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for a positive, finite constant, k, which is inde
pendent of n. 

The lemma states in words that the difference 
between the estimated and true sample variances con
verges uniformly in probability to zero as the sam
ple size increases. This lemma in conjunction with 
(A3) will be used to show that the estimated sample 
variance converges in probability to cr 2 (00 ) 

(lemma 2). First we prove this lemma. 
Proof: Let us rewrite for convenience the esti-
--- •2 

mated sample variance as Sn and the sample variance 
for a given value of e as S~(01X). Because of prop
erty (A), S~(01X) is a continuously differentiable 
function of e with derivatives: 

[oS~(81X)]/[a8i] fe=eo =iii (2/n){G(8 0 , X(i))- j, G(80 , x<m)) 

-;- n]} [aG(8, x<il)!a8i] [
8

_
0 - 0 

Because all of the elements in this sum are continu
ous for all values of X = (x(l) , ••• ,x(n)), and 
by property (B) the X (i) values that can possibly 
occur are bounded, the addends are bounded by a num
ber, Mj/n. Thus, the partial derivatives of 
S~(01X) are uniformly bounded and for any 
e in a small neighborhood of e0 we can write: 

for some 
of this 

e" ~ o~). 

Lemma 2 

Proof: 
( €, 0) : 

o~ > O and finite k > 0. The combination 
fact and (A4) proves the lemma (as long as 

We now show that {S~} f cr 2 (0 0 l. 

We shall prove that for any positive 

(A6) 

where N(e, o) is a finite positive integer that 
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depends on e and o. 
can write: 

Combining (A3) and (AS) we 

Pr[IS~ - a2 (8o) I.; e'+ ke"] 

,, Pr[IS~ -S~(80 IX) I.; ke" and IS~(OolX)- a2 (8
0

) I.; e'] 

;;, 1-(li'+li"),ifn;;, max[N'(e',li');N"(e",li")] (A7) 

It is now clear that Equation A6 follows from 
Equation A7 with o' = o" = o/2, e' = ke" = e/2, and 
N(e, o) = max{N'[(e/2), (o/2l]; N"[(E/2kl, (o/2ll }. 

Lemma 3 

Identical arguments show that the sample mean Gn: 

converges in probability to f1 = Ex!P1(X)J 

Theorem: The D-statistic is a consistent esti
mator for d. 

Proof: From the definition, 

(A8) 

where the function f(.,.) is continuous if f 1 e(O, 1). 
Regularity condition (C) implies that f1 = Ex[G(e0 , 

X)] is in the open unit interval and therefore con
firms the continuity off(.,.). 

This continuity implies that if 

cr 2 (0 0 ) are replaced by consistent estimators, 

s~. as the arguments off(.,.), the result: 

is a consistent estimator. 

Publication of this paper sponsored by Committee on Traveler Behavior and 
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Evaluation of Usefulness of Two Standard 

Goodness-of-Fit Indicators for Comparing 
Non-Nested Random Utility Models 

JOEL L. HOROWITZ 

The likelihood ratio index and the percentage of correctly predicted choices in 
the estimation sample are two well-known goodness-of-fit indicators for logit 
and other random utility models. They are used frequently for comparing non
nested models (i.e., models such that neither can be obtained from the other 
by choosing suitable values of the estimated parameters) to determine which 
best explains the available data. The results of an investigation of the abilities 
of the two statistics to distinguish between correct and incorrect models in 
such comparisons are reported. It is shown that with estimation data sets of 
practical size, a slightly modified form of the standard likelihood ratio index 
has good ability to distinguish between correct and incorrect models when 
the root-mean-square (RMS) difference between the two models' choice 
probabilities exceeds 10 to 15 percent. In addition, very small differences 
between the values of two models' modified likelihood ratio indices indicate 

with high probability that the model with the lower index value is incor-
rect. The percent-correctly-predicted statistic is considerably less useful for 
comparing models. It can fail to distinguish between correct and incorrect 
models whose choice probabilities differ by at least 25 percent (RMS), even 
with arbitrarily large estimation samples. Moreover, there are no readily avail
able criteria for determining how large the differences between the values of 
two models' percent-correctly-predicted statistics must be to justify a conclu
sion that the model with the lower value likely is incorrect. Several travel
related examples are given. 

