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Fatigue Reliability Analysis of Highway Bridges 

PEDRO ALBRECHT 

A method of calculating the expected fatigue failure probability of a struc
tural detail, given the distribution of resistance and load, is presented. The re
sistance data, in terms of cycles to failure, come from previous laboratory 
tests. The load data come either from stress-range histograms recorded on 
bridges or from loadometer surveys. The proposed method replaces each 
histogram by an equivalent stress range and converts the latter into a distribu
tion in terms of number of cycles. The problem is thus cast into the standard 
format for reliability analysis and allows one to calculate failure probabilities. 
Application of the method to designs in accordance with American Association 
of State Highway and Transportation Officialsspecifications showed that 
fatigue failure probabilities for redundant load· path IR LP ) mucturcs aro in· 
consistent and vary greatly from PF m 9.2 >< 10"2 for category B to PF ~ 9.2 
x 10·10 for cuegory e· and for nonredundant load-path (NRLP) structures 
from PF • 5, 1 x 10·2 for cat.egory A to PF ~ 2. 1 x 10"22 for category E. It is 
proposed that the specifications be revised to include (a) allowable stress ranges 
for R LP and NR LP structures with uniform failure probabilities; (b) explicit 
formulation of the specifications in terms of the actual number of single . 
fatigue trucks, each causing an equivalent stress range; and (c) continuous def· 
inition of allowable stress range versus truck traffic volume. An example ii· 
lustrates the design of a bridge not covered by the specifications to a specified 
failure probability . 

Design methods based on statistical reliability 
concepts have recently been developed for many areas 
of static design of members and connections. Code
wr i ting bodies are now incorporating them into their 
specifications to ensure consistent reliability 
throughout the structure. Still lacking is a reli
ability method for fatigue that can then be used as 
a basis for a load and resistance factor approach to 
fatigue design. The present study addresses this 
need. 

This paper briefly reviews the equivalent stress 
range and the reliability concepts needed herein. 
Thereafter, the load and resistance curves are 
constructed and transformed in a manner suitable for 
writing the governing equations. The failure prob
ability of designs to American Association of State 
Highway and Transportation Officials (AASHTO) fa
tigue specifications are assessed, and an illustra
tive design example is presented for a special 
bridge not covered by the AASHTO specifications (ll· 
The previous work (~) is extended to cover designs 
for over 2 million cycles and nonredundant load-path 
(NRLP) structures. 

EQUIVALENT STRESS RANGE 

Recent studies have employed, with good success, the 
concept of an equivalent stress range to correlate 
data from variable amplitude cyclic-load tests with 
data from constant-amplitude tests. The concept 
states that, for an equal number of cycles, the 
equivalent (constant-amplitude) stress range will 
cause the same fatigue damage as the sequence of 
variable-amplitude stress ranges it replaces. For 
convenience of applying the concept later in the 
paper, the equivalent stress range Cfrel is ex
pressed in the following form Cll= 

r,. = [~'Y;(</J;af,d)ffi] 1/m 

where 

Yi frequency of occurrence of ith stress 
r angei 

$i ratio of an individual load to the de-

(!) 

sign load, or ratio of corresponding stress 
ranges; 

a ratio of measured to computed stress range 
for the design load; 

frd computed stress range that corresponds to 
the design load; and 

m slope of S-N curve 

Figure 1 illustrates the meaning of the parameters 
in Equation 1 for a typical stress-range histogram 
(note for Figure 1 that if detail is designed to the 
allowable stress range, then frd = Fsrl. 

Because frd and a are constant for a given 
stress-range histogram, taking them out of the 
summation in Equation 1 gives 

(2) 

or 

(3) 

where p is defined in this paper as 

(4) 

The equivalent stress-range concept is needed in 
calculations of the fatigue failure probability of 
structures subjected to variable amplitude stress 
cycling. 

