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Goodness-of-Fit Measures and the Predictive 

Power of Discrete Choice Models 

CARLOS F. DAGANZO 

Although a number of goodness-of-fit measures for discrete choice models have 
been proposed and are widely in use, there have been few attempts at interpret
ing their physical meaning at a practical level. This paper presents a family of 
goodness-of-fit measures, which contains currently used measures such as the 
pseudo-correlation coefficient and the percent right, and shows how its mem
bers are related. More important, it is shown that one of these measures has an 
interpretation identical to the correlation coefficient of multiple regression in 
that it can be used to calculate the expected reduction in the root-mean-square 
prediction error afforded by a model. This goodness-of-fit measure, d, is 
uniquely defined for binary models, and can be approximated by an easy to cal
culate consistent statistic, D. For models with more than two alternatives, the 
same can be done, but the measure depends on the alternative under considera
tion. The d-measure usually takes values in between the commonly used nor
malized percent right measure and the pseudo-correlation coefficient. 

A discrete choice model is a formula that relates 
some explanatory variables, X (sometimes called 
attributes), to the probability that an individual 
chooses one of a set of alternatives. The expres
sion given below is the discrete choice model it
self. It assumes that there are I alternatives, i, 
and is called the choice function: 

Pr[choose ilX] = P;(X), i = 0, I, ... , I - I (!) 

The closer the probabilities qiven by Equation 1 
are to either zero or one, the ~ore unequivocal will 
be the predictions of the model. A true model--it 
is assumed that Equation 1 does not contain specifi
cation errors--that gives values close to either 
zero or one for most of the values of X that are 
likely to be encountered in practice is superior to 
a model that qives probabilities that barely depend 
on X. 

The distinction of qood and bad models can be 
captured by many measures of qoodness (of tit\ , and 
a purpose of this paper is to discuss these in a 
unified way. The multiple linear reqression analoq 
of these measures is the correlation coefficient. 
Ultimately, because a model is as good as its pre
dictions, it will be shown that there is a goodness
of-fit measure, d, which is related to prediction 
error reduction in the same way as the correlation 
coefficient of regression analysis. Thus, the model 
goodness can be readily interpreted by analysts used 
to workinq with reqression models. 

The a-measure will be related to other commonly 
used goodness-of-fit indicators such as the "percent 
predicted right" indicator of success tables and the 
pseudo-correlation coefficient of McFadden UJ. 
Hauser (2) provides a good review of goodness-of-fit 
measures-to which the reader is referred. 

ON MS PREDICTION ERRORS FOR REGRESSION MODELS 

The linear regression model is 

Y={3 · XT + e (2) 

where Y is a continuous dependent variable, and 
X are row vectors of constants and explanatory vari
ables, and e is a zero mean random error term that 
is independent of X and of the error terms of other 
observations. 

The correlation coefficient, p, of a reqression 
model (see Equation 2\ can be expressed as follows: 

l -p2 = [var(e)]/[var(Y)] 

This is well known, and we also note that 

var(Y) = Ex[var(YIX)] + varx[E(YIX)] 

= [var(e)] +var [({3. XT)] 

(3) 

(4) 

In the regression terminology, var ( €) is called 
the unexplained variance and var(S • XT\ the 
explained variance. It should be noted that the ra
tio of explained to total variance ( p 2 l can be in
creased for the same real world phenomena by in
creasing the spread in the sampling distribution of 
X. It cannot be increased, however, by increasinq 
the sample size. 

The correlation coefficient can also be related 
to an average reduction in prediction error that is 
afforded by the model if the sampling distribution 
of X coincides with the distribution of values for 
which predictions are desired. 

For a model without explanatory variables, the 
predictions will be constant, y0 • The mean squared 
prediction error for a model without explanatory 
variables, MSE, when the prediction is y0 is 

MSE = E(Y - Y0 )
2 = [var(Y)] + [E(Y) - y0 ] 2 

Because E(Y) is the value of y0 that minimizes the 
MSE, we assume that y0 = E(Yl and denote it by Y. 
Then, 

MSE = var(Y) (5) 

We note that the MSE for any given value of X, 
MSEx, is 

MSEx = E(Y - Y2 IX) 

= var(Y - y IX) + ({3 . xT - Y)2 

= var(YIX) + [{3 · (X - )(jT] 2 

= var(e) + [{3 · (X - XT)] 2 (6) 

That is, MSEx is made up of a random com~nent, 

var(E), and a systematic component, [S • (X - X)TJ 2 • 

As shown below, the systematic component is removed 
by the model with explanatory variables. Because 
Equation 5 is the average of Equation 6 over the 
distribution of X: MSE = Ex(MSExl· MSE will be 
called the average mean squared prediction error. 

