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3. Traffic volumes had an effect on both the 
speed of the test vehicle and the time required to 
complete the maneuver. In general, the speed of the 
test vehicle decreased as the traffic volume in
creased and the time required to complete the maneu
ver increased as the volume increased. 

4. The number of lanes affected maneuvering dis
tances. As the number of lanes increased, the ma
neuvering distance also increased. Therefore the 
sign-placement distance should take into account the 
maximum number of lane changes for the particular 
freeway. 

5. The number of lanes affected both the time re
quired to complete the maneuver and the speed of the 
test vehicle for maneuvers performed in light, me
dium, and heavy HS conditions. The number of lanes 
'did not affect either speed or time in light, me
dium, and heavy LS conditions. This was due to 
large differences in both time and speed between the 
heavy LS and heavy RS conditions. 

6. The lane-maneuvering distances (mean distance) 
from this research are as follows: (al 917 ft on a 
three-lane freeway during light traffic, (b) 1004 ft 
on a three-lane freeway during medium traffic, (c) 
809 ft on a three-lane freeway in heavy LS traffic, 
(d) 1164 ft on a three-lane freeway in heavy HS 
traffic, (el 1090 ft on a four-lane freeway during 
light traffic, (fl 1534 ft on a four-lane freeway 
during medium traffic, (g J 117 8 ft on a four-lane 
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freeway in heavy LS traffic, and (h) 1453 ft on a 
four-lane freeway in heavy HS traffic. 
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Exponential Filtering of Traffic Data 

PAUL ROSS 

Real·time ttafflc·contfol systems commonly filter their input data with 
exponential filters. The fllttring constant (J can bo objectively determined 
by recasting the filter as a predictor and choosing the II that would have 
optimized the predictions for some observed time series of data-mostly 
taken to be 24 h of Input here. Results, by u1lng 70 consacullvo days 
of traffic volume counts from Toronto plus some Los Angeles and District 
of Columbia data, indicate that tho optimal (J can be approximated by 
fJ • (1 - a) expl - bTI + a, whore T is the data·aggregatlon period and a and 
b are constants that depend on traffic-peaking characteristics. The filter 
constant fJ can be allowed to change during the day; the algorithms af this 
kind that were Investigated all entail only a modest incroaso in mean-square 
prediction error. Algorlttims that reoptlmlu fJ over the most recent N data 
points do not appear practical, but a simple recuulva algorithm that gives 
good accuracy is presented. 

Measurement noise in the usual sense constitutes no 
more than a few percent of traffic volume counts. 
Howeve,r, traffic volumes from successive short 
periods often ditfer substantially from each other 
so that it is convenient to think of the traffic 
volume itself as being made up of some meaningful 
signal plus meaningless noise. Thus, detector-mea
sured traffic data (usually volumes or occupancies) 
constitute a noisy time series. Time-series analysis 
is a well-established subject of study (.!I; the 
methods of Box-Jenkins analysis (l,1_1 and Kalman 
filtering (4-6) are quite sophisticated and powerful 
techniques.- -

With respect to traffic measurements, virtually 
all the time-series analysis effort has been di
rected toward short-term traffic prediction. 
Polhemus (7, 8) codified the prediction problem at a 
high level -(unfortunately without any invnediately 

applicable results). The problem has been presented 
in a Box-Jenkins framework (.2-11) and some specific 
prediction problems have been formul.ated in terms of 
point processes (12-15). areiman C]!l proposed an 
algorithm that has some intuitive -appeal and showed 
how to choose its parameters to minimize the maximum 
(not mean) square prediction error. 

Real, on-line compute.r-contro1led traffic systems 
have to make predictions at many locations, and 
their computing power is usually taxed. Conse
quently, the prediction and filtering algorithms 
that have been used in practice have been economical 
of storage and simple in execution; they tend to be 
based on intuitive models of traffic. 

