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Selecting Two-Regime Traffic-Flow Models 

SAIDM. EASA 

A procedure for selecting two-regime macroscopic models for a given set of 
traffic-flow data is presented. The procedure is based principally on the 
theoretical characteristics among the various regions of macroscopic models, 
which includes the limiting case and the convexity and concavity properties. 
The input to the procedure is represented by the basic traffic-flow criteria 
(free-flow speed, optimum speed, jam density, and so on) as well as auxiliary 
criteria "to account for the variability of the traffic-flow relations in the inter· 
mediate ranges of flow. With these criteria, which are established from the 
data, the procedure can directly output model parameters, through simpli
fied graphical tools, for the non-congested- and congested-flow regimes. 
Application of the procedure by using actual data was made to illustrate 
its use and to discuss some issues related to establishing the traffic-flow 
criteria from the data. This application also illustrates the flexibility of 
the procedure and the ease with which the specified criteria can be adjusted 
to further improve the data fitting. The procedure presented in this paper 
significantly reduces the need for using computer facilities in estimating 
traffic-flow relations and as such should prove useful in many transporta
tion applications. 

Macroscopic traffic-flow models have been widely 
used in the field of transportation, including free
way operations, highway levels of service, environ
mental studies, and transportation planning. Gen
erally, these models can be used to describe the 
traffic-flow relations in two ways: single-regime 
and two-regime representations. In the former, the 
entire range of operation is represented by a single 
model, whereas in the latter, two models are used-
one for the non-congested-flow regime and the other 
for the congested-flow regime. The idea of the two
regime representation was first proposed by Edie 
(_!). The general macroscopic models, their estima
tion approaches, and the scope of this paper are 
discussed first. 

GENERAL MICROSCOPIC AND MACROSCOPIC MODELS 

The general car-following (microscopic) equation 
developed by Gazis and others (~ 11_) is given as 
follows: 

where 

T 

a 

t, m 

speed of leading and following vehi
cles, respectivelyi 
acceleration (or deceleration) rate of 
following vehiclei 
time lag of response to stimulusi 
constant of proportionality (referred 
to throughout as a model parameter) i 
and 
model parameters. 

By integrating Equation l, the general form of 
macroscopic models has been developed by Gazis and 
others (1), By using this general form, a matrix of 
macroscopic models has been established for dif
ferent combinations of t and m parameters by May 
and Keller (!l. This matrix has undergone some ad
justments by Ceder (~l and by Easa and May (il• The 
final version of the matrix is shown in Figure 1, 
along with illustrations of its use for the two
regime representation. 

Figure l shows the speed-density relations and 
consists of five regions. In regions l and 2, 
models have no intercept with the speed axis, 
uf + "'• In regions 4 and 5, models have no in
tercept with the dens ity axis , kj + "'• Models 
in region 3 have in tercepts with both the speed and 
the density axes. Single-regime representation is 
usually accomplished by using models from region 3. 
The two-regime representation can be made, as illus
trated in Figure 1, by using models from regions 1, 
2, or 3 for the congested-flow regime and from re
gions 3, 4, or 5 for the non-congested-flow regime. 

ESTIMATION APPROACHES 

Estimation of macroscopic models is an essential 
task, For a given set of traffic-flow data, one 
often needs to estimate model parameters that best 
represent these data. In th is regard, an approach 
employing computer techniques has been developed by 
May and Keller (_!) • This approach uses regression 
analysis to estimate model parameters for specified 
values of traffic-flow and statistical criteria. 
These er iter ia include free-flow speed Uf, optimum 
speed u0 , jam density kj, optimum density k0 , 
maximum flow qm• and a mean-dev iation cr iter ion. 

In an attempt to significantly reduce the need 
for using computer systems, another theoretical
graphical approach has been recently proposed and 
applied to the estimation of single-regime models 
(7). This approach is based principally on the 
theoretical relations among the first five criteria 
mentioned above and model parameters t, m, and 
a. A simplified graphical tool was used to repre
sent those relations and could directly provide 
model parameters that satisfy specified traffic-flow 
criteria. This approach was applied later to the 
estimation of a special case of two-regime models by 
Easa and May (il • The procedure that has been de
veloped for estimating the single-regime models cor
responds to region 3 and that developed for the two
regime models corresponds to regions 2 and 4 and in 
a preliminary fashion to region 3. In both pro-
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Figure 1. Macroscopic models and two-regime representation. 
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cedures, the traffic-flow er iter ia may be specified 
as single values or as ranges. 

SCOPE OF PAPER 

The primary purpose of th is paper is to establish 
the theoretical relations of the remaining regions 
( 1 and 5) and to develop a procedure for selecting 
the particular region--and the model within that 
region--that satisfies specified traffic-flow cri
teria for both non-congested-flow and congested-flow 
regimes. Specifically, the selection procedure will 
determine one of the three regions 1, 2, or 3 for 
the congested-flow regime and one of the three re
g ions 3, 4, or 5 for the non-congested-flow regime 
and will provide the respective model parameters for 
each regime. The selection procedure is based prin
cipally on the theoretical properties of models 
among the five regions of Figure 1. In addition, 
two auxiliary criteria (un, knl and (uc, kcl 
were used to account for the variability of the 
t raffic-flow patterns in the intermediate ranges of 
operations. 