BASIC RELIABILITY CONCEPTS 

The reliability concepts employed in this paper are 
well documented in the literature (3). Structural 
reliability can be defined as the probability that a 
structural component will not fail within its design 
1 ife. In other words, it is the probability that a 
member's resistance to load is higher than the 
applied load. In deterministic design, one assumes 
a high value of load and a low value of resistance 
and specifies that the distance between the two 
shall not be less than a preselected safety factor. 
In probabilistic design, one recognizes that neither 
the resistance (R) nor the load (Q) are single 
valued; both have a mean and a distribution, The 
objective is then to compute the probability of 
failure, i.e., the likelihood of the undesirable 
cases where a high value of load will exceed a low 
value of resistance. Conversely, for purposes of 

Figure 1. Illustration of terms in Equations 1 and 3. 
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writing fatigue design specifications, one wishes to 
determine the distance between the mean resistance 
and the mean load (i: = R - Q), so that the failure 
probability (Pp) does not exceed a specified 
value. This is done with the equation for the 
safety index (B): 

13 = (r/sT) = (R - Q)/../ sfi. ·~ s'{; (5) 

where the difference (i:) between mean load and 
mean resistance is equal to a number (B) of stan
dard deviations of that difference (s,). If 
load and resistance are normally distributed, so is 
their difference, and the value of B that corre
sponds to a specified failure probability can be 
read from tables for the standard normal variable. 

Note that increasing the safety index (B) will 
decrease the failure probability. This can be 
achieved e'l.ther by moving the mean load (Q) farther 
away from the mean resistance (R) or by reducing the 
standard deviation. The second option is usually 
not available in most designs. 

When applying Equation 5 to fatigue design, the 
resistance is given by the number of cycles to 
failure and the load is given by the applied stress
rang·e history. This leads to two difficulties. One 
is the need to find a mean and standard deviation of 
many stress-range histograms, each of which de
scribes in itself a distribution of stress ranges. 
Second, the resistance data, which consist of the 
number of cycles to failure, are distributed along a 
horizontal line in a S-N plot, but the stress-range 
data are distributed along a vertical line. The 
following solution to the two difficulties is 
proposed: 

1. Replace each histogram by one equivalent con
stant-amplitude stress range, 

2. Calculate the mean and standard deviation of 

Figure 2. Construction of equivalent stress-range distribution. 
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Table 1. Resistance curve parameters. 

Category 

A 
B 
c• 
c 
D 
E 
E' 

Tyre of Detail 
Tested 

Rolled beam 
Welded bea m 
Stiffeners 
2-in attachments 
4-in attachments 
Cover plak end 
Cover plate end. 

t > 0.8 in 

No l~: I in = 25 111111. 
0Valucs or rr suhstituted in units of ksi. 
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all equivalent stress ranges, and 
3. Convert the resulting distribution of equiva

lent stress ranges into one given in terms of number 
of cycles. 

The problem is then reduced to the form to which 
Equation 5 applies. 

RESISTANCE CURVE 

The AASHTO fatigue specifications (ll are based on 
constant-amplitude fatigue test data for steel beams 
(~ 12>· The statistical analysis of the S-N data has 
shown that the mean regression line with the best 
fit was of the log-log linear form: 

log N = b - m log f, (6) 

with the intercept {b[at fr 1 ksi (7 MPa)] }, 
and the slope (m) as the regression coefficients. 
The log-log plot of Equation 6 gives a straight S-N 
line, which is labeled resistance in Figure 2. The 
data points were found to be log-normally dis tr ib
uted about the mean regression line with about equal 
standard deviation at all stress-range levels. This 
held true for all details. Thus, one may assume 
that for any point (f) on the mean regression line, 
the fatigue life of replicate specimens tested at 
the same stress range would be log-normally distrib
uted about that point with mean R = log N and stan
dard deviation, i.e., 

The mean and the standard deviation of the number of 
cycles to failure define the resistance. 

The regression coefficients (b and m) and the 
standard deviation (sR) for the six categories A 
through E' are summarized in Table 1 (~-]). They 
provide the resistance curve parameters needed in 
Equation 5. The data listed under categories C and 
E' require some explanation. In the AASHTO specifi
cations, category C covers both transverse stif
feners and 2-in (50-mm) attachments. The mean 
regression line of the former falls higher than that 
of the latter, thereby making it appear that the 
2-in attachment data would govern. In reality, one 
must also consider the standard deviation, which is 
about 2.5 times larger for stiffeners than for 2-in 
attachments. This creates a peculiar situation. If 
one moves· to the left of each mean by up to 2. 56 
standard deviations, the 2-in attachment governs. 
Beyond that, however, the transverse stiffener data 
become critical. Accordingly, this study employs 
that data for category C that governs at the value 
of B being considered. In contrast, the AASHTO 
fatigue specifications are solely based on the 2-in 
attachment data, although safety indices for cate
gory Creach a value of 7.12 for NRLP structures (~). 