Travel decisions frequently entail choices among 
discrete sets of alternatives, such as frequencies, 
destinations, modes, and routes of travel, and it 
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often is necessary in travel behavior research and 
practical transportation studies to be able to 
predict the outcomes of such choices. In recent 
years, multinomial legit and multinomial probit 
models have begun receiving extensive use for this 
purpose. These models are examples of a broader 
class of models, called random utility models, that 
are derived from the behavioral principle of utility 
maximization. In models of this class, it is as
sumed that an individual's preferences among the 
available alternatives can be described with a 
utility function and that the individual selects the 
alternative with the greatest utility. The utility 
of an alternative is represented as the sum of a 
deterministic and a random component. The determi
nistic component accounts for systematic effects of 
observed factors that influence choice whereas the 
random component accounts for the effects of unob
served factors. The random utility model then 
predicts the probability that a randomly selected 
individual with given values of the observed factors 
will choose a particular alternative (i.e., the 
probability that the utility of the particular 
alternative exceeds the utili t ies of all other 
alternatives). [See Domencich and McFadden <l l and 
Hensher and Johnson (~) for detailed discussions of 
the behavioral foundations of random utility models.] 

A legit, probit, or other random utility model 
constitutes a functional relation between the ob
served factors (or explanatory variables) and the 
probabilities that an individual chooses the various 
alternatives. These relations usually are not known 
a priori and must be estimated by fitting a model to 
observations of choices and the explanatory var i
ables. The fitting process usually takes place in 
two steps. [See McFadden (1_) and Daganzo <il for 
detailed discussions of the fitting process.] In 
the first step, the functional form of the relation 
between the explanatory variables and the choice 
probabilities is specified up to a finite set of 
constant parameters. For example, it might be 
specified that a mode choice model has the multi
nomial legit functional form with a utility function 
that is a linear combination of a certain set of 
travel time and cost variables. The coefficients of 
these variables in the linear utility function would 
then constitute the set of constant parameters. In 
the second step of the fitting process, the values 
of the parameters are estimated statistically from 
the observations. The method of maximum likelihood 
usually is used for this purpose. The statistical 
theory on which this two-step process is based 
assumes that the first step is carried out without 
error. If this assumption is true and certain mild 
regularity conditions are satisfied, then the maxi
mum likelihood estimates of the parameter values 
have a variety of desirable statistical properties. 
Most importantly, the estimated parameter values and 
the values of the choice probabilities computed from 
the estimated parameters approach the true values as 
the size of the estimation data set increases toward 
infinity. 

In practice, of course, the correct functional 
forms of the relations between the choice probabil
ities and the explanatory variables are not known a 
priori, even up to a set of constant parameters. 
Not surprisingly, use of an incorrect functional 
form in the second estimation step can lead to 
models that produce highly erroneous forecasts of 
travel behavior (2_-2l. Consequently, the develop
ment of empirical random utility models, like the 
development of most other statistically based 
models, usually includes comparing several models 
with different functional forms in an effort to 
distinguish forms that are likely incorrect from 
ones that may be correct. 

Transportation Research Record 874 

This paper is concerned with comparisons that 
involve two models. Several procedures are avail
able for carrying out such pairwise comparisons, 
depending on whether the models being compared are 
nested or non-nested. Two models are nested if one 
model can be obtained from the other by assigning 
appropriate values to the latter model's parameters. 
In non-nested models, this cannot be done: given the 
values of either model's parameters, it is not 
possible to choose values of the other model's 
parameters so that the two models become identical. 
(Examples of nested and non-nested models are given 
in the following section of this paper.) Compari
sons of nested models usually are carried out by 
using likelihood ratio or t-tests (_l). The statis
tical properties of these tests are well known, and 
numerical experiments with the tests have indicated 
that they have good ability to distinguish between 
correct and seriously erroneous random utility 
models in the nested case (6,7). 

Comparisons of non-nested m odels usually are made 
with so-called goodness-of-fit statistics, such as 
the likelihood ratio index and the percentage of 
choices correctly predicted if each individual in 
the estimation data set is assumed to choose the 
alternative with the highest probability in the 
estimated model. The basis for using these statis
tics for comparing models is largely intuitive. 
Plausibly, it is assumed that a correct model is 
likely to have larger values of these statistics 
than are incorrect models. Thus, models with rela
tively large values of these statistics are presumed 
more likely to be correct (or to be less erroneous) 
than models with relatively low values of these 
statistics. However, there has been no systematic 
investigation of the abilities of these statistics 
to distinguish reliably between correct and incor
rect models. This paper reports the results of such 
an investigation. It is shown that with estimation 
data sets of practical size, a slightly modified 
form of the standard likelihood ratio index statis
tic has good ability to distinguish between correct 
and incorrect models when the root-mean-square (RMS) 
difference between the choice probabilities of the 
two models exceeds 10-15 percent. The percent-cor
rectly-predicted statistic is considerably less 
reliable. It can fail to distinguish between models 
whose choice probabilities differ by at least 25 
percent (RMS), even if the size of the estimation 
data set is allowed to increase without bound. 