The predict ion algorithm used in the second-gen
eration urban traffic control system (UTCSJ program 
has been described by Ganslaw (171 and by Sperry 
(18) l the predictor in the. third-generation UTCS 
program has been described by McShane, Lieberman, 
and Goldblatt (19) and by Lieberman and others 
(20) • More ef f-;;rt has gone into devising such 
algorithms than testing them; the only convincing 
evaluations of practical prediction algorithms were. 
reported by Kreer (21,22). None of the algorithms 
tested was convincinglybetter than simple time-of
day historical aver ages. 

The separate but related filtering problem has 
been largely ignored. Only Houpt and othecs (231 
describe the fi1tecin9 of traffic data in more than 
a passing manner; the technique used is the power fol 
but cumbersome "extended Kalman filter." 

In real traffic problems it is almost universal 
co use exponential fil·tering. Briefly, the use of 
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exponential filtering assumes that the data are 
generated by 

a =a* + noise (1) 

where a is the observed traffic count and a* is an 
underlying true traffic volume, which varies only 
slowly from measurement to measurement. The noise 
is assumed to have a mean value of zero. 'l'he prob
lem is to make a good estimate a of a•. 

If it is true that a" varies slowly with time, 
then one intuitively wants to discount the older 
observations, and the simplest way to do so is by 
exponenti al weighting: 

a(t) = (1 - M t {J1-ia(i) (2) 
i==l 

=(I -fl)a(t)+{Ja(t-1) (3) 

where a is the filter constant. 
This use of exponential filtering has many advan

tages. First, the calculation is recursive--as can 
be seen from Equation 3. The recursive character 
means that data-storage requirements are minimal; 
only the previously calculated estimate a(t - 1) and 
the value of the filter constant itself need be 
stored. Second, the calculation could hardly be 
simpler or quicker. And finally, this simple filter 
is optimal for the common MJl(l) class of Box-Jenkins 
processes. For the purpose of this paper, the use 
of f:xpone Hal filtering as defined above will not 
be questioned. 

FILTERING CONSTANT a INDEPENDENT OF TIME OF DAY 

Figure 1 shows a typical day of raw traffic counts 
and the resulting values after the data have been 
filtered with s c 0.2, 0.4, 0.6, and 0.8. [The 
principal data used in this paper were obta i ned in 
Toronto in the fall of 1973. That data set, the 
most extensive that I have located, consists o·f 
5-min counts for each of eight detectors 24 t\/day 

Figure 1. Five·minute traffic
volume counts filtered with 
various values of filtering 
CDnstant (3. 
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for 77 consecutive days. For a description of this 
data set and some of its proper ties, see the report 
by Pignataro and others (24) and by McShane and 
Crowley (25). Figure 1--an.r-all other cases where a 
single da'Y°"is used in this paper--is from detector 1 
on September 24, 1973, the first Tuesday of the 
study .] 

Which value of the smoothing constant should be 
used appears to be a matter of personal taste--how 
well filtered one prefers the data. One finds such 
statements as "the constant (B) is typically 0.7 
to insure that about five previous speed measure
ments make a significant contribution to the correct 
average" (261 and "a value of (B) in the range of 
0.4-0.5 isgenerally quite satisfactory in reducing 
the (difference between the data and their filtered 
values) to low-variance white noise" (20). 

Rowever, a close look at the fundamentals of the 
problem indicates that one can establish an objec
tive criterion for the value of s. The filtered 
data point a {t) from Equation 2 or 3 is the best 
available estimate of the signal a~ and hence is the 
best prediction of the next datum a(t + l). After 
data have been collected for an entire day, one can 
compare the predicted value a(t) with the actual 
value a(t + 1) and determine which value of a 
would have given the best estimate; such is the 
approach that will be used in this paper. The 
criterion of best will mean minimum mean-square 
en or in the predictions made. FigULe 2 sholols how 
the mean-square prediction error depends on the 
value of 8 for the traffic data used in Figure l. 
The best predictions occur when s D 0.424. 