Throughout this paper, the traffic-flow criteria 
uf, uo, kj, and ko (or a combination of 
them) will be referred to as the basic criteria, as 
distinguished from the auxiliary criteria. Further
more, this paper is primarily concerned with select
ing the two-regime models where the traffic-flow 
criter ia--basic and auxiliary--are specified as 
single values. Thus, the maximum-flow criterion 
qm is not needed since it is implicitly determined 
by the two criteria ko and uo (qm "'koUQl. 

The following section describes the theoretical 
properties of the models and req ions of the non
congested-flow regime. The next section presents 
these properties for the congested-flow regime. 
Then, based on these properties, a description of 
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the procedure of region (and model) selection for 
each regime is given. After a section in which the 
procedure is applied to an actual set of traffic
f low data, there are some concluding remarks con
cerning practical aspects of the procedure. 

NON-CONGESTED-FLOW REGIME 

This section describes the theoretical properties of 
the non-congested-flow models of reg ions 3, 4, and 
5. Those properties are presented in three parts: 
a summary of the previously reported results of the 
special case of region 4 and extended results of 
region 3, the theoretical relations of models in 
region 5, and between-region properties. 

Previous Results 

The speed-density equation of models in region 4 
(t > l, m = 1) is given as follows: 

Jn U =Jn Uf + (a/(1 - Q)) kQ-l (2) 

The relations between the traffic-flow criteria 
Uf, uo, and ko and model parameters t and 
a are given by (§) the following: 

a= l/k
0

Q-\ 

u0 /ur =exp {- [l/(Q - l)J} 

Equations 3 and 4 have 
model parameters based on 
er iter ia. 

been used 
specified 

(3) 

(4) 

to estimate 
traffic-flow 

For models in region 3 (t > l, m < 1), the 
speed-density equation is given as follows: 

u1-m= u,'-m [I - (k/k/- 1 J (5) 
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Based on Equation 5, the relations among the 
traffic-flow criteria Uf• uo, kj• and ko and 
model parameters t and m are given by the fol
lowing: 

(k0 /k/-1 
= (1 - m)/(9. - m) 

(u0 /ur)1-m =(9.-1)/(k-m) 

(6) 

(7) 

Equations 6 and 7 have been used for single
regime models to estimate model parameters based on 
specified traffic-flow criteria <i.11· 

In order to use region-3 models for the non
congested-flow regime, a particular modification 
should be made. In selecting a model for the non
congested-flow regime, the intercept with the den
sity axis (kjl is obviously not important. There
fore, it would seem reasonable to employ another 
(auxiliary) criterion within the non-congested-flow 
regime instead of the criterion kj• Th is auxil
iary er i ter ion corresponds to a selected point from 
the data with speed and density denoted by Un and 
kn. The relation between this auxiliary er i ter ion 
and the kj criterion is given by the following: 

(8) 

Properties of Models in Region 5 

Models in region 5 (II. > 1, m > 1) are more gen
eral than the special-case models of region 4. For 
specific values of the basic criteria Uf• uo, 
and ko, region 5 provides a range of models, while 
region 4 provides only one model. 

The speed-density relation of models in region S, 
sh~n previously in Figure 1, is given by the fol
lowing: 

9.> m (9) 

where 

c =a [(l - m)/(l - 9.)) (10) 

Equation 9 represents a model that has no inter
cept with the density axis, kj + m. The model 
contains three parameters--t, m, and a. The 
relations between these parameters and the basic 
er i ter ia can be established. From Equation 9, the 
relations between q and k and q and u can be ob
tained as follows: 

q = k (url-m + ck2-1) 

q2-1 =(u2-1/c)(u1-m -url-m) 

(11) 

(12) 

At maximum flow, q' (k)k = 0 and q' (ulu = 0. 
Therefore, by differentiating Equations 11 and 12 
with respect to k and u, respectively, and equating 
the derivatives to zero, one obtains the following: 

a= [(9.- 1)/(9.- m)] (ur1-m /ko'1-1) 9.> m 

(u0 /ur)1-m = (9.- 1)/(9.-m) 9.> m 

(13) 

(14) 

(Equation 14 is the same as Equation 7 of region 3.) 
Equations 13 and 14 contain three parameters and 

in order to estimate these parameters, it is neces
sary to have a third condition. Th is condition may 
be represented by the auxiliary criteria (un,knl. 
Thus, substituting these criteria into Equation 9, we 
have the following: 

(15) 

Now, Equations 13, 14, and 15 can be solved for 
specified values of Uf, uo, ko, un, and kn 
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to determine model parameters 11., m, and a. 
It is important to note that models in region 5 

are considered valid for only II. > m. For II. < m, 
neither the q - k nor the q - u relations will have 
a maximum pointi q' (k) k > 0 for all k and 
q' (u) u < 0 for all u. Although such relations 
may be used to represent the non-congested-flow 
regime, they clearly do not describe properly the 
behavior of the traffic flow near capacity. Conse
quently, models corresponding to 11. < m are con
sidered undesirable for the non-congested-flow re
gime (they are certainly not meaningful for the 
single-regime representation). 

Between-Region Properties 

The theoretical properties of models among regions 
3, 4, and 5 will now be presented. A fundamental 
property is that models in region 4 are a limiting 
case of both models in region 3 and models in region 
s. This property is proved below for only models in 
regions 3 and 4; the proof for regions 5 and 4 will 
be similar. 