EXAMPLES OF NESTED AND NON-NESTED MODELS 

The results presented in this paper apply only to 
comparisons of non-nested models. Serious errors 
can result from attempting to apply the results in 
the nested case. Therefore, it is important to 
understand the distinction between nested and non
nested models. This distinction is illustrated by 
the following examples. [See Horowitz (_!!) for a 
precise mathematical definition of non-nestedness.J 

Example 1 (Nested Models) 

Suppose that two legit models are being considered 
for possible use in forecasting mode choice. For 
simplicity, assume that there are only two modes, 
automobile and transit. The two models differ in 
the specifications of their utility functions. (In 
the following discussion the term "utility function" 
will refer to the deterministic component unless 
otherwise noted.) The utility function for mode 
(i =automobile or transit) in model 1 is 

U; = a 1 (Time;)+ ~ 1 (Cost;) (I) 

where 
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ui 
Timei 
Costi 

"l and 81 

utility of mode i, 
travel time of mode i, 
travel cost of mode i, and 
constant parameters. 

In model 2 the utility function is 

(2) 

In either model, the probability of choosing mode i 
is given by the binomial logit function 

Pi = exp(Ui)/ [exp(U1) + exp(U2)] (3) 

where Pi is the choice probability. Then model 2 
is nested with model 1, since model 2 can be ob
tained from model l by setting "l = "2 and 
81 = 0. 

Example 2 (Non-Nested Models) 

Suppose that in the same mode choice study a third 
model (model 3) is being considered and that its 
utility function for mode i is 

(4) 

As in models l and 2, the choice probabilities in 
model 3 are related to the utility function by 
Equation 3. Then models l and 3 and models 2 and 3 
form non-nested pairs. Apart from the degenerate 
case in which all of the parameter values are zero, 
it is not possible to choose parameter values for 
models l and 3 so that the two models coincide, nor 
is it possible to choose parameter values for models 
2 and 3 so that those models coincide. 

CRITERIA FOR EVALUATING COMPARISON PROCEDURES 

In this paper the likelihood ratio index and per
cent-correctly-predicted goodness-of-fit statistics 
will be evaluated according to their abilities to 
distinguish between correctly and incorrectly speci
fied models. Two factors must be taken into account 
in making these evaluations: the abilities of the 
statistics to distinguish between correct and incor
rect models in the absence of random sampling error, 
and the effects of random sampling error on the 
comparisons. Random sampling error arises because 
different individuals with the same observable 
character is tics (i.e., the same values of a model's 
explanatory variables) and the same sets of alter~a
tives may make different choices, owing to the 
effects of unobserved factors (i.e., the random 
component of the utility function). As a result, 
the estimated parameter values, choice probabili
ties, and goodness-of-fit statistics for a model 
tend to have different values in different finite 
samples of individuals, even if the model involved 
is correctly specified. These random fluctuations 
in estimation results can cause a goodness-of-fit 
statistic for an incorrectly specified model to be 
more favorable than that for a correctly specified 
model. Random sampling error, therefore, consti
tutes a "noise factor" that impairs the ability of 
test statistics to distinguish correct models from 
incorrect ones. 

Random sampling error always can be made insig
nificantly small by making the estimation sample for 
a model sufficiently large. Moreover, if the esti
mation sample is large enough to make the effects of 
sampling error insignificant, then it always is 
possible to determine unambiguously if a model is 
correct by comparing the values of its choice prob
abilities for each set of values of the explanatory 
variables with the observed choices of individuals 
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with the same values of the explanatory variables. A 
model whose choice probabilities for the available 
alternatives differ from the observed proportions of 
individuals choosing these alternatives is incor
rect. Accordingly, it is reasonable to demand of 
comparison statistics, such as the goodness-of-fit 
statistics discussed here, that they be capable of 
distinguishing without error between correct and 
incorrect models in the absence of random sampling 
error. In formal statistical terms, this property 
of a test is called consistency. Statistical test 
procedures that are not consistent usually are 
considered to be unacceptable. 