For the model with explanatory variables, the 
mean squared prediction error for a given value of 
x, MSE~, can be shown to be independent of X. 
Since the model preaiction is a • xT, we may 
write 

(7) 

Thus, the average mean squared prediction error, 
MSEw, is also given by var(e). Clearly, then, 
the interpretation of the correlation coefficient, 
p, that is related to prediction errors is 

I - p 2 = average mean squared prediction error with model 

7 average mean squared prediction error without model 

and one can interpret ri-:7 as the after/ 
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Figure 1. Residual prediction error as a fraction, r0 , of the prediction error 
without a model for different values of the correlation coefficient, p, and the 
prediction group size, n. 
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before ratio of prediction errors that can be ex
pected. This ratio will be noted by r. 

Instead of predicting the dependent variable for 
one observation, if one wants the average for a set 
of n observations with the same value of X, the pre
diction errors will be reduced. A bar will be used 
over the MSE symbol to denote that Y is an average 
of n observations. The same arguments, as before, 
yields 

MSEw = MSEji' = (1/n)var(c) (8) 

This is the equivalent of Equation 7. For the model 
without explanatory variables, only the random com
ponent of the prediction errors is diminished: 

MSEx = (1/n)var(c) + [(J · (X- 5()T] 2 (9) 

Of course, 

(IO) 

which is the equivalent of Equation 4. The before/ 
after prediction error ratio for an averaqe of n 
observations is defined as above: 

(11) 

This well-known expression is plotted on Figure 1 to 
clarify further the relationship between p and 
prediction errors. 

The next section contains a similar discussion 
for binary discrete choice models and introduces a 
measure, a, of the difference in prediction accuracy 
with and without a model. The rest of the paper 
attempts to relate the different goodness-of-fit 
measures that exist. 

THE d-MEASURE 

Let us consider binary discrete choice models. For 
these models P1(Xl = 1 - P0 (Xl, and the dependent 
variable is either zero or one. It is assumed, how
ever, that Pi(X) is strictly between zero and 
one. For any given value of X, the expected value 
of the Bernoulli dependent variable, i, is P1CXl. 
With this in mind, we can repeat the steps noted in 
the earlier section on MS prediction errors for re
gression models. 

It y0 is the predicted value of i for a model 
without explanatory variables, the MSE is 

The value of y0 that minimizes MSE is E ( i l , the 
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fraction of the population of individuals for which 
predictions are desired that chooses alternative 1. 
This value will be called f1 and clearly var(il = 
f 1 ( 1 - f1). The trivial cases with f1 = 0 or 
f 1 = 1 will not be considered in this paper. This 
is consistent with the postulate that P 1 (X) is 
different from zero and one since there are no spec
ification errors. From now on, we assume that 
y0 = f1. Thus, 

(12) 

which is the equivalent of Equation 5. 
Analogously, 

MSEx = E[(i- fi) 2 JX] = var(iJX) + [E(iJX) - f, ]2 
=P1(X)[l-P1(X)] + [P1(X)-fi] 2 

(13) 

As in Equation 6, P1(Xl [l - P1(X)] is a random 
component and [P1 (X) - f 1J 2 is a removable 
systematic component. The difference is that the 
random component is not fixed. Nevertheless, it is 
true that MSE = ExCMSExl, and M.SE can still be 
called legitimately the average mean squared predic-
tion error. 

For models with explanatory 
is no longer independent of x. 
prediction, and write 

MSE: = E {[i -y0 (X)]2J X} 

= var(iJX) + [E(iJX) - y0 (X)] 2 

=P1(X)[l -P1 (X)] + [P1 (X)-y0 (X)]2 

variables, M.SEjt 
Let y0 (Xl be the 

Since a prediction of v0 ( Xl = P1 ( Xl minimizes 
the mean squared error, it will be assumed to be 
that way from now on. Thus, 

MsE: = P1 (X)[l - P1 (X)] (14) 

which as with regression is the random component of 
MSEx• 

Unlike in regression, however, the average mean 
squared prediction error must be calculated. It is 

(15) 

The mean of the (removed) systematic component is 

which is similar to the expression of the systematic 
error of the regression model. 