Substituting for kj from Equa tion 6 into Equa
tion 5 (region 3) gives the following: 

ul-m = url-m { l -(k/ko)2-I [(1 - m)/(9. -m)J} 

To prove that the above model approaches the one 
corresponding to region 4, Equation 2, as m + 1, 
let us first express k as a function of u: 

k2 - 1 = k0
2 - 1 [(9.- m)/(1 - m)) [l - (u/ur)1-m) (16) 

As m + 1, the limit of Equation 16 is equal to 
zero divided by zero. Therefore, one may apply 
L'Hospital's rule. 

Let 

f(m) = (9. - m) k0
2- 1 [l - (u/ur)1-m) 

g(m) = 1 -m 

Then 

lim [f(m)/g(m)) = lim [f'(m)/g'(m)] 
m-+1 m-+ l 

g'(m)f 0 

(17) 

(18) 

(19) 

where the prime represents the first derivative with 
respect to m. 

The derivatives in Equation 19 can be obtained 
from Equations 17 and 18 as follows: 

f'(m) = k0
2- 1 [-(9. - m) u1 -m In (u/ur) - (u/ur)1-m + l] 

g'(m) = - I 

Substituting into Equation 19 gives 

lim [f(m)/g(m)] = (9.- 1) k0
2

- 1 In (u/ur) 
m-->I 

Thus, as m + 1, Equation 16 becomes 

or 

In u =In ur + [1/(9. - 1)) (k/k0 ) 2- 1 

which is the same as Equation 2 of region 4i note 
11.-1 

that a = l/k
0 

from Equation 3. 

It follows from this limiting-case property that 
the characteristics of models in regions 3 and 5 
should, as m + 1, approach those of region 4. For 
example, it can be easily shown that by taking the 
limit of a and the limit of uo/uf (Equations 
13 and 14) of region S, as m + 1, the correspond-
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ing formulas of region 4 are obtained (Equations 3 
and 4). The continuity of the ua/uf ratio in 
regions 3, 4, and 5 is illustrated in Figure 2. 

Another important aspect that will be useful in 
model selection is the continuity of the location of 
the inflection point and the associated convexity 
and concavity characteristics of the speed-density 
curves. For & < 2, models in the three regions 
are entirely concave, as illustrated in Figure 2, 
That can be expressed mathematically as follows: 

u " (k)k > 0 Q .;; k .;; k; (20) 

for the (& < 2, m > 0) space except at & = 2, 
m=O, where-u"(k)k-;O (the double prime repre
sents the second derivative with respect to k). 

For & > 2, models in the three regions are 
mixed; they consist of two portions (convex and con
cave). The concave portion diminishes at m =Or 
that is, models become entirely convex. When the 
inflection point coincides with ko, the non
congested-flow regime becomes totally convex. If 
the density corresponding to the inflection point is 
denoted by kt, the above characteristics can be 
expressed mathematically as follows: 

u " (kh < 0 0 .;; k.;; k; 

for & > 2, m = 0, and 

u " (k)k < 0 

u"(k)k > 0 

Figure 2. Continuity of model char
acteristics, convexity, and con
cavity. 
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for & > 2, m > O, and O < kt < kj• The 
location of models where kt = ko is given by 
m = .e. - 2. This linear function separates the 
models where the non-congested-flow regime is 
totally convex from those where it is mixed, as 
shown in Figure 2. Also shown in Figure 2 is the 
location of models with an inflection point lying at 
half the optimum density, kt= 0.5kQ. 

As noted in Figure 2, all convex, concave, and 
mixed models converge to a linear function at t " 
2, m = O [Greenshields' model CB)]. Also, in region 
4, the two models by Drew l}l, t = 1.5, and by 
Underwood 11:.Q.l, t = 2, are totally concave. The 
model by Drake, Schaefer, and May, t = 3, is con
vex in the non-congested-flow regime and concave in 
the congested-flow regime; kt= ko. 

A final property of the non-congested-flow models 
is that, for specific values of the basic criteria 
ur, uo, and ko, the following relation can be 
shown for the en tire range of the traffic density, 
except at k = 0 and k = ko where the values of u 
coincide: 

(22) 

The subscripts in Equation 22 refer to the region 
number, and the values of u correspond to Equations 
5, 2, and 9, respectively. Both U(3) and u(5) 
approach u 14 ) as m + 1, as proved earlier. This 
property is illustrated in Figure 3, which shows 
three models from regions 3, 4, and 5 drawn for the 
specific criteria Uf " 50 mph, uo = 25 mph, and 
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Figure 3. Continuity of non-congested· 
flow models. 
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k0 = 60 vehicles per mile (vpm). There is only 
one model from region 4 (dashed curve) that satis
fies the above criteria. The range below the dashed 
curve corresponds to models from region 3, while the 
range above it corresponds to models from region 5. 
For these specified criteria, the model from region 
3 represents a lower bound of the models from that 
region since it corresponds to m = O. On the other 
hand, there exist other models from region 5 that 
lie above the one shown in Figure 3. 

Selecting a particular model from the range of 
models shown in Figure 3 can be accomplished by the 
auxiliary er i ter ia. Such a model will satisfy the 
five criteria of that regime. In addition, an even 
better fit to the data between these criteria can be 
obtained by the knowledge of the convexity and con
cavity of the models. These aspects represent the 
basic elements of the procedure of model selection 
to be described later. 