In practice, of course, it usually is not possi
ble to work with samples sufficiently large to 
eliminate the effects of random sampling error. As 
has already been noted, random sampling error can 
cause comparison procedures to give misleading 
results (e.g., to cause an incorrectly specified 
model to have a more favorable goodness-of-fit 
statistic than a correctly specified one), even if 
the procedures always would give correct results in 
samples large enough to eliminate sampling error. In 
general, it is not possible to guarantee that a 
comparison procedure always will distinguish cor
rectly between correct and incorrect models when 
sampling error is present, particularly if the 
choice probabilities of the two models would not be 
greatly different in the absence of sampling error. 
However, to be useful, a comparison procedure should 
be capable of making the distinction correctly most 
of the time (i.e., with high probability) if the two 
models would have significantly different choice 
probabilities in the absence of sampling error. 

The foregoing discussion suggests that to be 
useful, a test procedure should have the following 
two characteristics: 

1. It should be consistent. In other words, in 
the absence of random sampling error it should 
always distinguish correctly between correctly and 
incorrectly specified models. 

2. It should not be highly sensitive to random 
sampling error. In other words, in samples of 
practical size (typically 100-1000 observations) the 
procedure should have a high probability of reject
ing an incorrect model in a comparison with a cor
rect one if the two models would yield substantially 
different values of the choice probabilities in the 
absence of sampling error. 

It also is desirable that the value of the test 
statistic associated with a comparison procedure be 
easy to compute. However, the two procedures dis
cussed in this paper have roughly equal computa
tional requirements so that computational considera
tions do not provide a basis for a comparative 
evaluation of the procedures. 

In the following two sections, the likelihood
ratio-index and percent-correctly-predicted statis
tics will be evaluated according to the foregoing 
two criteria. 

LIKELIHOOD RATIO INDEX 

The most commonly used form of the likelihood ratio 
index, and the only form that will be discussed 
here, is defined as follows. [See Daganzo (4) and 
Tardiff (9) for definitions and discussions of- other 
forms.) Let L denote the value of a model's log
likelihood function when the values of the model's 
parameters equal their maximum likelihood estimates. 
Let L0 denote the value of the log-likelihood 
function of a model that assigns equal values to the 
choice probabilities of all alternatives, regardless 
of the values of the explanatory variables. Then 
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the likelihood ratio index, p 2 , is defined as 

p 2 = 1 - L/L0 (5) 

If there are N individuals in the estimation sample 
and each individual chooses among J alternatives, 
then L0 is given by 

L0 = -N log J (6) 

(Throughout this paper it will be assumed that all 
individuals face the same number of alternatives. 
Allowing different individuals to face different 
numbers of alternatives would add complexity to the 
presentation without changing the results signifi
cantly.) 

The likelihood ratio index is a goodness-of-fit 
statistic for random utility models that is similar 
in many respects to the coefficient of multiple 
determination, R2 , in regression models. The 
larger the value of p 2 for a model, the better the 
model fits the given data. Therefore, two non
nested models P and Q can be compared by comparing 
the likelihood ratio indices pp 2 a nd PQ' 
for the t wo models . If Pp' PQ~ > ~. 
this suggests that model P is s uperior to model Q, 
whereas pp 2 PQ' < 0 suggests that 
model Q is superior. 

Suppose that model P is correct and model Q is 
incorrect. Then, to evaluate the likelihood ratio 
index according to the criteria given in the previ
ous section it is necessary to determine (a) if 
pp 2 PQ 2 > 0, always, when the sample 
size N is large enough to make the effects of random 
sampling error insignificant and (b) if Pp 2 

PQ 2 > 0 is a high probability outcome in 
samples of practical size if models P and Q would 
yield substantially different values of the choice 
probabilities in the absence of random sampling 
error. These determinations can be made if the 
probability distribution of pp 2 PQ' is 
known. 

The following notation will be used in describing 
the probability distribution of pp 2 

PQ 2 and in the subsequent discussion. Let 
P (i ,X) denote the true probability that an individ
ual chooses alternative i when the explanatory 
variables have the value x. (Here, X denotes the 
entire set of values of all of the explanatory 
variables of both models. If some elements of X are 
not variables of one of the models, then the choice 
probabilities of this model are independent of' the 
values of these elements. l Let Q(i,X) denote the 
choice probability for alternative i that model Q 
would yield when the explanatory variables have the 
value X if there were no random sampling error. 
P(i,X) and Q(i;XJ, respectively, are the large-sam
ple limits (i.e., the limits as the sample size 
approaches infinity) of the maximum likelihood 
estimates of the choice probabilities of models P 
and Q. Let Px(X) denote the proportion of indi
viduals in the population being studied for wh'om the 
values of the explanatory variables equal x. Let 
kp and k0 , respectively, denote the numbers of 
estimated parameters in models P and Q. As before, 
let N denote the number of individuals in the esti
mation data set, and let J denote the number of 
alternatives available to each individual. Finally 
define ll 2 by 