By analogy to the correlation coefficient of re
gression, let us define a measure of goodness-of
fit, d, which will capture the difference that the 
model makes: 

(16a) 

Alternatively, 

d2 = varx [P1 (X)] /f1 (1 - f1) (16b) 

It is not difficult to realize that Figure 1 also 
applies to the d-measure. This interpretation is 
even more important for discrete choice models be
cause (at least in most transportation applications) 
one is usually interested in predicting the behavior 
of groups of people with more than one person 
(n > 1). 

ESTIMATION OF d: THE D-STATISTIC 

The value of d can be approximated from the data used 
for estimation. Assume that a random, attribute-
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Figure 2. Quadratic, log
arithmic, and bang-bang 
loss functions. 
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based sample is used and define P1 equals the mean 
estimated choi ce probabili t y of alternative l in the 

2 • f sample, and Sp equals t he sample variance o 
the estimated choice probability for a l ternative l 
(or o--they are the same) in the sample. 

Then, the following statistic, 

(1 7) 

intuitively approximates d for larqe samples. Ap
pendix A proves that under reqularity conditions, D 
is consistent. 

To show that D£[0, l], consider the set of es
timated alternative l choice probabilities for all 
the observations in the sample. The sample mean of 
these probabilities was denoted _P1 and the second 
sample moment will be denoted Pi. Because all the 
eroba~ilities are betwe~~ zero and one, we wav WE~te 
~l ~ PlL or subtracting Pi on both sides, Pi - Pi~ 
P1(l - P1l. Since the sides of this inequality are 
the numerator and denominator of Equation 17, it is 
clear that D < 1. That D > 0 is obvious. 

FRAMEWORK FOR COMPARISON 

Let us now investigate how the a-measure is related 
to other measures currently in use. To do this more 
easily, the measures will be derived from a common 
model. 

Let us assume that when an observation is taken, 
one experiences the following penalty for predicting 
y as the choice probability for alternative l 
[y£(0, l)] when the choice is actually i (i = 0, ll: 

L(y, i) = Q(I y-il), 

where t(•l is a real-valued, nondecreasinq loss 
function defined in the ( 0, l l interval, with tim 
t(xl = o. The following are three possibilities 
for t(x) i they are labeled A, B, and C since they 
will be used in the sequel: 

(Al Quadratic loss: t(xl 
(Bl Logarithmic loss: t(xl 
(Cl Bang-bang loss: t(x) 

x• • 
= -loq(l - xl 
0 if x < ( l/2l 
1/2 if x ( 1/2) 
l if x > ( 1/2). 

Fiqure 2 depicts these functions. (Because the 
scalinq of the loss functions does not affect the 
qoodness-of-f it measures that one derives, the 
scales in the figure are such that of1 t!x)dx = l in 
all three cases.) 

The goodness of a model can, therefore, be mea
sured by comparing the expected loss for a i;iredic
tion with and without the model. 
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If we do not have a model, a prediction, y = P1 1 

that minimizes the expected loss (if it exists) is 
found by 

min { E1 [£( IY - ii)]} = min {f1 Q(l - y) +(I - fi)Q(y)} (18) 
yE(O,l) YE(O,I) 

where, as before, f1 is the fraction of the popu
lation choosing l. As is commonly done in Bayesian 
analysis, only loss functions for which P1 = f1 
are considered. Otherwise, there would be a reward 
for providing the wrong prediction, and this should 
be avoided. Loss functions for which Pi = f1 
will be called reqular. 

For regular loss functions that are differenti
able in [O, (1/2)], the derivative, t' (x), of the 
loss function must satisfy the following (necessary) 
symmetry condition in (0, ll if the minimum of Equa
tion 18 is to be equal to f1: 

[Q'(x)] /x = Q'(I - x)/1 - x, x "° (1 /2) (19) 

Cases A, B, and C all satisfy Equation 19 and are 
regular. 

The minimum of Equation 18 is unique only for 
cases A and B, however. 

A regular loss function that is nondecreasing and 
differentiable in [O, (1/2)) may have a discontinu
ity at x = (1/2). (See case C.l 

For regular loss functions, the expected loss 
without a model, L, is calculated with a prediction, 
P1 = f1: 

(20) 

The next theorem establishes some important prop
erties of 1jJ (x). 