Regressio n Coefficients 
No. o f Data Points Standard 

Deviation 
(sR) lncluJed 

28 
55 

135 
14 
44 

193 
18 

Excluded 

16 
l 
5 
0 
8 
0 

Int ercept" 
(b) 

I I.I 21 
10 .870 
10 .085 
10.0384 
9.603 
9.2916 
9.1664 

Slope (m) 

3.178 
3.372 
3.097 
3.25 
3.071 
3.095 
3.2 

0.221 
0 .147 
0. 158 
0.0628 
0.108 
0.1006 
0.1943 
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Table 1 also has an entry for category E', al
though no regression analysis was reported <1l, 
presumably because of a lack of data at various 
stress-range levels in the finite life region of the 
S-N plot. For the purpose of this study, the finite 
life region for category E' details was defined by 
the 18 data points at the 8-ksi (55-MPa) stress 
range for which the mean life was 1 890 000 cycles, 
and it had a standard deviation of log of life of 
sR = 0.1943 (~). Assuming a slope (m = 3. 2) equal 
to the mean of the six other slopes in Table 1, the 
intercept is then given from Equation 6 as 

b = log(l .89 x 106
) + 3.2 log(8.0) = 9 .1664 (8) 

LOAD CURVE 

The load-curve data can come either from field 
measurements of stress-range histograms or from 
loadometer surveys. In the former case, the strain 
ranges caused by the applications of a live load are 
obtained from a strain gage mounted at a suitable 
point on the bridge. In the latter, the trucks are 
weighed. In both cases, the results are usually 
reported as a histogram of stress range or truck 
weight versus frequency of occurrence. 

The proposed construction of the load curve is 
illustrated below for a class of comparable struc
tures, all of which are subjected to the same design 
load. For example, the fatigue design of short-span 
highway bridges is governed by the number of single 
truck crossings. Each application of the design 
load induces one stress-range cycle. It is assumed 
that one has available the stress-range histograms 
recorded on several bridges. 

The construction of the load curve begins with a 
single stress-range histogram, such as the one 
plotted along the ordinate in Figure 2. The bar 
width in a histogram is usually constant; it varies 
in Figure 2 because the S-N plot scales are loga
rithmic. The equivalent stress range (frel of the 
single histogram is then calculated. It replaces 
the histogram in subsequent calculations and pro
vides one point for the desired load curve. Plotting 
the distribution of all equivalent stress ranges on 
a vertical line through the design point (d) gives 
the load curve. To define its distribution, one 
needs the mean and the standard deviation. Assuming 
that the ratio of measured to computed stress range 
(a) is constant implies that afrd is also 
constant. Therefore, the computation of the log 
mean of all equivalent stress ranges is reduced to 
evaluating the log-mean of p for all histograms 
(see Equation 3): 

(9) 

where h is the number of histograms. The standard 
deviation · of the load is then given by the standard 
deviation of the log p values: 

(10) 

The pr i me added to SQ' and to any other symbol 
indicates a quantity measured along a vertical 
line. The line through the design point (d) drawn 
parallel to the resistance and the standard devia
tion of the equivalent stress ranges define the 
load. The load curve could be derived in analogous 
fashion from the results of loadometer surveys if 
one assumes that loads are proportional to stresses. 

Estimation of the load curve is less certain when 
the structure is one of a kind and few data are 
available. In that case, one must construct an 
expected load histogram over the design life, com
pute the equivalent stress range for that histogram, 
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and estimate the standard deviation. 

TRANSFORMATION OF LOAD AND RESISTANCE 

Equation 5 applies only if the load and resistance 
curves are plotted side by side with the same base 
line. The load is distributed along a vertical line 
through the design point (d) shown in Figure 2, 
whereas the resistance is distributed along a hori
zontal line through the failure point (f). One of 
the two curves must, therefore, be transformed. 

Albrecht (2) presented the transformation of the 
load curve, whereas this paper explains instead the 
transformation of the resistance curve in terms of 
self-evident geometrical relations. Figure 3 shows 
the solid resistance line and two dashed lines 
shifted above and below the mean resistance by a 
specified number of standard deviations, so that the 
survival probability (assuming a single-valued load) 
would be, say, 5 percent and 95 percent, respec
tively. The distribution of the resistance is drawn 
along a horizontal line through point f and also 
along a vertical line through point g. In both 
cases, the points with the same survival probability 
must lie on the same line parallel to the mean 
resistance. Because the slope is l:m, it follows 
for reasons of geometry that 

