Pennsylvania Turnpikes, respectively, and 
zero otherwise. For example, if the data are for a 
section of the Pennsy l vania Tu rnpike, then OH = o, 
WVA = O, and PA = 1. The t-statistics are shown in 
parentheses under 
above equations. 
was 0.88. 

the appropriate coefficient 
For both models, the R 2 

in the 
value 

To account for variables not included and random 
effects, an error term is assumed in Equations 1 and 
2 for calibration of the coefficients. These error 
terms were assumed to be first-order serially cor­
related (4). A first-order serial correlation im­
plies that errors in one period carry over to the 
next. various physical or economic effects cause 
this serial correlation. For example, the influence 
of bad weather in one year increases expenditures in 
that year and subsequent years. Similarly, the 
general economic climate may cause a reduction in 
expenditures from year to year, Statistical tests 
on preliminary estimates of the models indicated the 
existence of a first-order serial correlation of 
this type. The correlation coefficients for succes­
sive error terms were 0.93 for the linear model 
(Equation 1) and 0.78 for the log-linear model 
(Equation 2) in the final model. These correlations 
are useful for prediction, as described later in 
this paper. 

Several of 
above indicate 
models. The 
relatively high 

the estimation statistics reported 
the statistical Properties of the 

R2 or goodness-of-fit measure is 
(R 2 = 0.88) for both models, which 
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indicates a reasonable level of explanation for 
variations in costs. With the exception of the con­
stants for Pennsylvania and Ohio in Equation 1, the 
hypothesis that the coefficient equals zero (imply­
ing that no relation exists) can be rejected with a 
95 percent confidence level for all coefficients 
based on the values oft-statistics. 

The partial derivatives of Equations 1 and 2 with 
respect to each of the variables give the greatest 
insight into the model. For the linear model, these 
derivatives represent the change in cost for a unit 
change in the variable. In all cases, the signs of 
the partial derivatives are positive: so, as ESAL 
and AGE increase, the cost of maintaining a section 
increases. This result is consistent with the first 
two hypotheses proposed in the introductory section 
of this paper: the third hypothesis is discussed in 
the next section. The equations do not permit econ­
omies of scale to be assessed with respect to the 
number of lanes and the length of the section, since 
multicollinearity prevented the separation of these 
effects. 

The constants may be interpreted as fixed costs, 
such as supervisory costs. Different constants were 
estimated for each turnpike to represent the dif­
ferences in management and scale. In the case of 
Pennsylvania, the low t-statistics for the constant 
and the fact that only 10 observations were avail­
able prevent any reliable conclusions being made re­
garding the differences in constant costs between 
the turnpikes. 

The equations indicate that, as the age of the 
pavement increases, and the road is subjected to the 
cumulative effects of weather and time, the cost of 
maintenance increases. Simply stated, the linear 
equation (Equation 1) implies that, for each addi­
tional year of pavement age, the maintenance costs 
increase by $21.7/lane mile. In the log-linear 
equation (Equation 2), the marginal increase in 
maintenance cost varies with the pavement age, the 
length of the section, and the traffic, but an X 
percent increase in age will result in an increase 
of 0.066 x X percent in cost. For example, suppose a 
section is four years old and costs $2000 annually 
to maintain. Without considering serial correla­
tion, one would expect that in another year the 
maintenance cost would increase by $22 if the linear 
equation were used and $33 if the log-linear equa­
tion were used, due to increased pavement age. 

Figure 3 shows the cumulative increases in main­
tenance costs over 10 years due to the increase in 
age alone for initial maintenance costs of $1000, 
$2000, and $3000 annually. Figure 3 also shows the 
disadvantages of both the linear and log-linear 
forms: The linear form has constant slope whereas 
the log-linear form is only valid for pavements that 
are more than a year old. In effect, the linear 
model represents the effect of age on average pave­
ments, since no interactive terms between age and 
other variables are included. 

Similarly, the equations also indicate that main­
tenance cost increases with increased vehicle 
weights and volumes, expressed in terms of ESALs. 
Figure 4 shows a graph of the maintenance cost for 
the linear and log-linear equations for an arbitrary 
section of the Ohio Turnpike over a range of typical 
ESALS, 

Both the linear and log-linear equations, as ap­
proximations to the true functional form of the cost 
function, verify the first two hypotheses as origi­
nally proposed. The graphs included in this section 
illustrate the implications of the functional forms. 

ALTERNATIVE MODELS 

In estimating Equations 1 and 2, several alterna-
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Figure 3. Cumulative increases in maintenance cost due to age. 
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tives to ESAL values were used as indicators of 
traffic and additional variables were also included 
to account for weather. The models represented by 
Equations 1 and 2 gave the most reasonable fit, but 
the alternatives warrant some discussion. 