Theorem 1: Assume t(x) is real-valued, non
negative, nondecreasing, regular, differentiable in 
[O, (1/2)), and such that tim t(xl = o. Then, ljl(xl 

x+O 
is continuous, bounded, concave, reaches a maximum 
at x = 1/2, and is such that tim ljl(x) = O. 

x+O,l 
Proof: Because it is nonneqative, 

bounded and must satisfy 

i/J(x) .;; xQ(l/2) + (1 - x)Q(l/2) = Q(l/2) 

since by regularity 1li(x) 
tion 18. Thus, t(l/2) 
regular. Since 1li(l/2) 
a maximum at x = 1/2. 

is the g. t. b. 
bounds ljl(x) if 
c 1(1/ 2) I ljl(X) 

ljl(X) is 

of Equa-
1li(xl is 
reaches 

To prove that ~(x) is continuous, it suffices 
to show that ljl{xl + ljl(l/2) as x + (1/21. 

Because t(x) is regular and 1li(l/2) = 1(1/2), Equa
tion 18 with f1 = (1/2) enables us to wrjte: 

i/J(l/2) = Q(l/2)" (1/2) {£[(1/2) + €] + Q[{l/2)- EJ} '\f€€ [0 ,(1/2) ] (21) 

For f1 = (1/2) + £ , Equation 18 yields 

i/J[(l/2) + €] = 1/2 {Q[(l/2)+ €] + Q[(l/2) - €]} - € {£[{1/2) + €] 

- Q [(1/2) - €) f" i/J(i/2), \f€€ [0, (1/2)] (22) 

The inequality stems from the fact that 1li(l/2l is 
a maximum of 1li (xl. It is clear from Equations 21 
and 22 that 

I i/J[(l/2)] - i/J[(i/2) + E] I < € { Q[(l /2) + €] - Q[(l/2) - €)}, VEE[O, (1/2)] 

and since the RHS goes to zero when E + 0, ljl[(l/2) + 
£] + ljl[(l/2)]. This establishes continuity. Concav
ity is next. 

By using Equation 19 we see that ljl'(x) = t(l -
x) - t(x), xe[O, (1/2)]. Clearly, ljl'(x) is nonnega-
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Figure 3. ijl(x) for quad
ratic, logarithmic, and 
bang·bang loss functions. 

Figure 4. Example of 
irregular loss function. 
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tive and nonincreasing, Thus, ljl(x) is concave and 
nondecreasing in (0, (1/2)]. 

Since ljl (x) is continuous at 1/2 it is also con
tinuous, concave, and nondecreasing in [O, (1/2)]. 
The concavity of ljl(x) in (0, ll follows immedi
ately from the above properties and the symmetry of 
ljl(x) around 1/2. (Alternatively, the 
reader can verify that {aljl(x) = ljl' (xl if x 1 (1/2), 
aljl(x) = O if x = (1/2)} is a subgradient of ljl(x). 

To show that tim ljl(x) = 0, it suffices to show 
x+O ,1 

that (1 - x)t(x) + 0 as x + i·. If t(x) is bounded 
in a neighborhood of 1, this is obvious. Otherwise, 
t(x) +mas x + i· and the limit is the same as 

Qim (1 - x)Q(x) = '.l'im_ (1 - x)2Q'(x) 
x-1- x-1 

because of l'Hopital's rule. ([t(x)J is differen
tiable in [(1/2), l] because of the symmetry condi
tion implied by regularity.) By using Equation 19, 

.QJ.rp_ (1 - x)2 Q' (x) = .Q};r. x(I - x)Q'(I - x) = 0 ·QED 

Figure 3 plots ljl(x) for cases A, B, and c, 
Note in particular that ljl(x) is continuous at 
x = ( 1/2) for the bang-bang case, Figure 4 illus
trates that the theorem does not hold for loss func
tions that are not reqular. 

The next step will be to calculate the expected 
prediction loss when we use the true model P1 ( X) 
and to compare that with ljl(f1 l to derive a qoodness
of-fit measure that will capture the reduction in 
loss achieved by the model. 

