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Critique of ITE Trip Generation Rates and An Alternative 

Basis for Estimating New Area Traffic 

FRED A. REID 

The commonly used household vehicle trip rates from the Institute of Trans­
portation Engineers' Informational Report, Trip Generation, are nearly twice 
as large as equivalent data from survey-based sources such as the 1977 Na­
tional Personal Transportation Study and the various regional planning agen­
cies. A number of potential reasons for the difference, including sample de­
mographics, underreporting, and non-home-based trips, estimating the effect 
of each. Major factors are the atypically large incomes and family sizes of areas 
from which the ITE data came. The quantifiable factors explain two-thirds of 
the difference. Other reasons, such as the ITE rates being measured in new 
areas without maturity of land uses or resident's habits, are speculated as the 
cause of the remaining difference. Even the quantifiable reasons for differences 
in characteristics between a new area and the one from which source data come 
are often ignored in traffic estimates. Considering these factors ITE data are 
claimed to lead to excessive local road capacity decisions. Survey-based rates 
are more consistent with other national accounts and observations of travel. 
An alternative method for traffic estimation for new residential developments, 
based on available survey sources, is presented and recommended. 

Traffic load estimates and road requirements for new 
residential developments are often based on per­
household trip rates from the Institute of Transpor­
tation Engineers Informational Report, Trip Genera­
tion Ill . ITE rates for the typical number of 
vehicle trips per day produced by single and/or 
corresponding multifamily housing types are multi­
plied by the mixes of housing planned to give the 
traffic expected. Other steps or refinements may 
adjust the basic rates for the demographics of the 
area, determine peak-hour trips, subdivide the 
estimates by zones and a road network, add non-resi­
dential and external trips, and/or apply traffic 
level of service standards to determine the number 
and sizes of roads required for the development. 

Typical of the tripmaking rates in the ITE manual 
is the claim that the average single-family housing 
unit generates 10 vehicle trips per day. Generation 
rates from 3.7 to 6.1 are given for different densi­
ties of multifamily housing. These rates are con­
siderably higher than reported for population aver­
ages by most national and regional survey sources. 

The National Personal Transportation Study (NPTS) 
reports that the average U.S. household made 4.0 
vehicle trips/day in 1977 ( 2) . Characteristics of 
Ur ban Travel Demand, a compilation of travel survey 
data from about 40 metropolitan areas in the United 
States in the 1960s, averages to 5.3 home-based 
person trips per day (equivalent to about 4. 4 vehi­
cle trips/day between all locations) (3). The 1976 
Urban and Rural Travel Survey of 7600 households in 
the six-county Southern California Association of 
Governments (SCAG) region reported an average vehi­
cle-trip rate of 5.7/household/day (4). 

Even if the ITE figures are -;;eighted by the 
corresponding mixes of the housing types in the 
above populations, they still imply twice the na­
tional rate and 50 percent higher than reported in 
southern California--7. 8 and 8. 5 vehicle-trips/day, 
respectively. 

There are straightforward reasons for some of 
these differences. Data-collection methods and 
demographics are different for the sources. How­
elfer, as the next section of this paper shows, the 
ITE generation rates are still 34 percent high after 
adjustments are made for identifiable factors. This 
suggests that estimates of road requirements for new 
residential developments based on the ITE rates may 

lead to construction of excessive capacity and 
unnecessary expenditures. At a time when automobile 
travel may be leveling off or even decreasing and 
resources are scarce, this should be remedied. 

The paper goes on to apply an alternate method of 
estimating traffic to an actual new community based 
on travel survey data. The result is compared with 
an independent estimate based on ITE-type data, with 
the latter again appearing excessively large. The 
conclusion speculates on the persisting part of the 
differences. Because of the biases implied in the 
ITE sampling methods, travel survey data are recom­
mended as the basis for sizing new roads. 