(11) 

where sR and sR' are the standard deviations of 
the resistance when its distribution is drawn about 
a horizontal and a vertical line, respectively. For 
the same geometrical reasons, the distance between 
the mean resistance and the mean load, measured 
along the vertical line g-d, is given by 

R' - Q'= (1/m)(R- Q) (12) 

Rewriting Equation 5 for the distance g-d and sub
stituting Equations 11 and 12 gives 

(13) 

or, after simplifying 

(J = (R - Q)/V(sR)2 + (ms0)2 (14) 

Equation 13 applies to distributions of load and 
resistance along a vertical line through points d 
and g, respectively. It requires a 90-degree rota
tion of the resistance distribution, which decreases 
the standard deviation by a factor (m) in accordance 
with Equation 11. The load remains unchanged. 

Figure 3. Transformation of load and resistance. 
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Equation 14 applies to distributions along a 
horizontal line through points d and f. In this 
case, the load distribution is rotated by 90 de
grees, thus increasing its standard deviation to 
sQ msQ'• which is compatible with the geo
metrical condition stated in Equation 11. The 
resistance remains unchanged. Both equations give 
the same result for a. 

Finally, subs ti tu ting the identities R = log N 
and Q _ log Nd into Equation 14 and using the 
abbreviation for the standard deviation of the 
difference between the resistance and the load: 

(15) 

Using the above equation yields the safety index for 
fatigue design: 

(J6) 

The terms sR and sQ' are given by Equations 7 
and 10, respectively. The failure probability that 
corresponds to any numerical value of a can be 
read from tables for the normal distribution. 

Equation 16 addresses the problem of computing 
the failure probability for a given design. The 
solution to the reverse problem, that of computing 
the design life (Nd) for a desired failure prob
ability, follows from the same equation: 

Jog Nd= log N -{3sT (17) 

On subs ti tut ion of N from Equation 6 with fr 
Fre• one gets 

log Nd= (b - {JsT) - m Jog F,e (18) 

or, taking the antilog: 

The mean safety factor (F.S.) on life is, from 
Equation 17 : 

(20) 

and that on stress range: 

(F.S.)r, = (F.S.)N L/m = IO~sT/m (2J) 

For a fixed value of a, the safety factors vary 
with type of detail because the standard deviation 
of the resistance (sR) varies. 

In summary, Equations 16 and 19 
index and the allowable number of 
tively, for 
probability. 

ASSUMPTIONS 

a given design or a 

yield the safety 
cycles, res pee -
desired failure 

Summarized below are the principal assumptions made 
in the development of the load and resistance. Many 
are based on data from previous studies and are 
referenced accordingly; others rely on engineering 
judgment when little or no data exist to support 
them. 

Assumptions pertaining to the resistance curve 
are as follows: 

1. The log-log linear S-N curve for constant-amp
litude fatigue test data is extended below the 
constant-amplitude fatigue limit (FL) downwards to 
a point where the equivalent stress range meets the 
variable-amplitude fatigue limit (~) at 

(22) 
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2. Calculations that pertain to a specific type 
of detail employ the exponent m, which corresponds 
to the slope of the S-N curve for that detail. 
Calculations of equivalent stress range are insensi
tive to small changes in m. Therefore, a rounded 
value m = 3 is used, thereby lending to Equation 1 
the meaning of a root-mean-cube (RMC) stress range 
12). 

3. Load interaction effects in high-low stress
range sequences are neglected because, in most civil 
engineering structures, the random nature of loading 
does not provide enough low-load cycles following a 
high-load excursion to retard crack growth (10). 

4. The fabrication quality of the test specimens, 
from which the resistance data of Table 1 originate 
(_!,~rll, is representative of all structures in 
service. 

5. Except for thick cover plates, which are now 
covered by the newly adopted category E' (11), any 
effect of specimen size and plate thickness on the 
fatigue life is neglected. 

6. Loss of life due to corrosion fatigue (all 
steels) and weathering (A588 steel) is neglected, 
although it can be large for high-fatigue strength 
details <.!.~) • 

7. The resistance data are log-normally distrib
uted (_!,~). 

Assumptions pertaining to the load curve are as 
follows: 

1. The maximum stress range in a recorded histo
gram is caused by the design load. 

2. The measured-to-computed stress-range ratio 
(a) has a single value with no distribution. 

3. Available loadometer surveys and stress-range 
histograms describe typical load variability for 
highway bridges. 

4. The load data are log-normally distributed 
(11). 

It should be emphasized that the safety index and 
failure probability computed from Equation 16 apply 
to one detail. Because all structures have more 
than one detail, the probability that the first 
detail will fail is about equal to the sum of the 
failure probabilities of all details. Finally, 
failure of the first detail does not necessarily 
induce collapse. This depends on the redundancy of 
the load pa th. 