CONGESTED-FLOW REGIME 

The congested-flow regime corresponds, as stated 
previously, to the models of regions 1, 2, and 3. 
The purpose of this section is to describe the theo
retical properties of models and regions of this 
regime. The description is given in three parts: a 
summary of the previously reported results of region 
2 and extended results of region 3, the theoretical 
relations of models in region 1, and between-region 
properties. 

Previous Results 

The speed-density relation of models in region 2 
(1 = 1, m < 1), shown previously in Figure 1, is 
given by the following: 

u1-m =a (I - m) In (kj/k) 

The relations between the 
kj, uo, and ko and model 
are given by (_§.) the following: 

k0 /kj =exp{-[!/(! -m)J} 

(23) 

traffic-flow er i teria 
parameters m and a 

(24) 

(25) 

For models in region 3, the speed-density rela
tion and the relations between the basic traffic
f low criteria and the model parameters are as given 
previously in Equations 5, 6, and 7. In order to 
use these models for the congested-flow regime, a 
similar modification to the one employed previously 
should be made. Specifically, for the congested-

so 60 70 80 90 100 110 120 

DENSITY, k (vpm) 

flow regime, the intercept with the speed axis, 
Uf• is not of major importance and is replaced 
here by an auxiliary criterion (uc, kc>• which 
lies somewhere within the congested-flow regime, 
The relation between this auxiliary er iter ion and 
the Uf criterion is given by the following: 

(26) 

Properties of Models in Region 1 

Models in region 1 (1 < 1, m < 1) are more gen
eral than the special-case models of region 2. For 
specific values of the basic criteria kj, u0 , 
ko, reg ion 1 provides a range of models, while re
g ion 2 provides only one model. 

The speed-density relation of models in region 1, 
shown previously in Figure 1, is given by 

(27) 

where c = a[(l - m)/(l - 1)]. 
Equation 27 represents a model that has no inter

cept with the speed axis, Uf + ~, and contains 
three parameters. The relations between these pa
rameters and the basic criteria can be established. 
From Equation 27 one can obtain q as a function of k 
and as a function of u as follows: 

q =k [c(k 2-1 -k{-')Jl/1-m 

qQ-1 = uQ-1 [(ul-m /c) +kt' J 

Following 
for region 
follows: 

a similar 
5, a and 

a= [(Q - m)/(1 - m)] (u0
1 

·-m /kt1 ) 

(k0 /kj)2
·

1 =(I - m)/(Q - m) 

(28) 

(29) 

procedure to that described 
ko/kj can be obtained as 

(30) 

(31) 

(Equation 31 is the same as Equation 6 of region 3,) 
The auxiliary criteria (uc,kc) can now be 

used to provide a third relation so that the three 
parameters may be estimated. Substituting for these 
criteria into Equation 27, one obtains the following: 

(32) 

Equations 30, 31, and 32 can be solved to deter
mine model parameters 1, m, and a for specified 
values of kj• uo, ko, uc• and kc• 

It is noted that models in region 1 are con
sidered valid for only 1 > m. For 1 < m, the 
q - k and q - u relations will not have a maximum 



30 

point; q'(k)k<O for all k and q'(ulu>O 
for all u. For example, for 1 m = O, Equation 
28 will be a straight line having an intercept a 
with the flow axis, and Equation 29 will be an in
creasing function; q approaches a as u approaches 
infinity. The characteristics of these models near 
capacity are considered here undesirable for repre
senting the congested-flow regime. Moreover, these 
models are certainly not meaningful for the single
regime representation. 

Be tween-Reg i on Pr o perties 

The congested-flow models of regions l, 2, and 3 
exhibit similar properties to those of the non
congested-flow models described in the previous sec
tion. Specifically, as 1 + l, models in region 2 
are a limiting case of both models in region 1 and 
models in region 3. As a result, there is also a 
continuity of model characteristics and for specific 
values of kj, ko, and u0 , models in the three 
regions exhibit a particular pa ttern. 

The limiting-case property of only models in re
g ions 1 and 2 (both regions have no intercept with 
the speed axis, Uf + .. ) will now be proved. 
This will perhaps complement the presentation in the 
previous section where the limiting-case property of 
regions 3 and 4 (one region with finite kj and the 
other with k~ + .. ) was proved. 

Substi t uting fo r c irito Equation 27 (region 1) 
gives the following: 

u•-m =a(( I -m)/(1- 2)) (k2- 1 -kt ') (33) 

Since the limit of the product is the product of 
the limits, the limit of Equation 33 is equal to the 
limit of a multiplied by the limit of the re
mainder , as 1 + l. The limit of a, Equation 30, is 

equal to u~-m and the limit of the remaining part can 

be obtained by applying L'Hospital's rule, given 
previously in Equation 19. 

Let 

f(2) = (1 - m)(k2-1 - ki2-1) 

g(2) = 1 - Q 

Applying Equation 19 gives the following: 

(34) 

(35) 

lim [f '(Q)/g '(2)] = (! - m) In (k;/k) (36) 
2~ 1 

Thus, as 1 + l, Equation 30 becomes the following: 

u1-m = u0
1- m (1 -m)ln(k;/k) 

which is the same as Equation 23 of region 2; note 
1-m 

that a = u
0 

from Equation 24. 