ADJUSTMENTS FOR DIFFERENCES BETWEEN ITE AND NPTS 
METHODS 

Before detailing the quantifiable differences be­
tween the two sources, issues that do not contribute 
to their differences must be cleared away. All the 
data sources make a distinction between person and 
vehicle trips and are stated for the latter. Vehi­
cles in the NPTS survey include, in addition to 
automobiles, vans, light trucks, recreational vehi­
cles (RVs), motorcycles, and mopeds. Though the 
other sources do not define their inclusion of 
vehicles, they are unlikely to be more comprehen­
sive. So the NPTS rates apparently include at least 
the vehicles in the cordon measurements. All 
sources define a trip as each one-way leg, so a 
round trip counts as two vehicle trips. Reports on 
trends in tripmaking rates between the early 1970s 
and 1977, the interval between most of the ITE and 
NPTS observations, do not show significant changes 
(£,2_,_§). There was a 6 percent decline on a per 
household basis due to greater household growth than 
for travel or the population. This effect is not 
included here, but it 'may have a bigger effect on 
future projections and is discussed later. 

The initial set of adjustments below is to recon­
cile the obvious differences in data collection 
between cordon line and survey methods. Following 
this, adjustments are also made for the apparent 
atypical demographics of the ITE sample. The recon­
ciliation procedure is to start from the average 
trip rate of one of the sources (NPTS) and adjust it 
for each quantifiable difference in data-collection 
method or demographics to try and represent the 
basis of the other source (the ITE rates averaged at 
the U.S. housing mix). 

First, the NPTS trip rates are adjusted to the 
same (cordon line) basis as the ITE sources by 
subtracting non-home-based trips and then adding 
back proxy data for the trips coming to houses by 
nonresidents (visitors, service vehicles, etc.) • 
National data typically report about 80 percent of 
trips to be home-based. In the SCAG area 70 percent 
are home-based. In the San Francisco region, 21 
percent were non-home-based in the 1960s. The na­
tional figure of 20 percent is subtracted from the 
NPTS rate in the second row of Table 1 for this 
factor. 

The SCAG data and data from the Washington, D.C., 
region indicate that non-resident trips to homes 
amount to 16-19 percent of total area trips (+21 to 
+23 percent of home-based trips) (_Zl. The third row 
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of Table 1 adds 21 percent to the NPTS rate for this 
effect. 

Another probable reason for differences is the 
underreporting of trips by interviewees. Two indi­
cations of the size of this effect are available. 
Correction factors are typically applied to survey­
based models of regional tripmaking to gain agree­
ment with ground counts. The models of the Cali­
fornia Department of Transportation (Caltrans) LARTS 
Division, Los Angeles, indicate an adjustment factor 
of 19.6 percent between SCAG area reported trip 
rates and (LARTS-DTIM) production rates per house­
hold. Adjustments in the Sacramento region run from 
O for work trips to 20 percent for other home-based 
trips. Checks of reported miles driven against 
driver trips multiplied by trip distances within the 
NPTS data suggest about 28 percent under reporting. 
Omission of trips probably accounts for the bulk of 
this error. About 20 percent is taken to represent 
this underreporting, the third adjustment factor 
shown in Table 1. This brings the survey rates to 
equivalence with the cordon line basis of the ITE 
data. 

The ITE descriptions of the average demographics 
of their single-family category suggest other impor­
tant reasons for the trip rate difference. Homes in 
this sample have an average of 3.7 persons, 1.6 
vehicles; are built at a density of 3.5 units/acre; 
are newer than the average; and, following from all 
these characteristics, have higher incomes. Each of 
these factors contributes to the ITE rates being 
higher than surveys of typical tripmaking. 

Table 2 shows additional adjustments to the 
survey-based trip rate to try and make it represent 
a residential area with the average demographic and 
economic characteristics of the ITE sources. The 
rates are adjusted by using information on the 
sensitivity of tripmaking to the relative demo­
graphic characteristics of the ITE and the national 
samples [derived from the SCAG study (4) 1 national 
demographics are from the 1976 housing census]. 