The user must evaluate the assumptions listed 
above and the remarks on failure probabilities when 
applying the proposed method to a specific problem. 

APPLICATION TO AASHTO SPECIFICATIONS 

This section illustrates the first type of applica
tion, namely, to compute with Equation 16 the fail
ure probability of a detail that was designed to a 
specified design line. 

Background 

The current fatigue specifications for highway 
bridges, railway bridges, buildings, and weldments 
state in identical tables the allowable stress range 
(Fsr) as a function of type of detail and number 
of loading cycles, Nd (.!,, Table l.7.2Al). The 
listed pairs of stress range versus number of load
ing cycles are coordinates of points on the allow
able S-N lines for each type of detail. For redun
dant load-path (RLP) structures, these lines were 
set at two standard deviations (2sR) to the left 
of the resistance (1..!l. They are loosely called in 
the literature the 95 percent confidence limit for 
95 percent survival, although a design to those 
allowable S-N lines will not give a failure prob-
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Figure 4. Illustration of AASHTO fatigue specification 
requirements for category E and ADTT = 2500. 

IO 

ability of Pp = 5 percent (95 percent survival) 
for reasons that will become apparent in the follow
ing. It should also be noted that the current 
specification makes no allowance for load vari
ability. Substituting sQ' 0 and a 2 into 
Equation 17 and computing log N for fr F s r 
from Equation 6 gives, indeed, the AASHTO fatigue 
design lines for RLP structures: 

log Nd= log N - 2sR = (b - 2s1t) - m log Fsr (23) 

The tabulated values of Fsr and Na are approxi
mate coordinates of points on those lines. Equations 
6 and 23 for category E details are plotted in 
Figure 4. 

RLP Structures 

Equation 16 is applied to loading case 1 for which 
the average daily truck traffic (ADTT) equals 2500 
(or more). It cannot be applied to case 2 and case 

3 without assuming a frequency of loading, because 
AASHTO does not specify the value of ADTT for those 
cases. 

Consider, for example, a category E cover-plate 
end detail on an RLP structure designed to point e 
on the allowable S-N line shown in Figure 4. Its 
coordinates are Fsr B ksi (55 MPa) and Na 
(AASHTO) = 2 000 000 cycles. To locate the actual 
design point (d), one must find the equivalent 
stress range (fre) and the actual number of load
ing cycles (Na) • 

The equivalent stress range was extracted from 
the information reported in Fisher (l!). In that 
report, a linear relation was assumed between gross 
vehicle weight and stress range. Accordingly, the 
coefficients p and o that relate the equivalent 
s tress range (fre) to the design stress range 
(Fsr) can be obtained from gross vehicle weight 
data. The gross vehicle weight distribution from 
the 1970 Federal Highway Administration (FHWA) 
nationwide loadometer survey yielded a summation of 
Yi<!>i' 0,35 (14). This gives, in the 
manner of Equation ~ p = O. 705. The ratio of the 
actual stress range due to the passage of a design 
vehicle and the design stress range is o O .5. 
It is obtained from Equation 6 in Fisher (14) for a 
50-year design life. Note that F sr is b~d on a 
distribution factor for wheel loads to girders on a 
b ridge designed for two or more traffic lanes 
(s/ 5 .5), where s is the girder s pacing. The combi
nation o f s / 5.5 with o = 0.5 gives s / 11, a plausi
ble value for the distribution factor for bridges 
designed for one traffic lane. The equivalent 
stress range is then 

fn . = 0.5 x 0.705 x 8 = 2 .8 ksi(l9 Ml'a) (24) 

/ HYPOTHETICAL DESIGN POINT 

OJI 

NUMBER OF CYCLES 
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For purposes of illustration, a stress-range 
histogram proportional to the gross vehicle weight 
histogram from the nationwide loadometer survey, as 
used in Fisher (l!l, is shown along the ordinate of 
Figure 4 [see also Fisher (14), Figure 25)]. For 
loading case 1 and ADTT = 2500, AASHTO specifies 
that a category E detail be designed to the hypo
thetical point e in Figure 4 and for Na (AASHTO) = 