6.2 =. ~ { [P(i, X) - Q(i, X)) /P(i, X)}2 P(i, X)px(X) 
1,X 

(7) 

t; 2 is the weighted mean square fractional error in 
the choice probabilities that would result from 
using the incorrect probabilities Q(i,Xl in place of 
the correct probabilities P (i ,XJ. The weight for 
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given i and X values equals the proportion of the 
population that has explanatory variable values X 
and selects alternative i. 

Note that o 2 always exceeds zero unless Q ( i ,X) 
P ( i ,X) for all i and x. In other words, ll 2 

exceeds zero unless model Q is identical to model P 
and, therefore, is correctly specified. 

The probability distribution 
PQ 2 is derived in Horowitz (8). 

of P.p 2 

rt ls shown 
approximately tnere that pp 2 PQ1 has 

the normal distribution with the 
(µ) and variance (a 2 l: 

following mean 

µ = 6.2 /2 log J + (kp - k0 )/2N log J 

a2 = 6.2 /N (log J)2 

(8) 

(9) 

The accuracy of the approximation increases as the 
sample size, N, increases. It follows from Equa-
tions 8 and 9 that pp 2 PQ 2 exceeds 
zero, thereby indicating that the correct model is 
superior to the incorrect one, with the following 
probability: 

(JO) 

where <I> is the cumulative standard normal distri
bution function. 

It is easy to see from Equation 10 that the 
likelihood ratio index satisfies the consistency 
criterion given in the previous section. As N 
approaches infinity, Pr(pp 2 PQ 2 > O) 
approaches 1. Since the limit of an infinite sample 
corresponds to eliminating random sampling error, 
this result implies that in the absence of sampling 
error, pp 2 always exceeds p0

2 • Thus, if 
there is no sampling error, the likelihood ratio 
index always indicates that the correct model is 
superior to the incorrect one. 

It also can be seen from Equations 8-10 that with 
finite samples, adding parameters to an incorrect 
model (i.e., increasing k~l tends to decrease the 
value of pp 2 - PQ and of Pr(pp 2 

PQ 2 > 0), even if the variables associated 
with the added parameters are incorrectly specified 
or irrelevant to the choices being studied. This 
clearly is an undesirable characteristic of the 
likelihood ratio index because it means that in 
finite samples the index tends to favor models with 
large numbers of parameters, regardless of whether 
these models are correct. However, this character
istic can be removed by making a simple modification 
in the definition of the likelihood ratio index. 
Define p 2 , the modified likelihood ratio index, 
for a model with k estimated parameters by 

p 2 
= p2 

- k/2N log J 

or, equivalently, 

p 2 = l - (L - k/2)/N log J 

The modified statistic p 2 is used in 
as p 2 for comparing two models. 
PQ' > 0 indicates t hat model P 
to model Q, and Pp' PQ 2 

cates that model Q is superior. 

(11) 

(12) 

the same way 
Thus, pp 2 

is superior 
< 0 indi-

Equations 10 and ll imply that the probability 
that pp 2 - PQ' exceeds zero is given by 

(13) 

It can be seen from Equation 13 that p 2 is consis
tent and, in contrast to the unmodified likelihood 
ratio index, is not biased in favor of models with 
large numbers of parameters. This makes p 2 more 
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Table 1. Probabilities that modified likelihood ratio index selects correct 
model (P) in comparison with incorrect model (Q). 

N /',. Pr(pp2 
- ilo2 > O) N /',. Pr(p P2 - PQ2 > O) 

100 0.05 0.60 250 0.15 0.88 
0.10 0.69 0.20 0.94 
0.15 0.77 500 0.05 0.71 
0.20 0.84 0.10 0.87 

250 0.05 0.66 0.15 0.95 
0.10 0.79 0.20 0.99 

Notes: N =size of the estimation data set. 
6 =RMS difference between the large sample limiting values of the choice proba

bilities of models P and Q. 
Pr(/) p2 - P Q2 > 0) =probability that the correct model is selected. 

usetul than p 2 tor comparing models. Accordingly, 
only the modified index p 2 will be used in the 
remainder of this paper. 