The first identifiable demographic difference is 
a NPTS sample family size of 2. 92 persons/household 
versus 3.17 for ITE (when weighted by the u.s. 
housing mix). The NPTS average household incomes 
were $12 460/year in 1976. No direct report of 
incomes was given with the ITE data. However, its 
other demographic, automobile ownership, and sample 

Table 1. Reconciliation of NPTS to ITE trip generation rates for data· 
collection methods. 

Source or Adjustment Factor 

NPTS 
Remove non-home-based trips 
Add visitor and service vehicle trips 
Add for underreporting 
Oimulative adjustments for cordon 

equivalence 

Adjustment 
(%) 

Baseline 
-20 
+21 
+20 
+16 

Resulting Vehicle 
Trips per Avg 
Household per Day 

4.0 
3.2 
3.9 
4.6 
4.6 
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area characteristics were very similar to Orange 
County, California, in 1976. The $15 400 average 
household income for that county was thus inferred 
to represent the ITE sample. Individually, these 
demographic differences imply a 6.4 percent and a 21 
percent higher vehicle trip rate for the ITE sample 
for family size and incomes, respectively. Assuming 
a correlation factor of 0.33 between family size and 
income, the joint effect of these factors is a 23 
percent higher trip rate. This is shown as the 
first adjustment in Table 2. 

The ITE data were taken in new and low-density 
areas where transit shares of trips are insignifi­
cant. The nationwide transit share of all trips was 
2. 8 percent in 1977 according to NPTS. This last 
adjustment in Table 2 brings the survey-based trip 
rate to equivalence with measurements taken in areas 
without transit. 

Table 2 still concludes with a 34 percent unex­
plained difference between the adjusted NPTS vehicle 
trip rate and that from ITE . A similar set of 
adjustments on the southern California trip surveys 
leave 21 percent of the difference between it and 
the ITE data unexplained. Thus, even if the ITE 
trip rates were applied to areas in the nation with 
the same average demographics as the ITE sources, 
traffic estimates would typically be 34 percent too 
high. As stated originally there would be discrep­
ancies of nearly 100 percent if ITE rates were 
applied directly to areas with average national 
demographics. 

Apparently there are significant reasons beyond 
the adjustments in Tables 1 and 2 for the ITE trip 
rates to differ from recent surveys. No adjustments 
were made for land use densities above: weighting of 
the average ITE rate by the housing type mix may not 
correct for density differences. No account was 
made for possible differences due to the maturity of 
the areas or the ages of their populations. Further 
reasons are speculated for this difference in the 
conclusions. Of course, all of the adjustment 
factors applied in the table for underreporting and 
other effects are subject to error. 

The difference in the trip rates is large com­
pared with likely errors in the adjustment factors. 
It is larger than any of the individual adjustments. 
Either underreporting or income adjustments would 
have to be more than 50 percent to account for it. 

The NPTS rate is also much more consistent with 
national accounts of vehicle miles traveled and 
annual energy consumed by personal vehicles. If the 
7.8 trips/day U.S. average implied by the ITE rates 
are multiplied by the average trip lengths, number 
of households, and fuel efficiency of vehicles for 
1972, the annual energy consumption implied is about 
17 quadrillion Btu's, also about twice the published 
reports of U.S. energy consumption by personal 
passenger cars (.!!_) • 

Because the difference in the ITE data remains 
excessive under examination, an alternative method 
for estimating the traffic for a new residential 
development based on travel survey data is presented 

Table 2. Reconciliation of NPTS to ITE trip generation rates for demographic differences. 

!TE Sample 
Source or Adjustment Factor Parameter 

NPTS rate adjusted to cordon basis (from Table 1) 
Family size 3.17 /household 
Income per household 
Transit trips 2.8 percent share 
Oimulative cordon and demographic adjustments 
Avg ITE vehicle trips per household at U.S. housing mix 
Remaining difference !TE versus NPTS (adjusted) 

NPTS Sample 
Parameter 

2.92/household 

Negligible 

Adjustment• 
(%) 

+16 
+6.4 ) _b 

+21 
+2.8 

+45 

34 

8Trip rate sensitivities to changes From Cal trans (±). bCorrelation of 0.33 assumed between income and family size . 