ESALs were chosen as the best single measure of 
traffic that accounts for increases in both traffic 
volume and traffic weight. The total number of 
vehicles and the number of passenger-car equivalents 
(PCEs) using the pavement were also used. The model 
that used number of vehicles did not produce a good 
fit, and, although the fit with PCEs was comparable 
to that with ESALs, ESALs were believed to be a more 
appropriate measure of traffic. One reason for the 
comparable fit with ESALs or PCEs was that these two 
traffic measures were highly correlated in the cali­
bration data set. 

The problem of choosing a single measure for 
traffic could be overcome by estimating specific 
coefficients for each vehicle class. Unfortunately, 
there was insufficient variation in the data to per­
mit accurate estimation of such coefficients. ESAL 
miles of travel seems to be a reasonable traffic 
measure, since it reflects both pavement stress and 
amount of traffic. 

Equations 1 and 2 were also estimated so as to 
include two variables to account for weather ef­
fects: the number of freeze-thaw cycles (FR) and 
the amount of precipitation (PR) in each year. These 
variables were estimated from records of meteorolog­
ical stations near each pavement section. Although 
the coefficient estimates had the correct signs and 
good t-statistics for these variables (except for FR 
in the log-linear equation), the R2 only improved 
marginally (an increase of 0.006 for the linear 
equation and O. 008 for the log-linear equation) and 
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large changes in FR and PR resulted in only small 
changes in cost. Typically, a 10 percent change in 
either PR or FR implied less than a 1 percent change 
in cost. The variables FR and PR were not included 
in the final mode because they pose a prediction 
problem for forecasting and show very little var i­
abili ty in the data used for calibration. Most of 
the variation in FR and PR occurs between states and 
is accounted for by the constants. 

In addition to the two factors included in the 
final model--pavement age and traffic--other factors 
might also be expected to affect the level of pave­
ment maintenance expenditure. Several of these fac­
tors were described earlier. Unfortunate~y, addi­
tional factors could not be added to the cost model 
because of the unavailability of data or the lack of 
variation of these factors in the calibration data 
set. In the latter case, the effect of the factor 
could not be distinguished from the constant term in 
the cost models. In transferring the cost models to 
different reg ions or pavement types, parameters in 
the model should be recalibrated to ensure good fit 
because these constant factors might be expected to 
change and thereby affect the amount of maintenance 
expenditure. 

PREDICTION WITH THE COST FUNCTION 

Prediction with either the linear or the log-linear 
equation may be carried out in two ways. The first 
method is the most obvious: Substitute for the ex­
pected values of the explanatory variables, AGE and 
ESAL, and obtain the predicted maintenance cost, as 
illustrated in the following example. 

Suppose that an estimate of maintenance costs for 
section 1 on the Ohio Turnpike is required for 
1980. In 1979, the average pavement age on section 
1 was 4. 8 years and the traffic level was 500 300 
ESALs. In 1980, the pavement will be one year older 
(AGE= 5.8), and we shall assume that the same level 
of traffic occurs (ESAL z 500 300). With these 
values, the predicted maintenance expenditure in 
1980 is 

COST= 596 + 21.7 *AGE+ 0 .19 x 10-2 ESAL = $ 1672 (3a) 

by using the linear Equation 1 and, taking exponen­
tials on Equation. 2, 

COST= 12.4 ESAL0 ·37 AGE0 ·006 = $1789 (3b) 

by using the log-linear equation. 
Simply substituting for ESAL and AGE resu:l.ts in 

predictors that are unbiased but not "best" in the 
sense that the variance is large. This method does 
not account for serial correlation of the error 
terms (i.e., "carry-overs" from year to year), but 
it is inappropriate for a "ball-park" figure. 

A more refined prediction estimate may be ob­
tained by considering the serial correlation, but at 
the cost of more computational effort. Assuming 
yearn was the last year for which actual costs are 
known, the predicted cost in year i (COSTi) is 
given by 

when the linear equation is used and by 

when the log-linear equation is used, where 

COSTi = best linear unbiased estimate 
of cost in year ii 
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COSTi and COSTn 

COSTn 

p 

predicted values of cost in 
the appropriate years, obtained 
by substituting for the explana­
tory variables; 
observed value of cost in 
year ni and 
correlation coefficient. 