The performance of p 2 according to the second 
criterion given in the previous section can be 
assessed by computing Pr(pp 2 PQ 2 > 
0) for various values of N and /'>. Table 1 shows 
the results of such a computation. It can be seen 
that if the sample size exceeds roughly 250, a 
comparison of two models using µ 2 has a prob
ability of at least 0 .BO of selecting the correct 
model when the RMS percentage difference between the 
two models' choice probabilities (i.e., 100/'>l 
exceeds 10 to 15 percent. 

The probability distribution of pp' 
PQ 2 can be used to derive a simple upper bound 
on the probability that p 2 for an incorrect model 
(Q) exceeds p 2 for a correct model (Pl by an 
arbitrary amount z. The bound is [see Horowitz (~)] 

(14) 

This inequality implies that in moderate size sam
ples, very small differences between the p 2 values 
of two models indicate with high probability that 
the model with the lower p 2 value is incorrect. 
For example, if N;;, 250, z" 0.01, and J "2, 
inequality (15) yields 

(15) 

In other words, if N ;;, 250 and the p 2 values of 
two models differ by 0 .01 or more, the model with 
the lower p 2 value almost certainly is incorrect. 

PERCENT-CORRECfLY-PREDICfED STATISTIC 

The percent-correctly-predicted statistic for a 
model is obtained by "predicting" that each individ
ual in the model's estimation data set chooses the 
alternative that has the highest choice probability 
according to the estimated model. The predictions 
are compared with the observed choices of the indi
viduals in the estimation data set, and the percent
age of correct predictions (i.e., the percentage of 
individuals for which the predicted and observed 
choices coincide) is computed. The result yields 
the percent-correctly-predicted statistic. In this 
section an example is presented in which the per
cent-correctly-predicted statistic fails to satisfy 
either of the previously defined evaluation cri
teria. The implications of the example for the 
usefulness of the percent-correctly-predicted sta
tistic are discussed following the presentation of 
the example. 

Notation and Formulas 

The example is based on binomial logit models (i.e., 
legit models of choice between two alternatives). 
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Before presenting the example, it is necessary to 
present the notation and formulas that will be used 
in computing the percent-correctly-predicted statis
tic for the example. 

Let model P be correct and model Q be incorrect. 
As before, let P(i,Xl denote the true probability 
that an individual with explanatory variables X 
chooses alternative i (i = 1 or 2), and let Q(i,X) 
denote the large-sample limit of the model Q esti
mate of the probability that this individual chooses 
alternative i. Let the number of individuals in the 
estimation sample be N, and let these individuals be 
indexed by n (n = 1, 2, ••• , N). Let P(i,X) and 
Q (i, X) , respectively, denote the maximum likelihood 
estimates of. the model P and model Q choice prob
abilities obtained from the estimation sample. Thus, 
for example P ( i ,Xnl and Q ( i ,Xnl are the 
estimated probabilities that individual n chooses 
alternative i by using models P and Q. Note that as 
N approaches infinity, P approaches P and Q ap
proaches Q. 
For each individual n in the estimation sample 
define jn by 

in = 1 if individual n was observed to choose 
alternative 1, 0 otherwise (16) 

Thus, jn indicates the observed choice of individ
ual n. Also, for each individual n in the estima
tion sample define Sp(n) and SQ(nl by 

!OOifP (l,Xn)> 1/2andjn = 1orP(l,Xn)<1/2 

andin=D; 

Sp (n)= 50ifP(l,Xn)= l/2;and 

OifP(l,Xn)> l/2andin =OorP(l,Xn)< 1/2 

and in = 1 

1
100 . l~Q~ l •. Xn) > 1/2 and j0 = I or Q(I . X.,) < 1/2 

nnd Jn - O. 

: 0 (n) = SOlfQ(l . X.,) = l/2:a nd 

Oif Q(l . X,,) > 1 /2 ~ nd j ,, = Onr Q ( l.X,, ) < 1/2 

nnd i ,, : I 

(17) 

(18) 

Then Sp(n) equals 100 if indiv idual n was observed 
to choose the alternative with the larger value of 
P (i, Xnl (i = 1 or 2), Sp (nl equals 0 if individ
ual n was observed to choose the alternative with 
the lower P value, and Sp(n) = 50 if th~ two P 
values for individual n are equal. Thus, Sp (n l is 
the percent-correctly-predicted statistic for model 
P by using the single individual n. An analogous 
interpretation applies to 80 (n). The percent-cor
rectly-predicted statistics for models P and Q by 
using the entire estimation sample, Sp_ and SQ, 
are .obtained by averaging Sp(nl and s0 (n) over 
all of the individuals in the sample. Thus, 

Sp= (l/N) 2: Sp (n) (19) 

" 
SQ = (1/N) L SQ(n) (20) 

n 

Sp and s0 coincide with the usual ·definitions of 
the percent-correctly-predicted goodness-of-fit 
statistics for models P and Q. 