Goodness-of-Fit Measures from Reqular Loss Function~ 

Given X, the probability that i = 1 is P1(X) and 
because the loss function is regular, the optimal 
prediction is P1(Xl. The expected loss condi
tional on x, with the model is: 
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L;i' = E1{£ [1i-P1(X)l] IX} =P1(X)Q[l-P1(X)] +[l-P1 (X)]Q [P1(X)] 

=iii [P1 (X)] 

The unconditional expected loss with the model is 

(23) 

Note that Ex!P1(X)J = f1, 
It makes sense to define the goodness-of-fit mea

sure, g, to be the fractional reduction in expected 
loss from the introduction of the model: 

g = 1 - (LW/L), 

But before one can do that, it is important to find 
which loss functions result in values of g that 
range from zero to one: for otherwise, the loss 
function would not be reasonable. 

Theorem 2: 
zero to one. 

If Theorem l holds, g ranges from 

~: First we show the Lwe[O, L). Note 
that (a) Lw > 0 because ljl(x) > 0, and (bl 
Lw 2 Ex{ljl(P1(XllT < ljl{Ex!P1!Xl]} = ljl(f1l = L because, 
by virtue of theorem 1, ljl(•J is concave. Thus, 
Lw£ (0, L]. 

That the limit values 0 and L can be reached is 
clear because if Pi ( X) is constant, it must equal 
f 1 , and L~ = Lw = L. On the other hand, if 
P1 ( Xl takes values differing from zero and one by 
less than except for a set of x-values with 
probability measure less than e, L~ + 0 as 
£ + O except for a set of x-values of measure zero. 
Thus, as £ + 0, Lw + 0, and g can be made ar
bitrarily close to one by letting P1(•) resemble 
a simple function, 6(•), sufficiently well. 

It follows that any value of g in the (0, l] in
terval can be attained with a convex combination of 
P1(X) = f1 and P1(X) = 6(X), QED 

The quadratic, logarithmic, and bang-bang losses 
yield three well-known goodness-of-fit measures. 
(A) Quadratic Loss, gq 
From Equations 12 and 20 and by using the quadratic 
loss formula in the latter, we see that L : MSE. 
Similarly, Equations 15 and 23 yield that 
Lw: MSEw. Thus, gq = d 2 , and the quadratic loss 
function generates the a-measure. 
(8) Logarithmic loss, g1 
Replacing the logarithmic loss function, t(xl, 
into Equations 20 and 23, we find that the expected 
loss, L, is 

and that Lw is 

If, as stated earlier, the distribution of X used 
represents its samplinq distribution (it is assumed 
that sampling is not choice-based), this expression 
is the negative expected value of log-likelihood 
function (for one observation) : 

..C (X) log P1(X) if i = 1 
log[l - P1(X)] if i 0, 

and 

Thus, Lw/L represents the reduction in log
likelihood that is achieved by introduction of the 
model and g1 is the square of the pseudo-corre-
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lation coefficient that is commonly used [l, 2]. 
(Cl Bang-bang loss, gb 

Repeating the steps with the new t(x), we find that 

and 

The quantity, min{P1(Xl, 1 - P1 (Xl }, represents 
the fraction of times that we will be wrong if for a 
choice-maker with attributes X we predict choice 1 
if P1(X) > 0.5 and choice 0 if P1(Xl < 0.5. 
Thus, LW represents the "% wrong" measure that is 
used with success tables, and gb is the reduction 
in the percentage of "wrong" predictions that is 
achieved by introduction of the model. 

It should be clear that other goodness-of-fit 
measures can be derived by proper redefinition of 
t (xl and that different measures may be called for 
depending on the application. The discussion at the 
outset of this paper and in the section on the 
a-measure argued in favor of the a-measure when the 
application aim is the prediction of market shares 
for large groups of individuals. 

The next subsection discusses the relative maqni
tudes of Qq, gt, and qb and gives a formula 
relating qq and gt when they are small. 

RELATIONSHIP AMONG GOODNESS-OF-FIT MEASURES 

Recall that L is the heiqht of the curve on Figure 3 
(up to a factor of 2) when the abscissa is f 1 , and 
that Lw is the average of the height when the ab
scissa varies with P1(X). This scaling does not 
affect the value gb that is ultimately obtained 
because gb depends on the ratio Lw/L. 

If the variation in the abscissa is small and 
f1 is substantially different from (1/2), the 
bang-bang function will yield L ~ Lw (and 
gb ~ 0) since the function is linear over the 
relevant range of P1 (X). On the other hand [and 
also for small var P 1 (Xl], if f 1 = (1/2), L is 1 
and LW = 1 - 2Ex[IP1(X) - (1/2) I]. Then, % = 
2Ex[IP1(X) - (1/2) 1]. This illustrates that tor the 
bang-bang function and for models with low variance 
for P1 (X) (as usually occurs), gb will be smaller 
when f1 is substantially different from (1/2). 