2 000 000 cycles of the allowable stress range Fsr 
B ksi (55 MPa). The oFsr 4 ksi (28 MPa) 

stress range corresponds to one 72 000-lbf (320-kN) 
truck on a bridge designed 'for one traffic lane. The 
fre CJPFsr 2.B ksi (19 MPa) stress range 
corresponds to one (p 72 000) 50 760-lbf 
(226-kN) fatigue truck on a bridge designed for one 
traffic lane (12_, Table 5). The actual number of 
cycles for a 50-year design life is Na 2500 
trucks/day x 365 days x 50 years 45 625 000 
cycles. The actual design point (d) has therefore 
the coordinates fre 2.8 ksi and Na 
45 625 000 cycles. That the actual design point (d) 
also lies on the load curve at 2sR to the left of 
the resistance follows from the identities: 

(Fsr/f,.)m = [1 /(0.5 X 0.705)]-' = 22.83 (25) 

N0 /I N0(AASHTO)] = 45 625 000/2 000 000 = 22.81 (26) 

Equations 25 and 26 reflect the geometrical relation 
that the slope times the rise must equal the flat of 
the log-log linear design S-N line. 

Evidently, the intentional mismatch between the 
AASHTO number or cycles of Fsr stress range and 
the actual number of cycles of fre stress range 
means that the AASHTO specifications apply, in 
reality, to one traffic lane loaded by a single 
fatigue truck. The fatigue design to the hypotheti
cal point e is mathematically identical to a design 
to the actual point d. This conclusion is illus
trated in Figure 4 for a category E detail, but it 
holds equally true for all other categories. 

The horizontal distance between the failure point 
(f) and the actual point (d) is therefore 2sR• 
Substituting this value into Equation 16 gives the 
safety index for main longitudinal load-carrying 
members in RLP structures designed for ADTT = 2 500, 
i.e., 

(27 ) 

Note again that neglecting load variability implies 
that sQ' = 0 and leads to s = 2, as in Equation 
23. AASHTO requires that "members shall also be 
investigated for over 2 million stress cycles pro
d uced by placing a single truck on the bridge dis
tributed to the girders as designated in Article 
1.3.l(B) for one traffic lane loading" (1). (The 
di s tribution factor for one traffic lane loading is 
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S/7.) This requirement lowers the hypothetical 
design point in Figure 4 from e to e1 and the 
actual design point from d to d1. It increases 
the numerator of Equation 27 from the distance d-f 
to d1 -f1. The safety index for more than 2 
million cycles is then given by 

Ii= (1 /sT) { 2sR + 111 ·log [Fsr (2 x 106)/Fsr (over 2 x 106)]} (28) 

in which the allowable stress ranges for 2 million 
cycles and over 2 million cycles are read from 
AASHTO Table l.7.2Al UJ for RLP structures. There 
is really no need to check both loading conditions 
for every design, since the one that governs can be 
determined a priori. The condition for 2 million 
cycles of loading always governs for categories A, 
B, and C* because [Fsr(2xl0 6 )/Fsr(over 
2xl0 6 )] < [(S/5.5)/(S/7)]. The condition for 
over 2 million cycles always governs for categories 
C, D, E, and E' because [Fsr(2xl0 6 )/Fsr(over 
2xl0 6 )] > [(S/5.5)/(S/7)], Hence, Equation 27 
always applies to cateqories A, B, and C*, and 
Equation 28 applies to categories C, D, E, and E'. 
Both are in reality for single truck loading; the 
former with a distribution factor a(S/5.5) = S/11, 
as shown previously, and the latter with a (S/7) 
S/14. The double-check requirement is superfluous 
and leads to inconsistent failure probabilities. 

The numerical evaluation of Equations 27 and 28 
was carried out for all categories. The values of 
sR and m needed to calculate s

1 
with Equation 

15 are listed in Table 1. Lacking variability 
information for fatigue truck weights, the standard 
deviation of the load was set equal to the standard 
deviation of the equivalent stress ranges that were 
obtained from 104 histograms recorded on 29 bridges 
in eight states [sQ' = 0.0492 (.!l_)]. The allow
able stress ranges for main longitudinal load-carry
ing members in RLP structures were taken from AASHTO 
Table 1. 7. 2Al (_!.). The calculated safety indices 
and failure probabilities are shown in the left part 
of Table 2. The results reveal extreme variations 
in failure probability, which range from a high of 
Pp 9.2xl0- 2 for category B to a low of Pp 
= 9.2x10-• for category E'. 