The large-sample limits of Sp and ~ can be 
computed by applying the strong law of large numbers 
to Equations 19 and 20. This yields the following 
result: 
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Table 2. Values of the explanatory variables and 
LIT (min) LlC (cents) P (auto, LIT)" P (transit, LIT)" Q (auto, LlC)' Q (transit, LlC)' choice probabilities for the example. 

5 20 0.62 0.38 0.71 0.29 
10 5 0.73 0.27 0.56 0.44 
20 40 0.88 0.12 0.86 0.14 

3
p and Qare computed as large-sample limits and, therefore, are free of random sampling error. The large-sample limit 

of the maximum likelihood estimate of (3 is 0 ,045 . 

Sp = 100 L Px (X) max [P(I, X), P(2, X)] (21) 

So= 100 L PxCX) {'CX) P(I, X) +[I -I(X)]P(2, X)} 
x 

(22) 

where Sp and SQ! respectively, denote the large
sample limits of Sp and So and I(X) is defined by 

{ 

I if Q(l , X) > I /2; 
I(X) = 1/2 if Q(l, X) = 1/2; and 

0 if Q(l , X) < I /2 (23) 

Equation 21 has been derived previously by Daganzo 
(10). Sp and SQ are the values that the per
cent-correctly-predicted statistics for models P and 
Q would have if there were no random sampling error. 

'Example 

Suppose that two binomial legit models, P and Q, of 
mode choice between automobile and transit are being 
considered. In model P the probability of choosing 
automobile is given by 

P(auto,LlT)= l/[I +exp(-allT)] (24) 

where 6 T is transit travel time minus automobile 
travel time, and a is a constant. In model Q the 
probability of choosing automobile is given by 

Q(aulo, Ll C) = l/[1 + exp(llllC)] (25) 

where 6 C is transit travel cost minus automobile 
travel cost and B is a constant. The transit 
choice probabilities are equal to one minus the 
automobile choice probabilities. 

Suppose that model P is correct and that the true 
value of a is 0.10. Suppose also that in the 
population being studied there are only three possi
ble combinations of values of 6 T and 6 C, as 
shown in Table 2, and that these combinations occur 
with equal probability. Thus Px(X) = 1/3 for all 
values of the explanatory variables of both models. 
Given the values of a and 6 T, the values of the 
true choice probabilities P(i, 6 T) (i = automo
bile or transit) can be computed from Equation 25, 
and the large-sample-limit of Q(i, 6 C) can be 
computed by using methods described in Horowitz 
(§). The results are shown in Table 2. It can be 
seen from the table that the differences between the 
t.rlle choice probabilities P and large-sample-limit 
model Q choice probabilities vary from 2 to 63 
percent. The RMS percentage difference, as computed 
from Equation 7, is 25 percent. Thus, the true and 
erroneous models yield substantially different 
values of the choice probabilities in the absence of 
random sampling error. 

The large-sample limits of the percent-correctly
predicted statistics for models P and Q can be 
computed from Equations 21 and 22. The result is 
Sp SQ 74 percent. Thus, the large-sample 
limits of the percent-correctly-predicted statistics 
for the two models are equal. This means that when 
there is no random sampling error, these statistics 
provide no information useful for distinguishing 
between the correct model P and the incorrect model 
Q, even though there are large differences between 

the choice probabilities of the two models. Clearly, 
the percent-correctly-predicted statistic fails to 
satisfy the first of the previously defined 
evaluation criteria in this case. 