Resulting Vehicle Trips per 
Avg Household per Day 

4.6 

5.7 

5.8 
5.8 
7.8 
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next. As well as being based on more realistic data 
for trip rates, the new method accounts for the 
expected demographic and economic characteristics of 
the area's residential market and the effects of 
recent fuel prices. This will be compared with a 
traffic estimate by a consultant for the same area 
plan based on ITE-type data. 

TRAFFIC ESTIMATION BASED ON HOUSEHOLD TRAVEL SURVEYS 

The revised estimate is for the total residential 
vehicle traffic generated by the 43 000 dwelling 
units planned for the 18 000-acre Chino Hills area 
of San Bernardino County, California. Only average 
household vehicle trip rates and the total traffic 
produced by the land uses in the plan will be esti­
mated. The consultant's estimate distributed traf­
fic over the transportation network of the area. 
Though a network analysis is beyond the scope of 
this study, a useful comparison can be made of the 
total trips produced by both estimates and infer­
ences made for their proportional effect on the road 
network. The estimate here goes beyond the prior 
one in source data and demographic and economic 
adjustments . 

Table 3. Vehicle driver trips per household by income level and housing unit 
type. 

Household Income 
($) SH MH 

Los Angeles County 

Under 6000 3.6 1.8 
6000-9999 4.6 3.4 
10 000-14 999 5.9 4.8 
15 000-24 999 8.4 6.6 
25 000-39 999 9.7 5.6 
40 000 and over 9.6 6.9 
Overall 6.8 3.8 

Orange County 

Under 6000 4.3 2.4 
6000-9999 4.9 4.8 
10 000-14 999 7.2 5.2 
15 000-24 999 7.8 6.6 
25 000-39 999 10.2 8.0 
40 000 and over 9.2 .• 
Overall 7.6 4.8 

Riverside and San Bernardino Counties 

Under 6000 3.3 1.8 
6000-9999 4.9 4.9 
10 000-14 999 6.4 6.4 
15 000-24 999 9.1 5.9 
25 000-39 999 10.7 6.5 
40 000 and over 9.3 3.0 
Overall 6.2 4.1 

8 No usable data. 

Table 4. Traffic estimate for Chino Hills 
residential development based on Caltrans/SCAG 
survey data. 

Overall 

2.5 
3.9 
5.4 
7.9 
8.8 
9.1 
5.5 

2.9 
4.8 
6.2 
7.5 
9.9 
9.2 
6.5 

2.8 
4.9 
6.4 
8.7 

10.5 
8.8 
5.8 

Source or Adjustment Factor 

1976 SCAG/LARTS survey 
Addition for underreporting 
Factor for 

High income per household 
High multifamily 

Remove non-home-based trips 
Add visitors and service trips 

3 

The SCAG/Caltrans 1976 Travel Survey discussed 
above is the source of the trip rates for this 
estimate. Table 3 from this survey shows the vehi­
cle trips made per household by various income and 
housing-type groups for three counties in the Chino 
Hills region. The vehicle rates are for all trips 
in the counties (including commercial trips except 
heavy trucks) , even though they have been expressed 
per household (person trips/household were typically 
1. 4 times higher) . Rates under the headings SH are 
those for single-family homes, those under MH are 
the trips per day for multifamily housing units. 
The overall rates are for the 1976 mix of housing 
types in each county. 

The steps in estimating the residential traffic 
rates for the Chino Hills plan are 

1. Start with the rates in nearby developed areas, 
2. Correct for underreporting of trips by house-

holds, 
3. Adjust for expected household incomes in area, 
4. Subtract non-home-based trips, 
5. Add incoming visitor and service-commercial 

trips, 
6. Adjust for expected mix of housing types, and 
7. Correct for recent declines in tripmaking. 

All of these adjustments are summarized in Table 4 
and detailed below. The joint effect of these 
adjustments is taken as the product of the individ­
ual percent adjustments. Correlations between all 
the factors are assumed zero except income and 
housing typei their correlation is accounted for 
with an assumed coefficient of -0.5. 