Since the quadratic and logarithmic losses yield 
smooth ljl(x) 's, we approximate Lw taking expecta
tions on a two-term Taylor series expansion: 

Lw"' L+ iJ;"(f1 )varx[P1 (X)];varx[P1 (X)] ~ 0 

g"' I iJ;"(fi) I/ L varx (P1 (X)]; varx[P1 (X)] ~ 0 (24) 

Replacing in Equation 24 w" (f 1 l and L by the 
appropriate values we find 

(25) 

In this expression, Li is the logarithmic loss 
without model. It is clear from Figure 3 that 
Qq > Q2 if f1 is between (approx imately) 
0.2 and 0.8; and that gq < g 2 otherwise . If 
the probabilities are very unbalanced and 
varx[P1(Xl l is small: 0 ~ gb < gq <qt, but if f 1 ~ 
0.5, 9t < 9q < 9b· This is because if f 1 ~ 0.5, 
gb is comparable with (varx[P1 (X)]) (1/2) but qq and 
9t are comparable with varx[P 1 (Xl]. 

While Equation 25 allows us to approximate d from 
the output of most computer programs with 

d "' ~"' V 2[(1: -1:)/N] = Q (26) 

where £ is the background log-likelihood [3], £ is 
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the maximum log-likelihood, and N is the sample 
size, it is recommended to calculate d exactly by 
simple modification of the computer programs. 

Equation 26, thus, suggests that estimated log
likelihood values can actually be used to assess 
prediction errors. It should be remembered, how
ever, that the approximation is only valid when 
(varx[Pi(X)])(l/ 2 l is so small that value s of 
Pi (X) outside the range where the two-term Taylor 
series expansion of ljl (x) is a good approximation 
are rare. For this to happen, the a-measure must be 
small, which happens quite often in practice. 

EXAMPLE 

Assume that we have the following binary probit 
model: 

P1 = 1 - P2 = ~(8X), 

where ~ is the standard normal c.d.f., and e and 
X are scalars. Furthermore, assume that the sam
pling distribution of X, F (x), is normal with zero 
mean and variance one. 

As the value of e increases, most of the indi
viduals in the population face choices that can be 
predicted with less and less uncertainty because 
unless X = 0, Pl and P2 approach either zero or 
one as e + 00 • In the limit choices can be predicted 
deterministically and the a-measure is 1. 

This example illustrates this phenomenon. It 
will calculate d (0 l and show how it increases from 
zero to one as e goes from zero to "" It will 
also demonstrate that for small values of e, the 
approximation discussed in the preceding section 
holds. 

Let us first calculate 
X) l. Letting <t> (x) denote 
p.d.f., we write 

r, = L: <I>(Ox)</J(x)dx = L: <I>(-Ox)</J(x)dx 

= L: [I - <!>(Ox)] </J(x)dx = l - J_: <I>(Ox)</J(x)dx 

Also, 

varx [P; (0, X)] =I:,' <1> 2 (Ox)</J(x)dx - fr 
Consequently, 

d(O) = [ 4 f_: <1>2 (0x)¢(x)dx - I] (l/
2

) 

and varx [Pi ( e, 
standard normal 

(27) 

It is clear that if 8 = 0, d = 0 and that iim d (el 
1. Figure 5 plots d(el. 8+00 

The approximation given by Equation 26 can also 
be calculated: 

(l/N) £ = 2 x 0.5 log 0.5 = - 0.693 

(1/N) £ = 2 J_: <!>(Ox) [log <!>(Ox)] ¢(x)dx 

d(O) ~ [4 L: cJ>(Ox) [log cJ>(Bx)] </J(x)dx + 1.386] (l/
2

) 

Figure 5 
pected, 
values. 

also plots this equation, which, as ex
tracks well low-to-moderate correlation 

CONCLUSION AND EXTENSIONS 

The a-measure and the D-statistic have been shown to 
be the binary model equivalent of the correlation 
coefficient of regression in the sense that they can 
be related to predictive RMS error in the same way. 
It was shown that D was a consistent estimator for d 
and that for the typical low-correlation models en-
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Figure 5. D-measure and its log-likelihood approximation . 