It follows from this limiting-case property that 
the characteristics of models in regions l and 3, 
a a nd (ko/ kj ), should approa ch those of region 
2 a s 1 + 1. The con tinui t y of the (ko/kjl 
rat io is illus t r a ted in Figur e 2 . It is noted that 
region 3 exhibits a wide range of this ratio, while 
regions 1 and 2 show a narrow range with a maximum 
value of (ko/kjl = 0.37, which corresponds to 
Greenberg's model (.!£) . 

The congested-flow models of regions l, 2, and 3 
may be convex, concave, or mixed. These character
istics were described previously for region 3. 
Models in reg ions l and 2 are entirely concave as 
illustrated in Figure 2. Thus, 

u"(k)k > 0 (37) 
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for 1 < 1 and m > O. 
Finally, for -specific 

ter ia k j , uo , and ko , 
following relation holds: 

values for the basic er i
it can be shown that the 

(38) 

for the entire range of the traffic density, except 
at k = ko and k = k j , where the val ues of u 
coincide. Both u( 3) a nd u(l) appr oach u(2J as 
1 + l , as proved previously. 

An illustration of this property is shown in Fig
ure 4 for the specific criteria k · = 200 vpm, 
u0 = 25 mph, and ko = 60 vpm. The ~ashed curve 
represents the (only) model from region 2 that sat
isfies these criteria. The model from region l rep
resents an upper bound of models from that region. 
On the other hand, the model from region 3 is a spe
cific selection and other models below the solid 
curve do exist. Thus, the range above the dashed 
curve corresponds to models from region 1 and the 
range below it corresponds to models from region 3. 
Selecting a model from the range of models shown in 
Figure 4 can be accomplished by means of the auxil
iary criteria. The selection procedure for the non
congested-flow and congested-flow regimes is de
scribed in the following section. 

MODEL SELECTION 

The continuity property of the non-congested-flow 
and congested-flow models described in the previous 
sections represents the basis for the selection pro
cedure presented in this section. The procedure is 
described first for the non-congested-flow regime 
and then for the congested-flow regime. 

Non-Conge s t ed-Flow Reg i me 

As mentioned previously, the non-congested-flow re
gime can be represented by a model from regions 3, 
4, or 5. For specified traffic-flow er iter ia uf, 
uo, ko, Unr and kn, it is necessary to de
termine fir st the region that contains the model 
satisfying these criteria and then to determine that 
model. It is important to note that since models in 
the three reg ions exhibit the continuity property, 
these models do not intersect, and therefore there 
is only one specific model that satisfies the above 
five er iter ia. The relations between the traffic
flow criteria and model parameters for regions 3, 4, 
and 5 will now be obtained. 

For region S, the formula that considers the 
auxiliary criterion (Equation 15) can be written as 
follows: 

Unl - m = ur' - m + c (Jlnko )2- I (39) 

where II n is a standardized variable given by the 
following: 

lln = kn/ko ( 40) 

Substituting for c from Equation 
from Equation 13) and dividing both 

1-m 
tion 39 by uf gives the following: 

From Equation 14, we have 

2= [m (uo/ur)1-m -l]/ ((uo/ur)1-m -1] 

10 (and for a 
sides of Equa-

(4i) 

(42) 

Equations 41 and 42 relate model 
and m to the traffic-flow criteria 

parameters 1 

Uf' U0' Un' 
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figure 4. Continuity of congested-flow models. U + m 
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and Bn (which incorporates kn and 
region 3, identical formulas to the above 
tained from Equations 6, 7, and 8. 

For region 4, the relations between 
traffic-flow criteria can be obtained, 
Equations 2, 3, and 4, as follows: 

In (u 0 /ur) = (!/(!- £)] /l/- 1 

Q =I - [I/In (uo/ur)] 

20 40 

kol. 
can be 

R, and 
based 

60 

For 
ob-

the 
on 

(43) 

(44) 

The above formulas are shown in Figure 5 for 
Bn • 0.5 and for various ranges of the other 
traffic-flow criteria (the value Bn = 0.5 indi
cates that the auxiliary criterion Un• kn lies 
at a point where kn is half the optimum density 
kol· The thick solid curve in Figure 5 corre
sponds to region 4. This curve corresponds to Equa
tions 43 and 44 (or equivalently to the limits of 
Equations 41 and 42 as m + 1). The area above 
that curve corresponds to region 5 and the one below 
it corresponds to req ion 3. Models below the curve 
m • 0 (region 3) correspond to negative values of m 
and are considered undesirable; a negative m has the 
effect of shifting the speed term in Equation l from 
the numerator to the denominator. Figure 5 also 
shows the curvature properties of models. 

Now, the selection procedure is as follows: 

1. Determine from the data the criteria Ufr 
uo, ko, un, and kn where kn is to be 
chosen as 0.5 ko. 

2. Follow the sample arrows shown in Figure 5 
and determine the intersection point. Read the cor
responding values of t and m. If the intersection 
point lies above the thick solid curve, the model 
satisfying the specified criteria lies in region 5. 
Estimate the value of a from Equation 13 and ob
tain the traffic-flow relations corresponding to 
this model from Equations 9 through 12. 

3. If the intersection point lies below the 
thick solid curve, the model we are after is located 
in region 3. Obtain the traffic-flow relations cor
responding to the model from Equation 5 (the q-u and 
q-k relations can be easily obtained from this 
equation) • 

4. If the intersection point lies on the thick 
solid curve, the model lies in region 4. Estimate 
the value of a from Equation 3 and obtain the 
traffic-flow relations corresponding to this model 
from Equation 2. 