The baseline for the trip rate adjustments is the 
average traffic produced by households in the county 
where Chino Hills will be developed . This is seen 
from Table 3 to have been 5. 8 vehicle trips/day in 
1976. Since the development is on the boundary of 
three counties and similar to those in the o the rs,' 
the unweighted average of the daily rates in San 
Bernardino, Orange, and Riverside (SB/ORA/RIV) 
Counties is computed from the table as a more repre­
sentative baseline. This is 6.15 vehicle trips/day, 
the first entry in Table 4. The average demo­
graphics for these counties were 2.96 persons/house­
hold, 71 percent multifamily housing, and $13 000 
household income in 1976. 

The first adjustment is for the underreporting 
characteristic of household travel surveys. As 
stated above the correction factor for this in SCAG 
area studies is 20 percent . The effect of this 
adjustment is an average household rate of 7.4 
vehicle trips/day, as shown in the second row of the 
table. 

The 1979 average household income for the plan­
ning area was $22 400 annually. By using the aver­
age of the tripmaking rates of households in this 
income category from the table for SB/ORA/RIV Coun-

Study Area 
Parameter 

Baseline 
All home-based 

$22 400 
33 percent multifamily 
0 percent3 

100 percent 

Adjustment 
(%) 

+20 

+31.7 } 
-2.0 

-30.7 } 

Avg Vehicle Trips per 
Household per Day 

6.15 
7.4 

9.7 

Factor for fuel prices and economy 
Avg vehicle trip rate for all households 
Total vehicle trips per day (43 391 

l 980 conditions 
+16.4 
-4.Sb 

8.3 

7.9 
7.9 
343 200 

housing units) 

3 Added separately later in traffic forecast. b From Travel and Related Factors in California (i). 
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ties indicates that they produce 32 percent more 
trips than the average. The income adjustment is 
taken here to include the effect of automobile 
ownership, which also influences tripmaking but is 
highly c~rrelated to income. 

In 1976 multifamily housing made up 28 .6 percent 
of the stock in SB/ORA/RIV Counties. Assuming that 
the proportion of Chino Hills planned for 12 or more 
housing units per acre will all be multifamily, the 
area will have 33 percent multifamily units at full 
buildout. Caltrans survey tabulations on the depen­
dence of traffic generation on housing type indicate 
that such a housing mix produces 2 percent fewer 
vehicle trips than the existing mix. The net effect 
of this and the correlated income factor is a 31 
percent increase in the trips, or 9. 7 vehicle trips 
per household per day. This effect is shown in the 
fourth entry of Table 4. 

No adjustment is made for the densities planned 
for Chino Hills. At the gross area scale they are 
approximately equal to the existing developed areas 
from which the trip /rates came. This con'trasts with 
developments characterized by ITE that may be at 
half the prevailing densities. Sensitivities of 
vehicle trip rates to densities imply the ITE sample 
may give l.? percent more trips. 

The Caltrans survey shows that non-home-based 
travel--for example, between work and/or personal 
business destinations--in San Bernardino County is 
30. 7 percent of the above figures. Thus residen­
tial-based traffic is that much lower. However, the 
traffic to residences by visitors, service vehicles, 
etc., must be added. Caltrans models for trip 
attraction show this to be 16.4 percent of all trips 
(from residential weight of "other-to-home" attrac­
tions, according to Gerald Bare, Caltrans District 
7, LARTS Division, Los Angeles). The net effect of 
these two factors is a reduction of 14.3 percent 
from regional trips. This is shown as the fifth and 
sixth entries in Table 4. 

Studies have shown that trip rates have been 
falling "off more persistently in the late 1970s 
(2,2_,~) • The recent Caltrans report shows that 
vehicle miles traveled per household decreased 3. 6 
percent between 1978 and 1980, while vehicle trips 
per household went down 12.6 percent. By using the 
Caltrans rates of change, adjusted by the NPTS 
ratios of miles to trips, a decrease of 4.5 percent 
in vehicle trips per household is implied for Cali­
fornia between 1976 and 1980. This adjustment is 
shown in the seventh entry of Table 4. Since fuel 
prices are likely to increase disproportionately 
with the rest of the economy in the future, this may 
only be the beginning of a continuing trend reducing 
travel and therefore requirements for road capacity. 