.---------------- LOGLll<ELIHOOO 
APPROXIMATION 

EXACT 

d(B) 

2 
8 

countered in social sciences, d is in between the 
two other measures of goodness-of-fit that are com
monly used: the likelihood ratio goodness-of-fit 
measure, g 11., and the success table measure of 
goodness-of-fit, gb• 

If, as is usually the case, the goodness-of-fit 
measures are not high, it is possible to obtain an 
approximation for d that is based on the log-likeli
hood function, Equation 26. For models with low 
correlation, the measure R. itself may be regarded 
as a goodness-of-fit measure but care must be exer
cised because II. may exceed one. 

Equation 26 is also useful because under the usual 
regularity conditions, l (the estimator for R. from 
the sample log-likelihood! is such that (Nl 2 l is x• 
distributed with as many degrees of freedom as pa
rameters. Of course, D has approximately the same 
distribution if small. 

For models with more than two alternatives (i = 
O,l, ••. ,I-1), a prediction goodness-of-fit measure 
can be developed in the same way. In this instance, 
however, the goodness-of-fit measure is not the same 
for all the alternatives because varx[Pi(X)] is 
not the same for all. Consideration shows that the 
measure for the ith alternative, di, is 

di= l{varx [Pi(Xl]} / !fi(l - fill, 

and that a D-statistic can be derived in the same 
way. The interpretation in terms of prediction RMS 
error reduction (Fiqure ll is unchanqed. 
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Appendix 

CONSISTENCY OF THE D-STATISTIC 

Let us assume that a random, attribute-based sam
pling process was used to qather a sample for esti
mation of a b inary choice model. We denote by 
x<nl the attribute vector of t he nth observation, 
by i (nl, the choice of said observation and by N 
the number of observations. We assume that there is 
a set of parameters, e, that are entered in the 
specification of the model: 

0 < p1 =G(O.,X)=1-p 0 < 1 (Al) 

and that for a true (unknown), B0 , G(B0 , X) 
coincides with P1(X). 

Let Fx (xl denote the sampling distribution of X 
and write a 2 (0l for the variance of G(B, Xl: 
a 2 ( e0 l represents the variance of the choice 
probabilities in the numerator of Equation 16b. We 
assume that some regularity conditions to make the 
MLE of B0 , §, consistent hold, and in particular 
that 

(A) G(e, X) 
function 

is 
of 

a continuously 
a0 in a o0 

differentiable 
neighborhood 

of iti 
(Bl The sample space of x is bounded, and 
(C) 0 < G(B, Xl < 1. 

These three properties will be used in the consis
tency proo~ of D. 

Let SN [ ••• J denote the sample variance 
function of the N elements in brackets. Then, Prop
erty (Cl ensures that a 2 (B0 l is finite and the 
consistency of the sample variance statistic enables 
us to we ite: 

(A2) 

where 2 denotes the limit in probability of the se
quence in braces as N + ~. Note that the x!nl 
are i.i.d. drawings from Fx(xl. 

Because ~ is consistent and because of Equation 
A2, we can write for arbitrarily small values of 
£•, c", cS', and c5": 

Pr{IS~[G(00 ,X(l)), ... ,G(0 0 ,x<nl)] -a2(00 )I .;; E'};. I 

- Ii ' ; V n";. N'(E', Ii') 

and 

Pr [ 11 ecx <1l . . . x<nl ; i(l ) . .. i("l)- Oa II .;; e" l ., I 

- Ii" ; 'efn";. N"(E",o" ) 

(A3) 

(A4) 

In these two expressions, the r a ndom variab1es 
(X(l) •.. x<n» are the same, N' ( E ' , o'l and 

N" ( £", o"l represent finite positive numbers 
that depend on (£', o'l and (£", o"l, II • II repre
sents the Euclidean norm, and~( ••• ) is the function 
that relates the data, (x<ll ••. x(nli i!ll ... i<nl1, 
to the MLE of e0 • 

Before proceeding, we need the following prelimi
nary result: 

Lemma l 

Under the regularity conditions previously stated, 
we can write for sufficiently small but positive 
values of (€". o"l: 

Pr (Is~ { G[El(X(I) .•. x<nl ; i(I) ... j(nl), x<O] , ... ' 

G[El(X(l) ... x<nl; i(1) . .. i(nl), x<nl]} - S~ [G(Oo, x<l))' . . . ' 

G(0 0 ,xCnl)] I.;; kE" ) ;. I -Ii"; 'v'n" > N"(E",li") (AS) 
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for a positive, finite constant, k, which is inde
pendent of n. 