Location of this minimum paint is most conve
niently done by differentiating the mean-square 
error curve and locating the B that makes this 
dee ivative zero. The derivative of the total square 
er.ror with respect to B can be written as follows: 

dE(t)/d{J = [dE (t - 1)/d{J] + [a(t) - a(t - I)] (d/dfj) a (t - 1) (4) 

where 

10 11 NOON 
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Figure 2. Mean-square predic· 
tion error as function of 
filtering constant (3. 

a(t - 1) = (I - fl) a(t - I) + fl a (t - 2) 

(d/dfJ) a(t - !) = -a(t-1) + a(t - 2) + 1J (d/d(J}a (t - 2) 

The optimal a is a root of dE(t)/dS o from 
Equation 4. In practice there appears to be only 
one real root. [Since dE(t)/dS is of odd degree 
in a, it must have at least one real root.] The 
complex roots complicate many root-finding methods; 
a bisection algorithm was used in th is study. Equa
tion 4 is recursive and therefore easy to program 
for electronic computers. 

Figure 3 shows the optimal smoothing constants 
a for detector 1 during the first seven days of 
Toronto data. e is shown as a function of the 
period of aggregation. Intuitively, it seems that 
a ough t to be lar ge (nearly unity) for very small 
aqgreqation periods (because short periods of data 
are very noisy) and nearly zero for long periods; 
this seems approximately true for the Saturday and 
Sunday data. However, the weekday data definitely 
imply that the optimal a is negative for long 
aggrega t i on periods . This reflec ts a viol a t i on of 
the ass ump t i on that the und erly ing s igna l var ies 
only slowly from period to period 1 on weekda ys the 
tra ffic volumes vary substantially (compared with 
the noise) when the aggregation period is 30 min or 
more. 

The appearance of negative values for a does 
not prohibit the use of exponential smoothing even 
though the or iqinal assumption about the character 
of the process is violated for large aggregation 
periods; the actual prediction error (Figure 4) 
remains small even for large aggregation periods. 
The observed increase in prediction error with 
increased aggregation period is due to two separate 
effects--the model failure discussed above and the 
fact that there are fewer data periods when the 
periods are long. The increase in prediction error 
wi th the Saturday and Sunday data is almos t wholly 
due to this latter effect. 
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A summary 0f a ll the a vailable data i s shown in 
Figure 5. Optimal smoot hing constants were calcu
lated for every d e tector fo r ever y day (except t hat 
the last seven days, which had a great deal of data 
missing, were del e ted from the data set). The curve 
shown for each de t ector is the average of 50 daily 
curves (weekdays) or 20 daily curves (weekends). 
Also shown are two curves based on District of 
Columbia data that recorded each vehicle detection 
for 90 min (with two short breaks to remount the 
tapes) • These arterial data appear to be of the 
same character as the Toronto weekday data. 

The third set of curves in Figure 5 represents 10 
detectors on a Los Angeles freeway. These 10 detec
tors are randomly selected fr om the four lanes in 
the northbound direction on the San Diego Freeway; 
the detector array spans 1 mile. These data contain 
individua l vehicle actua tions uninterrupted for 150 
mi n. 

All three sets of curves fit a family that can be 
written as follows : 

fl = (I - a) exp(-bT) +a (5) 

where a and b are constants that depend on the 
peaking characteristics of the traffic and T is the 
data-aggregation period in minutes. The values of a 
and b shown below give a good visual fit to the 
curves in Figure 5 : 

Curve 
Freeway 
Arterial (Sat.-Sun.) 
Arterial (Mon.-Fri.J 

~ b (min" 1) 

o.oo 0 .86 
-0.05 0. 13 
-0.042 0 . 10 

FILTERING CONSTANT S ALLOWED TO VARY DURING DAY 

The foregoing discussion has assumed that a single, 
fixed value of the filtering constant must be used 
throughout the day. Intuition says that there may 
be substantial benefits in allowing a to vary. A 
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Figure 3. Optimal filtering constant f3 as function of 
aggregation period on seven consecutive days. 
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Figure 4. Mean·square prediction error as function of aggregation 
period by using same data as thosa in Figure 3. 
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properly chosen algorithm for the variation will, in 
effect, allOW S to "tune II i tSelf p ObViatinq the 
need to guess in advance what the correct value of 
the smoothing constant will be. A variable S can 
conceivably even produce smaller prediction errors 
than using a single fixed value all day. 