NRLP Structures 

Failure probabilities of main longitudinal load
carrying members in NRLP structures can be calcu
lated in a similar manner. Again, the condition for 
2 million cycles of loading always governs for 
categories A, B, and C*, for which the safety index 
is as follows: 

Ii= (l/sT) { 2s 1\ + 111 ·log (Fsr (2 x 106
: RLP)/F,, (2 x 106

: NRLP)J} (29) 

The condition for over 2 million cycles of loading 
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always governs for categories C, D, and E that have 
a safety index of 

IJ = (l/sT) {2sR + 111 ·log (Fsc (2 x 106; RLP) 

7 Fsr(over 2 x 106
; NRLPJJ} (30) 

The results, shown to the right in Table 2, reveal 
once more extreme variations in failure probability, 
from a high of Pp = 5 .lxl0- 2 for category A to 
a low of Pp 2 .1x10-22 for category E. Note 
also that the failure probabilities for category A, 
B, and C* details on NRLP structures exceed the 
failure probabilities for category C, D, E, and E' 
details on RLP structures. The original intent of 
adding a table of Fsr values for NRLP structures 
had been to lower failure probabilities to less than 
those for RLP structures. 

DESIGN EXAMPLE 

This section illustrates with one example the second 
type of application, namely, the fatigue design of a 
detail for a desired failure probability. This type 
of example is not covered by the AASHTO specifica
tions. Additional examples are presented in Albrecht 
!l). 

Problem 

A one-lane bridge consists of two plate girders and 
a concrete deck. It is located on a pr iv ate access 
road from an ore concentrating plant to the mine. 
The trucks cross the bridge empty on the way to the 
mine and full on the way back to the plant. The net 
vehicle weight (NVW) and gross vehicle weight (GVW) 
are NVW = 40 kips (178 kN) and GVW = 140 kips (625 
kN). Because all other vehicles weigh much less 
than the empty ore truck, their contribution to 
fatigue damage is neglected. About 150 daily round 
trips will keep the plant working at full capacity. 
At that rate, all ore will be mined in 12 years. 
Because the bridge has low clearance, crosses a 
shallow river, and serves no public roads, a low 
safety index of a 3 (Pp l.35x10- 3 ) is 
assumed. Compute the allowable stress range for the 
category B flange-to-web weld. 

Solution 

The load- and resistance-curve data are determined 
and substituted into Equation 18. Its solution 
yields the allowable stress range for the specified 
number of loading cycles (see Figure 5). 

1. The load-curve data for vehicle weights and 
frequencies are as follows: 

¢>NVW = 40/140 = 0.286; YNVW 0.5. 

Table 2. Fatigue failure probabilities for main longitudinal load-carrying members designed for ADTT = 2500. 

/\ 
ll 
C* 
c 
\) 

t' 
E' 

Slamla1 d 
De via lion 
or R -0" 
(ST) 

0.2707 
0.22 17 
0.2195 
0. 1718 
0, 1857 
0. 1825 
0.2501 

RLP St1uct11res 

I 

2 Million Cycles 

1.633 
I 3 26 
I .440 

5. 1 x J0-2 

9.2 x 10·2 

7.5x10-2 

cFqlla lion 28. 

Over 2 Mil lion 
Cycles 

2.887 
3,72 5 
4.5<>4 
6 .012 

1.9 x 10"3 

9.5 x 10·> 
2.5 x 10"6 

9 .2 x !0" 10 

NRLP Structures 

2 Million Cycles 

~d Pr.· 

1.633 
2. \04 
1.930 

5 . 1 x I 0·2 

I .8 x \0"2 

2.7 x 10·2 

cEquat ion 30. 

Over 2 Million 
Cy des 

3 .752 
6.141 
9.669 

8.8 x L0"5 

4.1 x 10· 10 

2.1 x I 0·22 
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Figure 5. Design example. 
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'GVW = 140/140 = l.Oi YGVW = 0.5. 

Then substitute into Equation 4: i.e., 

p = [0.5(0.286)3 + 0.5(1.0)3] 113 = 0.80 

'i..·o.e•16•12.eu; 

(31) 

For a one-lane bridge assume that a = 1. O. A 15 
percent coefficient of variation (C = 0 .15) is esti
mated for the equivalent truck weight, so that 

s0 = ../0.4343 log10(1+C2 ) =0.0648 (32) 

2. Resistance-curve data for category B, which 
are taken from Table 1, are as follows: b 10.870, 
m = 3.372, and sR = 0.147. 