The net effect of these corrections and adjust­
ments indicates that the average vehicle trip rate 
from all housing in Chino Hills will be 7.9 vehicle 
trips/day. At this rate the 43 000 residences in 
the Chino Hills plan would generate 343 000 vehicle 
trips/day. A corresponding estimate made by the 
traffic consultant for the Chino Hills Plan was 
447 000 vehicle trips/day to and from residences, or 
an overall average of 10.3 per household (10). This 
is 30 percent above the estimate based on the ad­
justed Caltrans survey data. 

CONCLUSIONS 

There is a significant difference between the new 
estimate and that based on ITE-type data. If the 
demographic-economic characteristics of the case 
study area were closer to the southern California 
average, the difference could have been 50 percent. 
The reasons for the difference appear to be that ITE 
household trip rates are from samples with the 
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following special residential characteristics: (a) 
unusually high family sizes and incomes, (b) unusu­
ally low development densities, (c) pre-fuel-crisis 
observations, (d) little land use mix or balance of 
services, and (e) lack of maturity of community 
activities, their populations, and trip patterns. 
The first two simply represent the kind of identifi­
able dif'ferences in samples treated in Tables 1 and 
2. The others are speculated reasons for the re­
maining 21 percent difference for the equivalent 
southern California comparison. 

Area survey data cover land uses that have a 
development maturity more appropriate for long-range 
planning. The ITE data come from limited, exclusive 
use new areas in the late 1960s and early 1970s. 
They had not reached the maturity of supporting 
services, population age distribution, and activity 
habits of the residents that occur with the long­
term fill out of the area--the maximum use condition 
for which traffic and roads need to be sized. New 
areas may not be established as a place to live and 
the new residents may have greater linkages to prior 
residences or the region as a whole. Some 56 per­
cent of trips from residences are outside of local 
communities (more than 5 miles) and are influenced 
mainly by the regional context of travel. New 
residential developments have in the past been in 
regions with sparse additional uses because of land 
costs. They rarely had any significant travel mode 
alternatives for reaching desired activities. They 
avoided a mix of nonresidential land uses. 

TTE sources usually excluded mixed land use areas 
because measurements on them would not be pure data 
for one use. But this fails to reflect the traffic 
reduction due to walking and short trips. Pure use 
data will overestimate traffic for larger develop­
ments. Current land developments are appropriately 
not the exclusive land-intensive residential suburbs 
of the 1960s. They provide a balance of residential 
and supporting land uses, significant transportation 
alternatives, and an attractive residential, shop­
ping, and recreational environment to capture many 
trips. Pure use measurements may be an indication 
of the traffic on the most local streets, or for 
very small developments. Nationally, 10 percent of 
vehicle trips are under 0.5 mile. 

Some of the reasons for the lower traffic esti­
mate here may actually further reduce travel in the 
future. These are the recent declines in vehicle 
use due to fuel and other automobile prices, the 
trend toward greater housing density, vehicle leas­
ing or renting, the growth of regional transit, the 
generally increasing age distribution of the popula­
tion, and trends in decentralized work places and 
telecommuting. Thus the overestimates from !TE-type 
data suggested here for 1980 may become even larger 
in the future. 

It might be argued that the trip rates used for 
new traffic estimates should be more liberal to 
account for future growth of household tripmaking or 
increases in housing densities. This may be a 
consideration, but if so it should be more explicit. 
With the present flattening or even decreasing of 
energy supplies and personal incomes, the saturation 
and falling off of travel rates in the 1970s may be 
the future pattern. Densif ication is more plausible 
for the future. However, with the price of housing 
and scare i ty of capital, it may not be appropriate 
to burden new developments with such long-range 
speculation. 