It also can be shown that the percent-correctly
predicted statistic is not useful for distinguishing 
between models P and Q with finite samples. (This 
is to be expected because reducing the sample size 
from infinity reduces the information content of the 
sample.) With a finite sample, the percent-cor
rectly-predicted statistics of models P and Q can 
differ only if there are values of 6 T and 6 C 
for which the alternative with the highest estimated 
model P choice probability is different from the 
alternative with the highest estimated model Q 
choice probability. In terms of the notation devel
oped in the previous subsection, this means that 
there must be pairs of values of 6 T an~ 6 C 
such that either } (auto, 6 T) > 0.5 and Q(auto, 
6 C) < 0.5 or P(auto, 6 T) < 0.5 and Q(auto, 
6 T) > 0 .5, as can be seen from Equations 18 and 
19. The probability that either or both of these 
events occurs can be computed from the information 
in Table 2 by using methods described by Daganzo 
(4,11) and Horowitz (12). The result is that with 

a;:;- estimation data setof 100 or 'more observations, 
the probability that either or both of these events 
occurs is virtually zero (i.e., less than 5 x 
10-•). Thus, the percent-correctly-predicted 
statistics of models P and Q are virtually certain 
to be equal with any reasonable estimation sample 
size. It follows that the percent-correctly-pre
dicted statistic almost certainly will fail to 
distinguish between the two models with any reason
ably sized estimation sample. Thus, the statistic 
fails to satisfy the second of the previously de
fined evaluation criteria. 

The performance of the percent-correctlypredicted 
statistic in this example may be contrasted with 
that of the modified likelihood ratio index. The 
6 value tor comparing models P and Q is 0. 25. It 
follows from Equation 13 that Pp' - PQ' 
exceeds zero with probability 0 .89 if the sample 
size is 100 and probability 0 .98 if the sample size 
is 250. The probability approaches 1.0 as the 
sample size increases further. Thus, in contrast to 
the percent-correctly-predicted statistic, the 
modified likelihood ratio index has a high prob
ability of distinguishing correctly between models P 
and Q with any reasonably sized estimation sample. 

Discussion of .Examp'le 

The foregoing example shows that the percent
correctly-predicted statistic may fail to distin
guish between a correct and an incorrect model, even 
if the choice probabilities of the two models differ 
substantially. Of course, this does not mean that 
the statistic always will fail to make such distinc
tions. On the contrary, it is possib1.e to construct 
examples in which the statistic distinguishes be
tween correct and incorrect models quite satisfac
torily. However, the example shows that the statis
tic is an unreliable diagnostic tool. The fact that 
two models have similar values of the percent-cor
rectly-predicted statistic does not necessarily 
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imply that the two models have similar abilities to 
explain the available data or are equally likely to 
be correct. 

Al though small differences between the values of 
two models' percent-correctly-predicted statistics 
do not necessarily imply that the two models are 
equally satisfactory, the possibility remains that a 
large difference between the values of the statis
tics implies with hiqh probability that the model 
with the lower value is incorrect. This possibility 
clearly is fulfilled qualitatively. However, it does 
not appear to be possible to develop for the per
cent-correctly-predicted statistic an inequality 
analogous to inequality 14 for the modified likeli
hood ratio index. Thus, it does not appear possi
ble, at least analytically, to specify quantita
tively a minimum difference between the values of 
two models' percent-correctly-predicted statistics 
that enables one to conclude with high probability 
that the model with the lower value is incorrect. As 
was discussed in connection with inequality 14, it 
is possible to specify such a minimum difference for 
the modified likelihood ratio index. Although the 
apparent lack of a "minimum significant differ
ence" for the percent-correctly-predicted statistic 
is disappointing and clearly impairs the statistic •s 
usefulness, it should not be considered surprising 
or unusual. For example, there also is no known 
minimum significant difference for the R2 values 
of two linear regression models. 

CONCLUSIONS 

The results presented here indicate that the modi
fied likelihood ratio index provides a powerful 
method for comparing non-nested random utility 
models. It has been shown that very small differ
ences between the values of the modified likelihood 
ratio indices of two models indicate with hiqh 
probability that the model with the lower index 
value is incorrect. Moreover, if one of the models 
being compared is correct and there are substantial 
differences between the choice probabilities of the 
correct and incorrect models, the modified likeli
hood ratio index has a high probability of indicat
ing that the correct model is superior to the incor
rect one with estimation samples of practical size. 

The percent-correctly-predicted statistic is much 
less useful for comparing models. The statistic may 
fail to distinguish between correct and incorrect 
models, regardless of sample size, even if the 
choice probabilities of the two models are very 
different. Moreover, there are no readily available 
quantitative criteria for determining how large the 
differences between the values of two models per
cent-correctly-predicted statistics must be to 
justify a conclusion that the model with the lower 
value likely is incorrect. 

25 

In summary, the modified likelihood ratio index 
is a much more useful tool for comparing non-nested 
random utility models than is the percent-correctly
predicted statistic. 
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