The obvious way to calculate such a variable 
smoothing constant is to recalculate the optimal a 
every period or two by using the most recent several 
data Points. Figur e 6 shows how some smoo thing 
constants vary during the day. (Shortly after 
midnigh t , when fewer than t he des.ired number of data 
points were available, the optimal calculation was 
limited to the available data only.) 

Figure 7 shows how the mean-square prediction 
error depends on the number of data points used. As 
one would expect, the accui;acy appears to be ap-
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············· .. ················-·Sun 
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AGGREGATION PERIOD {MINI 

proaching a limit as the reoptimization includes 
more data. The l.imi ting val ue of the mean-square 
error is about 2 percent worse than usinq the 24-h 
optimal smoothing constant t hroughout the day. Since 
the var i able smoothing constant is based on the data 
available up to the time of the calculation only, it 
is not surprising that its limit is worse than that 
of the fixed 24-h optimal constant, which, in ef
fect, is chosen with foreknowledge of the data yet 
to come. 

One can evaluate the practicality of direct 
reoptimization by using the latest N points. Exami
nation of Figure 6 indicates that the 5-min smooth
ing constant is likely to vary apprec iably i n 10 
min, so that it will be necessar y to recalculate S 
at least that often. How many of the lates t data 
points must be used to produce acceptable accuracy 
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Figure 5. Average optimal filtering constants /3for 8 arterial detec
tors in Toronto, 2 arterial detectors in Washington, and 10 free
way detectors in Los Angeles. 
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is a somewhat subjective question; based on Figure 
7, I would use at least N = 80 points. The use of 
80 data points implies finding a root of a 159th-de
gree polynomial. If this must be done every 10 min 
for every detector in the system, it is clear that 
no exact reoptimization based on the latest N data 
points can be workable. 

After abandoning exact reoptimization of 8, one 
wonders if an approximate formulation can be found. 
Recursive algorithms are particularly attractive 
since they require only modest storage of data and 
preceding results and are generally simple in execu
tion. such an algorithm has been devised as follows. 

At time t, the most recent prediction error is 
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a(t) - a(t - I)= ~t[a(t - 1) - a(t - 2)J -a(t - I)+ a(t) 

If the value of at had been as follows, 

~t* = [a(t - !) - a(t)] /[a(t - I) - a (t - 2)] 

... 
\ 
I 
I 

(6) 

(7) 

the prediction would have been perfect, i.e., zero 
prediction error. 

It is desired that the new filtering constant 
Bt+l be a linear combination of Bt* and 
Bt· There seems to be no logically imperative 
choice for the weights associated with Bt* and 
St; I have used, somewhat acbitrarily, the 
square prediction error in the Ct - l) st term and 



48 

Figure 7, Mean-square prediction error by using optimal filtering 
constant based on N floating data points. 1 45 

1,40 

1.25 

the total preceding square prediction error as the 
weights for at* and at• respectiv ely. This 
combination seems to work well: t he mean- square 
prediction error is less than 0,5 percent worse than 
using all available data (i.e., up to 288 values) in 
a rigorous optimization when tested with the 5-min 
aggregation test case. 

This a l gorithm reduces to three fairly elegant 
recursion equations: 

Zt = a(t - I) - a (t - 2J 

Ei = E1_ 1 + z? 
llt+1 = { Et-1 i'lt + Z1 [a(t - I) - a(t)] }/Et (8) 

In the above e q uat i ons, Zt can be i nterpre t ed as 
the (t l } s t prediction error and Et i s the 
cumulative square pred i ction error through time t . 

SUMMARY 

Exponential filtering of traffic volume counts is 
simple, quick, and reasonably accurate. A constant 
value for the filter constant may be used with good 
accuracy: if so, the appropriate value of the filter 
constant depends on the aggregation period and the 
daily traffic variation as shown in Equation 5 and 
the tabulation below it. 