In order to help the user determine the values of 
R, and m accurately, the numerical values on which 
the nomograph of Figure 5 is based are provided in 

31 

Region (£ 0.) m = 0.01) 

Region (£ = l. 0 m - 0. 1 7) 

Region (£ 4 . 0 m = 0.92) 

Conges ted-Flow Regime 

80 100 120 140 160 180 200 220 240 

DENSITY , k (vpm) 

Table 1. 'l'able 1 will be particularly useful for 
the upper portion of the nomograph where R. becomes 
very close to m and the difference cannot be easily 
detected from Figure 5. 

It is important to note that, based on the ex
hibited pattern of the non-congested-flow regime 
data, some adjustments of the traffic-flow criteria 
may be deemed necessary in order to select the model 
that is compatible with such a pattern. For ex
ample, if the data exhibit a convex shape, the 
traffic-flow criteria may be properly adjusted so 
that the intersection point in Figure 5 lies in the 
area delineated in the upper portion of this fig
ure. This adjustment will ensure an even better fit 
to the data between the traffic-flow criteria. 

Congested-Flow Regime 

The objective here is to select one of the three 
regions--1, 2, or 3--and the model within the se
lected region that satisfies the specifit!d er iter ia 
kj, uo, ko, uc, and kc· Because of the 
continuity property of the congested -flow models, 
there is only one specific model that satisfies 
these criteria. Let us first estimate model parame
ters tor regions 1 and 2 and then outline the pro
cedure of model selection. 

Similar to the procedure adopted for region 5 of 
the non-congested-flow regime, the formulas relating 
model parameters to the traffic-flow criteria in 
region 1 can be obtained, based on Equations 30, 31, 
and 32, as follows: 

(ucfuo)l-m = [(£ - m)/(l - £)] [(/lcko/kjl - 1 
- l] 

m = (I - £ (k 0 /kj)2
-

1
] / [I - (k 0 /kj)2- 1 J 

(45) 

(46) 

where Be is a standardized variable given by the 
following: 

(47) 

For region 3, identical formulas to the above can 
be obtained from Equations 6, 7, and 26. 

For region 2, the corresponding relations, based 
on Equations 23, 24, and 25, are given: 

(48) 

m = I + (l/ln (k0 /kj)] (49) 

The above formulas are shown in Figure 6 for 
Be = 1.5 and 2.0. The thick solid curve corre
sponds to region 2. The area above that curve cor
responds to region 1 and the one below it corre-



32 

sponds to region 3. 
models are also shown 

Now, the selection 

1. Determine from 

The curvature properties 
in Figure 6. 
procedure is as follows: 

the the 
uo, ko, and kc, where 
either l.Sko or 2ko. 

data 
kc is to 

criteria 
be chosen 

of 

2. Follow the sample arrows shown in Figure 6 
and determine the intersection point. Read the cor
responding values of .Q. and m. If the intersection 
point lies above the thick solid curve for the cor
responding Be• the model lies in region l. Es-

Figure 5. Nomograph for non-congested-flow regime (regions 3, 4, and 5). 
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timate the value of a f r om Equation 30 and obtain 
the traffic-flow relations corresponding to this 
model from Equations 27 through 29. 

3. If the intersection point lies below the 
thick solid curve, the model lies in region 3 and 
the car responding traffic-flow er i ter ia can be ob
tained from Equation 5. 

4, If the intersection point lies on the thick 
solid curve, the model lies in region 2. Estimate 
the value of a from Equation 24 and obtain the 
corresponding traffic-flow relations from Equation 
23. 
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Table 1. Model parameters for non-congested-flow regime (regions 3, 4, and 5). 

(u0/uf) Q m (un/ur) (uo/uf) Q m (un/Uf) 

0.3 1.429 0.000 0.480 0.6 2.500 0.000 0.859 
1.494 0.200 0.485 2.585 0.200 0.862 
1.566 0.400 0.491 2.673 0.400 0.866 
1.647 0.600 0.497 2.764 0.600 0.870 
I. 735 0.800 0.502 2.859 0.800 0.873 
1.831 1.000 0.508 2.958 1.000 0.877 
2.429 2.000 0.536 3.500 2.000 0.895 
3.198 3.000 0.559 4.125 3.000 0.911 
4.083 4.000 0.575 4.827 4.000 0.927 
5.033 5.000 0.586 5.596 5.000 0.941 
6.012 6.000 0.592 6.422 6.000 0.953 
7.004 7.000 0.596 7.294 7.000 0.962 
8.002 8.000 0.598 8.202 8.000 0.970 
9.001 9.000 0.599 9.137 9.000 0.977 

0.4 1.667 0.000 0.662 0.7 3.333 0.000 0.940 
1.740 0.200 0.628 3.423 0.200 0.942 
1.819 0.400 0.633 3.514 0.400 0.944 
1.904 0.600 0.639 3.608 0.600 0.946 
1.994 0.800 0.645 3.705 0.800 0.948 
2.091 1.000 0.650 3.804 1.000 0.950 
2.667 2.000 0.679 4.333 2.000 0.959 
3.381 3.000 0.706 4.922 3.000 0.967 
4.205 4.000 0.729 5.566 4.000 0.974 
5.105 5.000 0.747 6.264 5.000 0.980 
6.052 6.000 0.761 7.010 6.000 0.985 
7.025 7.000 0.772 7.800 7.000 0.989 
8.011 8.000 0.779 8.628 8.000 0.992 
9.005 9.000 0.785 9.489 9.000 0.994 