The lemma states in words that the difference 
between the estimated and true sample variances con
verges uniformly in probability to zero as the sam
ple size increases. This lemma in conjunction with 
(A3) will be used to show that the estimated sample 
variance converges in probability to cr 2 (00 ) 

(lemma 2). First we prove this lemma. 
Proof: Let us rewrite for convenience the esti-
--- •2 

mated sample variance as Sn and the sample variance 
for a given value of e as S~(01X). Because of prop
erty (A), S~(01X) is a continuously differentiable 
function of e with derivatives: 

[oS~(81X)]/[a8i] fe=eo =iii (2/n){G(8 0 , X(i))- j, G(80 , x<m)) 

-;- n]} [aG(8, x<il)!a8i] [
8

_
0 - 0 

Because all of the elements in this sum are continu
ous for all values of X = (x(l) , ••• ,x(n)), and 
by property (B) the X (i) values that can possibly 
occur are bounded, the addends are bounded by a num
ber, Mj/n. Thus, the partial derivatives of 
S~(01X) are uniformly bounded and for any 
e in a small neighborhood of e0 we can write: 

for some 
of this 

e" ~ o~). 

Lemma 2 

Proof: 
( €, 0) : 

o~ > O and finite k > 0. The combination 
fact and (A4) proves the lemma (as long as 

We now show that {S~} f cr 2 (0 0 l. 

We shall prove that for any positive 

(A6) 

where N(e, o) is a finite positive integer that 

19 

depends on e and o. 
can write: 

Combining (A3) and (AS) we 

Pr[IS~ - a2 (8o) I.; e'+ ke"] 

,, Pr[IS~ -S~(80 IX) I.; ke" and IS~(OolX)- a2 (8
0

) I.; e'] 

;;, 1-(li'+li"),ifn;;, max[N'(e',li');N"(e",li")] (A7) 

It is now clear that Equation A6 follows from 
Equation A7 with o' = o" = o/2, e' = ke" = e/2, and 
N(e, o) = max{N'[(e/2), (o/2l]; N"[(E/2kl, (o/2ll }. 

Lemma 3 

Identical arguments show that the sample mean Gn: 

converges in probability to f1 = Ex!P1(X)J 

Theorem: The D-statistic is a consistent esti
mator for d. 

Proof: From the definition, 

(A8) 

where the function f(.,.) is continuous if f 1 e(O, 1). 
Regularity condition (C) implies that f1 = Ex[G(e0 , 

X)] is in the open unit interval and therefore con
firms the continuity off(.,.). 

This continuity implies that if 

cr 2 (0 0 ) are replaced by consistent estimators, 

s~. as the arguments off(.,.), the result: 

is a consistent estimator. 

Publication of this paper sponsored by Committee on Traveler Behavior and 
Values. 

Evaluation of Usefulness of Two Standard 

Goodness-of-Fit Indicators for Comparing 
Non-Nested Random Utility Models 

JOEL L. HOROWITZ 

The likelihood ratio index and the percentage of correctly predicted choices in 
the estimation sample are two well-known goodness-of-fit indicators for logit 
and other random utility models. They are used frequently for comparing non
nested models (i.e., models such that neither can be obtained from the other 
by choosing suitable values of the estimated parameters) to determine which 
best explains the available data. The results of an investigation of the abilities 
of the two statistics to distinguish between correct and incorrect models in 
such comparisons are reported. It is shown that with estimation data sets of 
practical size, a slightly modified form of the standard likelihood ratio index 
has good ability to distinguish between correct and incorrect models when 
the root-mean-square (RMS) difference between the two models' choice 
probabilities exceeds 10 to 15 percent. In addition, very small differences 
between the values of two models' modified likelihood ratio indices indicate 

with high probability that the model with the lower index value is incor-
rect. The percent-correctly-predicted statistic is considerably less useful for 
comparing models. It can fail to distinguish between correct and incorrect 
models whose choice probabilities differ by at least 25 percent (RMS), even 
with arbitrarily large estimation samples. Moreover, there are no readily avail
able criteria for determining how large the differences between the values of 
two models' percent-correctly-predicted statistics must be to justify a conclu
sion that the model with the lower value likely is incorrect. Several travel
related examples are given. 

Travel decisions frequently entail choices among 
discrete sets of alternatives, such as frequencies, 
destinations, modes, and routes of travel, and it 