For the example described 
that p = 0.93 for the linear 
the log-linear equation and 
by using the linear equation, 

above, if it is known 
equation and O. 7 8 for 
COST79 = $1354, then, 

COST 79 = $1354, COST80 = COST 80 + p(COST 79 - COST 79 ) 

= $1672 + 0.93 (I 351- 1656) = $1391 

and, by using the log-linear equation, 

QnCOST 80 = QnCOST 80 + p(QnCOST 7 9 - QnCOST 79 ) 

= 7.49 + 9.78(7.21 -7.48) = 7.48 

or cosT80 = $1454. 
After the functions were calibrated by using the 

data summarized in Table 1, two additional sets of 
expenditure observations were used to test the pre­
dictive ability of the models. Observations from 
1956 to 1979 for the last maintenance section on the 
Ohio Turnpike (section 8) were kept as a hold-out 
sample to test the transferability of the model to 
locations similar to those used for estimation. 
Similarly, observations for all eight sections for 
Ohio for 1980 were obtained to test the usefulness 
of the model for forecasting maintenance costs for 
the sections used for calibration. 

For section 8 of the Ohio Turnpike, fitted values 
were obtained by using the method described above 
and assuming that the actual cost in the previous 
year was known. The linear form resulted in an 
average absolute error in prediction of 9.5 percent 
for section 8 over the 24-year period. Similarly, 
the log-linear form resulted in an average absolute 
error of 8.5 percent. These errors indicate that 
the model is transferable to sections that have 
similar climate, traffic, and maintenance standards 
and that both equations produce similar predictions. 

Two types of fitted values were calculated to 
compare with the 1980 data. The first is an estima­
tion of the cost given the traffic in 1980, and the 
second is an estimate based on expected traffic for 
1980. In practice, the latter method would be used 
since traffic levels are not known in advance. For 
illustrative purposes, a linear trend based on the 
traffic in 1978 and 1979 is used to estimate the 
1980 traffic. 

The average percentage prediction error and the 
average absolute percentage prediction are simple 
measures of the goodness of fit of the equations. 
The average percentage prediction error is an over­
all measure of the predictive ability. It is cal­
culated by averaging the percentage difference be­
tween the actual and predicted values. The average 
absolute percentage prediction error is a measure of 
the magnitude of the expected prediction error in 
each section for each year. It is calculated by 
averaging the absolute value of the percentage dif­
ference between the actual and predicted values. If 
the equations underpredict some sections and over­
predict others, then the average error of predic­
tions will tend to be zero, whereas the average ab­
solute error of prediction indicates the actual 
magnitude of the errors. 

Assuming the traffic was accurately predicted or 
known, the average absolute error in predicting the 
maintenance cost was found to be 5 .4 percent com­
pared with an average absolute error of 9.6 percent 
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in the Turnpike budget estimate (converted to 1967 
dollars). All of these reported errors have been 
calculated by using the linear equation, but similar 
results can be obtained by using the log-linear 
equation. 

By using the predicted traffic, the average ab­
solute error of prediction is 9 .1 percent and the 
average error of prediction is 8.1 percent. These 
errors are lower than those of estimates made by the 
Turnpike authority, which indicates that the model 
can be used successfully to predict maintenance 
costs. When either the known or the predicted traf­
fic for 1980 was used, the average error of pred ic­
t ion was also below the error in the Turnpike budget 
estimates. Results are similar for both the linear 
and log-linear models. 

The comparison of errors described here is in 
terms of real (1967i dollars. In practice, fore­
casts of the rate of inflation are also uncertain, 
so budget forecasts in current dollars have an addi­
tional source of error. For 1980, however, a simple 
quadratic projection of the FHWA MOC to 1980 re­
sulted in a negligible error, and the errors re­
ported here would be similar for real or current 
dollar forecasts. 

CONCLUSIONS 

This paper has discussed the possible uses of sta­
tistical cost functions, described the trends that 
have occurred in routine pavement maintenance costs 
on the Ohio Turnpike over the past 24 years, and 
developed statistical cost functions for routine 
maintenance expenditures. The cost functions may be 
used to forecast expenditure in real dollars based 
on the age of the pavement and the level of traffic 
on the roadway. The linear and log-linear model 
forms gave comparable results. 

In addition to traffic levels and pavement age, 
there are numerous other factors that influence the 
level of maintenance expenditure. However, several 
validation exercises suggest that the simple cost 
function may be adequate for many managerial pur­
poses. When used to predict expenditures on a sec­
t ion of the Ohio Turnpike and to forecast expendi­
tures on all sections of that Turnpike, cost func­
tions yielded average absolute errors of less than 
10 percent. Recalibration of the model parameters 
may be necessary in applying the models to different 
roadway types or circumstances. 

Our conclusion is that statistical cost functions 
can be an effective mechanism for predicting main­
tenance costs. Highway agencies may consider ac­
tions to gather appropriate data and estimate simi­
lar models. 
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