0.5 2.000 0.000 0.750 0.75 4.00 0.000 0.969 
2.079 0.200 0.755 4.091 0.200 0.970 
2.163 0.300 0.760 4.185 0.400 0.971 
2.252 0.600 0.765 4.280 0.600 0.972 
2.345 0.800 0.770 4.377 0.800 0.973 
2.443 1.000 0.775 4.476 1.000 0.974 
3.000 2.000 0.800 5.000 2.000 0.980 
3.667 3.000 0.824 5.571 3.000 0.984 
4.429 4.000 0.846 6.189 4.000 0.988 
5.267 5.000 0.866 6.851 5.000 0.991 
6.161 6.000 0.883 7.556 6.000 0.993 
7.095 7.000 0.897 8.299 7.000 0.995 
8.055 8.000 0.909 9.078 8.000 0.997 
9.031 9.000 0.918 9.890 9.000 0.998 

!t shoulu be noted that if the intersection point 
lies above the curve m = 0 (models not desirable), 
the traffic-flow criteria should be adjusted so that 
the intersection point lies on or below that curve. 

APPLICATION 

The selection procedure described in the previous 
section was applied to traffic-flow data that have 
been collected on the Eisenhower Freeway at Harlem. 
The speed-density and flow-density data are shown in 
Figure 7 (top and bottom, respectively). The data 
exhibit some discontinuity, which can be seen more 
clearly from the flow-density graph. An excellent 
discussion of the possible reasons for the existence 
of discontinuity in some traffic-flow data is given 
by Gazis, Herman, and Rothery (l_) • 

The traffic-flow er i ter ia can now be established 
for both non-congested-flow and congested-flow re
gimes. For the non-congested-flow regime, the cri
teria include uf, uo, ko, Un, and kn· 
Those for the congested-flow regime include kj, 
u0 , ko, uc, and kc. Because of the discon
tinuity, however, the optimum density uo need not 
be the same for both regimes. These criteria can be 
established from the data in such a way that the 
model corresponding to the respective er i ter ia for 
each regime provides a good visual fit to the data 
of the particular regime. The specified criteria 
are given in the table below and are indicated by 
circles in Figure 7 (NA= not applicable): 
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Re2ime 
Criterion Non-Congested Flow Con<;iested Flow 

Uf (mph) 50 NA 
Un (mph) 48 

kn (vpm) 25 
uo (mph) 31 35 
ko (vpm) 50 50 
kj (vpm) 200 
Uc (mph) 12 
kc (vpm) 100 

It is useful at this point to comment on estab
lishing the traffic-flow criteria. As noted in the 
table above and Figure 7, the optimum speed is 35 
mph for the non-congested-flow regime and 31 mph for 
the congested-flow regime. These values were deter
mined by establishing first the maximum flow values 
in Figure 7 (bottom) corresponding to ko = 50 vpm, 
which was arbitrarily chosen. Then these values 
were used to determine the optimum speed. The aux
iliary criteria were chosen at the mid-range of the 
non-congested-flow regime <an = 0.5) and at a 
point twice the optimum density for the congested
flow regime <ac = 2.0). Establishing the re
maining criteria uf and kj will generally re
quire a knowledge of the char acter istics of the 
highway facility. In particular, data points near 
the jam density are not usually obtainable and one 
would rely on previous data on the respective free
way or other similar freeways. As a general guide
line, the jam density ranges from 180 to 250 vpm, 
which correspond to low-design and high-design fa
cilities, respectively. Since the Eisenhower Free
way is an old-design facility of the 1950s, the jam 
density was arbitrarily chosen as 200 vpm. Now we 
will determine the non-congested-flow and con
gested-flow models that satisfy the specified traf
fic-flow criteria by following the procedure de
scribed in the previous section. 

For the non-congested-flow regime, we 
Figure 5 and draw lines corresponding to 
f ied er i ter ia shown in the table above. 

first use 
the speci
Since the 

intersection point lies above the thick solid curve, 
the model we are seeking lies in region 5, The val
ues of model parameters can be read from the nomo
graph as t = 4.3 and m = 2.0. Since the model 
lies in the upper-delineated portion of Figure 5, 
the result will be that the speed-density relation 
is convex in the en tire non-congested-flow regime. 
Because the speed-density data also appear to ex
hibit a convex shape, the model will provide a good 
fit to the data between the traffic-flow criteria. 
In cases where the convexity and concavity charac
teristics are not the same for the data and the 
determined model, one may adjust the traffic-flow 
criteria to achieve this similarity. This adjust
ment can be made with the aid of the curvature prop
erties shown in Figure 5. 

With the above values of t and m and the speci
fied criteria, the value of ex can be calculated 
from Equation 13. Thus, the three parameters in the 
traffic-flow relations of the non-congested-flow 
regime are known. The speed-density relation (Equa
tion 9), for example, becomes the following: 

u = 1/(0.02 + 2.15 x 10-8 k 3•3 ) 0.;; k" 50 (50) 

The speed-density relation of Equation 50 is 
shown in Figure 7 (top) and is convex, as expected. 
The flow-density relation is also shown in Figure 7 
(bottom). As seen, the selected model provides an 
excellent fit to the data, which is largely achieved 
by the proper selection of the traffic-flow criteria. 