3. The design equations (Equations 15 and 19) are 
as follows: 

ST = ..; (Q. 147)1 + (J ,372 X 0.0648)1 = 0.2634 (33) 

Nd= 10(10.s10-3xo.2634)/F,~·372 = (1 2.o x l09)/F,30312 (34) 

4. The number of loading cycles is as follows: 

Nd= (2 x 150 trips)(365 days)(12 years)= I 314 000 cycles (35) 

5. The allowable stress range for a design based 
on equivalent truck weight is 

F, 0 = [(12.0 x 109)/(1.314 x 106)) 113 '
372 = 14.9 ksi (103 MPa) (36) 

and for a design based on GVW is 

Fsr = F,0 /p0i = 14.9/(0.80x 1.0) = 18.7 ksi (129MPa) (37) 

6. Check the fatigue limit: i.e., 

f,(GVW) = 18.7 ksi >FL= 16 ksi(l lOMPa) (38) 

Therefore, fatigue must be checked. 
7. The safety factor on life, which is taken from 

Equation 20, is as follows: 

(F.S.)Nd = 10(3x0.2634) = 6.2 (39) 

The results of the previous calculations are 
shown in Figure 5. The histogram is plotted along 
the ordinate. The upper and lower load lines are 
for designs to Fsr and Fre• respectively. Both 
give analogous results, since the two lines are 
shifted by the ratio ap Fre/Fsr• The safety 
factor on life is the horizontal distance between 
the resistance curve and the Fre load curve. 
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CONCLUSIONS AND RECOMMENDATIONS 

A method of calculating fatigue failure probabili
ties based on the S-N approach was presented in a 
form suitable for examining designs to current 
fatigue specifications and for performing designs to 
any desired level of risk. The method is general. 
It was illustrated here in detail for highway 
bridges. The main findings were as follows: 

1. The design for the AASHTO number of cycles of 
maximum stress range (Fsr> calculated for multiple 
HS-20 trucks with a distribution factor for two or 
more traffic lane loadings (S/5. 5) is mathematically 
identical to the design for the actual number of 
single fatigue trucks with a distribution factor of 
S/11. 

2. The dual requirement to check all case 1 
designs for 2 million cycles with S/5.5 and for over 
2 million cycles with S/7 is superfluous because the 
former always governs for categories A, B, and C*, 
and the latter always governs for categories c, D, 
E, and E'. It is also inconsistent because both 
are, in reality, for single fatigue truck loading. 
But the former is for a higher stress range with an 
actual distribution factor a (S/5.5) = S/11, while 
the latter is for the fatigue limit with an actual 
distribution factor a(S/7) = S/14. 

3, The failure probabilities lack 
RLP structures, they vary from a 
9.2x10- 2 for category B to a 
9. 2x10- 1 0 for category E'. For 
they vary from a high of PF 
category A to a low of Pp 
category E. 

uniformity. For 
high of PF 

low of PF 
NRLP structures 

5.lxl0- 2 for 
2.lxl0- 22 for 

4. The failure probabilities for category A, B, 
and C* details on NRLP structures are higher than 
those for category c, D, E, and E' details on RLP 
structures. This violates the intent of the re-
quirements for NRLP structures. 

There are dangers of either g1v1ng too much 
credence to the accuracy of calculated failure 
probabilities or of dismissing the results out of 
hand because of unavoidable uncertainties and a lack 
of data, The most important benefit is the ability 
to compare the values relative to each other. 

The pressing need for specifications that are 
based on uniform failure probabilities mandates that 
AASHTO choose two values, one for RLP and one for 
NRLP structures. Thereafter, allowable stress 
ranges can be derived with methods such as the one 
outlined here. This need alone calls for a revision 
of the current specifications. In addition, AASHTO 
should consider the following points, which have 
also been made by other investigators in the past: 

1. Define the allowable stress range as a contin
uous function of truck traffic volume instead of the 
step function approach by loadinq case in Table 
l.7.2B (1). 

2. Explicitly formulate the fatigue specifica
tions in terms of the actual number of single fa
tigue trucks, each of which cause an equivalent 
stress range, instead of a hypothetical number of 
HS-20 design trucks that cause the maximum stress 
range. 

3. Examine what impact the distribution factors 
would have on the fatigue specifications if they 
were expressed in terms of number of girders and 
lanes instead of girder spacing. 
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