Travel survey data for an area similar to the one 
to be estimated are the basis of the recommended 
estimate above. The results here suggest that this 
would generally be a better basis for new area 
traffic forecasts than the ITE manual. Most metro­
politan areas have travel survey data, by county or 
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smaller areas, updated for current years. The trans­
portation demand compilations of the Urban Mass 
Transportation Administration mentioned earlier are 
also a better basis for estimation. Even where 
these are lacking, choosing comparable survey data 
and adjusting them by the methods presented here 
would be preferable to accepting the probable infla­
tion of the ITE data. (Use of the ITE data also 
assumes a transferability of its sources to areas 
for which they may not have been collected.) 

In times of major fuel price increases and short­
ages, even people in exclusively suburban settings 
may not continue to greatly exceed average regional 
travel. As shown above, people's trip rates have 
been coming down since the ITE data were compiled. 
If we do not want excessive expenditures for trans­
portation or unnecessary encouragement of travel by 
overcapacity, we should not be sizing our roads from 
traffic generation rates taken from pre-fuel-crisis 
suburbs. 

The lower traffic estimate here suggests that 
road building for a new area based on the more 
traditional data would be an excessive use of re­
sources--capi tal, energy, and land. It would pro­
duce a road system compatible with a much more 
intensive land use than intended by the plan. If 
uses were held at the intended plan maximums, the 
excess road capacity would give an over-automo­
bile-or iented character to the area that encourages 
excessive automobile use and defeats other aspects 
of the plan to encourage transportation alternatives 
and stop the propagation of the old syndrome of more 
roads, more travel, more congestion, and more energy 
consumption. 
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Effect of Urban Character on Transferability of 
Travel Demand Models 

FONG-LI EH OU AND JASON C. YU 

The effect of urban character on travel demand model transferability is inves­
tigated. Urban character was described by urban area size, type of activity 
concentration, and geographic characteristics, while travel demand measures 
consisted of triµ frequency, trip length, and mode choice and were grouped 
by work and nonwork trip purposes and by metropolitan and nonmetropolitan 
areas. A generalized regression dummy variable approach was used for the 
analysis. The study results show that urban character bears significant influ­
ence on travel demand, and the model transferability varies with demand mea­
sures and model specification: The specific findings include (a) the type of ac­
tivity concentration has a significant impact on trip frequency for nonmetro­
politan areas and trip length for both metropolitan and nonmetropolitan areas; 
(b) the influence of urban area size on mode choice and trip length is signifi­
cant for metropolitan areas; (c) the impact of geographic characteristics on 
travel demand can be ranked in order of trip length, trip frequency, and mode 
choice; (d) metropolitan trip frequency models are more transferable than their 
nonmetropolitan area counterparts, while the transferability of trip length 
models of both metropolitan and nonmetropolitan areas is very low; and (e) in 
nonmetropolitan areas, nonwork trip frequency models are more transferable 
than work trip models. 

Experience in modeling indicates that a powerful 
organizing paradigm seems to generate its own prob­
lems. This is particularly true when dealing with 

such a complex reality as travel behavior in which 
influential elements observed may be merely partial 
and distorted. Some of the perceived elements are 
rigorously analyzed while others may have been com­
pletely over looked. For instance, in the conven­
tional method of trip generation analysis, land use 
variables have been used to determine trip produc­
tion and attraction. However, these variables 
should not be considered as all-inclusive parameters 
that affect travel behavior. To illustrate, if the 
values of significant land use variables were iden­
tical for different urban areas, habitual travel 
behavior would indicate that each urban area would 
always remain different from that of every other. 
This implies that some other uncertainties must 
exist that also influence the desire for travel. 

Each urban area has its own character, which may 
be typified by urban area size, activity concentra­
tion, geographic characteristics, etc. ~he urban 
character can be considered as the base conditions 
of a given urban area that dictate the activity sys-
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tern, the transportation system, and the traffic flow 
pattern. 