For the congested-flow regime, the inter section 
point corresponding to the specified criteria was 
determined as shown in Figure 6. As seen, this 



point lies above the thick curve corresponding to 
Be = 2,0. Therefore, the model we are seeking 
is located in region 1 and the speed-density rela
tion will be concave in the entire congested-flow 
regime. The values of model parameters can be read 
from Figure 6 as t = 0.5 and m = 0, 

With the above values of t and m and the traf
fic-flow criteria, the value of " can be calcu
lated from Equation 30. The three parameters for 
the congested-flow regime are now known and so are 
the traffic-flow relations. The speed-density rela-

Figure 6. Nomograph for congested-flow regime (regions 1, 2, and 3). 
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tion (Equation 27), for example, becomes the fol
lowing: 

50" k" 200 (51) 

The speed-density relation of Equation 51 is 
shown in Figure 7 (top). The flow-density relation 
is also shown in Figure 7 (bottom). Again, the 
selected model provides excellent fit to the data. 

CONCLUDING REMARKS 

This paper has presented a theoretical procedure for 
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Figure 7. Speed-density and flow-density data and selected 
models. 
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selecting two-regime traffic-flow models and has 
demonstrated its use by applying it to actual data. 
The procedure is based principally on the between
region properties, including the continuity of 
models and the convexity and concavity character
istics. These properties have allowed a systematic 
procedure for selecting the region and the model 
within the region that satisfies the specified 
traffic-flow criteria and further maintains a good 
fit to the data in the intermediate ranges of flow. 
A few observations concerning the selection pro
cedure and some of its practical applications are 
worthy of note: 

1. The two-regime representation will generally 
provide a better fit to the traffic-flow data than 
the single-regime representation, especially if 
there is a wide range of flow disturbance (discon
tinuity) near capacity. This is mainly due to the 
fact that two-regime models account for the vari
ability of the data in the intermediate ranges of 
operations, by means of the auxiliary criteria, 
while single-regime models consider only the basic 
criteria. This superiority of the two-regime over 
the single-regime representation has also been 
demonstrated by using the regression-analysis pro
cedure (13). It is therefore desirable that the 
two-regim-;- representation be employed in practice 
whenever possible. In this regard, it is important 
to point out that the two-regime representation can 
be used whether there is discontinuity or not in the 
traffic-flow data. 

2. As illustrated in the application described 
in this paper, the proposed procedure provides a 
level of data fit that appears to be reasonable for 
most practical applications. In situations in which 
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a particularly high degree of accuracy is deemed 
necessary, the regression-analysis procedure (il may 
be used. In this case, however, the procedure pre
sented can be first used to determine the specific 
region of Figure 1 (or perhaps a portion of it) that 
will most likely contain the best-fit model. The 
regression-analysis procedure can then be used to 
search for that model within the identified region 
rather than within all three regions of each re
gime. This will obviously reduce the computer time 
and the data-analysis effort required for the appli
cation of this computer-based procedure. 

3. The procedure presented requires that the 
traffic-flow er iter ia be specified as single val
ues. With a modest effort, however, the procedure 
can be extended to deal with ranges of the traffic
flow criteria, in which case the procedure would 
provide a feasible region (rather than specific 
values) of model parameters. Previous work on 
single-regime models and the special case of two
regime models (6, 7) consider, in addition to single 
values, ranges of-the traffic-flow criteria, Simi
lar logic to the one used in these references may be 
used here to determine the feasible region of model 
parameters. 

4. The general family of models located in re
gion 5 exhibits certain features that would be of 
practical use. For large values of m, the speed
flow relation of this region is almost flat for a 
portion of the low-density end of the curve and then 
decreases rapidly as density increases. These char
acteristics have been observed on highways with a 
rigidly enforced speed limit that is lower than the 
average highway speed (14). The flattening of the 
curve occurs since normal average speed cannot be 
attained due to the speed limit; at some point, as 
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density increases, the speed limit would no longer 
govern. Thus, models in region 5 are particularly 
useful for representing such situations. 

S. Another practical phenomenon that can be ac
counted for by the non-congested-flow models pre
sented is that traffic-flow relations on highways 
with the same average highway speed exhibit dif
ferent shapes in the range between the free flow and 
capacity as a result of a different number of lanes 
(14). For such highways, the traffic-flow criteria 
Uf• uo, and ko are generally the same; only 
the shape of the traffic-flow relations in the in
termediate operation differs. Specifically, the 
Highway Capacity Manual shows that the speed-flow 
curve of an eight-lane highway is higher than that 
of a six-lane highway, which is higher than that of 
a four-lane highway. The proposed procedure can 
capture this variability in the traffic-flow rela
tions by modifying the auxiliary criteria while re
taining the basic criteria fixed. 

6. The procedure of selecting two-regime models 
presented in this paper and the one reported previ
ously for estimating single-regime models (6,7) sig
nificantly reduce the need for using comput-;r- facil
ities in estimating traffic-flow relations. As 
such, the procedure may be useful in such transpor
tation areas as hiqhway capacity and level of ser
vice, freeway operations, transportation planning, 
and environmental studies. 
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