The necessity of predicting the best value for 
t he smoothing constant and updating it as conditions 
change can be obviated by using on-line updating of 
the filtering constant. Updating by exact reoptimi
zation--even over short histories--is not feasible, 
but Equation 8 presents a simple recursive method 
for calculating the filter constant that gives good 
results. 
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Operational Effects of Two-Way Left-Turn Lanes on 

Two-Way Two-Lane Streets 
PATRICK T. McCOY, JOHN L. BALLARD, AND YAHYA H. WIJAYA 

Tho two ·way loft-tum lane (TWL TL) has been insta lled on two-way meets 
under o wide variety of conditions as a solution to tho sa fety and operational 
problems caused by tho confli ct between midblock left turns and lhrough 
t raffic. Although the safoty effoctivoness of 1he TWL TL has bee n the subject 
of many studies, very few studies have been mado of iu operational effective
ness. Consequently, lu effects on t he ef'ficiency of traffic flow have nol boon 
precl5ely measured. Tho objective of this study was t o quantify th e effecu of 
e TWL TL on the efficiency of traffic flow on a two·way two·lano street. By 
using computer si mulation models specifically dovoloped and validated for th o 
purpose of this stud y, t raffic operations wero .simulated over a range of traffi c 
volumes and driveway donslt i01. From the outputs of the"' si mulation runs, 
the reductions In stops and delay• that resu lt from a TWL TL were computed. 
lsograms of lhe stop and delay reduct ions wore prepared to fHillUlte Iha use 
of tho resu lts of this 11udy to evaluate the potential cost effectivcnoss of TWL T L 
installations. 

The t wo-way left -turn l ane ('IWLTL) is recoqn ized a s 
a possible solution t o t he sa f ety and operational 
p r oblems o n two-way str e e ts that ar e caused by t he 
con flict between midblock l e f t t ur ns and thr ouqh 
t raffic . Th e primary fu nction of the TWL'l'L is t o 
e limi na te t his c onflict by removing the deceleration 
and stor age of vehic les makinq these turns from t he 
through lanes , thereby e nabli ng t hrough traffic to 
move past them without delay. However , t h e e xten t 
to whic h a '1'9LTL c a n improve t he effic i e ncy o f traf
f ic operations depends on the traff i c vo l umes and 
de nsity o f driveways involved . Although the pr in
c iple of t he compi e x re l atio nsh ip between these f ac
tors and the operat i onal effectiveness o f the TWLTL 
i s i n t uitively a pparent , it has ye t to be quanti ta-

tively expressed. Consequently , traffic engineers 
have not been able to pr ec isely predict the amount 
of improvement in the efficiency of traffic opera
tions that would result from the installation of a 
TWLTL. 

An extensive review of the literature and nation
wide survey of" experience with the 'IWLTL we re con
d ucted by Nemeth (1 I i n d eveloping guide lines for 
.i ts applic a t ion . This effort revealed t ha t the 
TWLTL has been insta lled unde r a wide varie t y of 
conditions . In most cases, it was considered to 
have noticeably improved the quality of traffic 
flow. Numerous before-and-after accident evaluations 
were found that provided measures of the safety ef
fectiveness of the TWLTL. But similar studies of 
its effect on the efficiency of the tr affi c were 
rare, and measures of the operational ef fect iveness 
of the TWLTL were not found. 

Likewise, in developinq guidelines for the con
trol o f a ccess on a r t e rial streets , Glennon and 
others (~ I found that emp i rical da t a pertinent to 
the determination of the operational effectiveness 
of the TWLTL were lacking. This deficiency preclud
ed the precise estimate of the delay-reduction po
tential of the TWLTL . And this in turn limited the 
specificity with which the conditions that warrant 
installation ot a TWLTL could be defined. 

I n response to t he need of traffic engineers to 
be able to more precisely predict t he oper a tional 
effective ness of a 'l'WLTL and more cle arly de f ine 
those circumstances that justify its installation, a 