If a demand model is developed for an area and is 
intended to be used for predicting travel demand in 
that area only, the effects of urban character may 
be neglected from analysis without jeopardizing the 
predictive accuracy. However, if a transferable 
model is desired for application of travel predic­
tion in different areas, the distinction of urban 
character should become a significant factor in in­
fluencing travel behavior. The reason is that the 
observed travel demand patterns inherit the nature 
of urban character that is obviously different from 
one area to another. 

The primary objective of this study was to iden­
tify urban character in terms of urban size, activ­
ity concentration, and geographic characteristics 
that affect the transferability of work and nonwork 
travel demand models. The significance of urban 
character was determined by the first set of data 
and then validated by a second set of data. In 
addition, the influence of model specification on 
transferability was also investigated. Travel de­
mand measures include trip frequency, trip length, 
and mode choice. The main reason for choosing these 
measures is that composite demand measures, such as 
person miles of travel (PMT) , person hours of travel 
(PHT), vehicle miles of travel (VMT), and vehicle 
hours of travel (VHT) can be derived. These com­
posite demand measures have been applied as indica­
tors of areawide transportation system performance 
and resource allocation. 

Various approaches have been taken to identify 
urban character related to the transferability of 
travel demand models. The first approach is to 
classify urban areas based on the dominant economic 
activity (1-3). The second approach groups cities 
based on -p~pulation and automobile availability 
(4). The third approach categorizes cities in ac­
c-;;rdance with their types of activity concentration 
(5). The fourth approach classifies cities by using 
factor and cluster ana lysis techniques (_§.,.2>. Al­
though no study has yet been conducted for the use 
of all these notions in one context so that the 
joint effect of urban character can be investigated, 
this study was intended to do just that. In addi­
tion, there are obvious weaknesses in past studies 
to relate urban character to various types of models 
for transferability purposes. For instance, use of 
the relationship of automobile availability and trip 
frequency per person to urban areas may lead to the 
incorrect expectation that a greater automobile 
availability would yield a greater number of trips. 
As a matter of fact, cities that have higher automo­
bile ownership rates often generated lower trip 
frequencies (_!!) • Another example is that the clas­
sification based on the type of activity concentra­
tion may be more applicable to trip distribution 
than trip generation. The type of activity concen­
tration has a better relationship with gravity-model 
friction factors than trip frequencies (2_). Without 
the support of statistical evidence, however, these 
suggestions are not convincing. This study aimed to 
examine the applicability of the aforementioned 
urban classifications by using statistical analysis. 

INITIAL SELECTION OF VARIABLES 

A generalized regression dummy variable approach was 
used as the basic model form in this study. The 
proposed travel demand model consists of dependent 
and independent variables discussed in the following 
sections. 

Depe nde nt Variables 

In this study, measures including travel demand 
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necessary to estimate total person trips, PMT, and 
PHT were selected as the demand variables. They are 
trip generation, trip length, and mode choice in 
terms of trip frequency, trip duration, travel dis­
tance, percentage of travel by automobile, transit, 
and walk. In addition, automobile occupancy was 
considered because it would allow the estimation of 
modal-split between the automobile driver and the 
automobile passenger based on the percentage of 
travel by automobile. 

In most urban transportation studies, travel de­
mand was differentiated by work and nonwork trips. 
Thus person trips and trip length were categorized 
into work and nonwork trips. Because trip frequency 
is a common measure for both household models and 
zonal models, it was used as a measure of trip pro­
duction. Mode choice models cover modes of automo­
bile driver, automobile passenger, transit, walk, 
and other modes of transportation considered in this 
study. 

I ndepende nt Va r i ables 

Conventional travel demand analysis assumes that the 
number of trips within an area depends on the land 
use of the area. Because the area's population, 
socioeconomic conditions, land use development, r and 
employment reflect the land use, these activity sys­
tem variables are usually used as the parameters for 
travel demand. In this study, relationships among 
land use indicators, urban character, and tripmaking 
activity were estimated so that the impact of 
changes in socioeconomic and physical environments 
on changes in travel demand could be statistically 
analyzed. 

Urban Character Variables 

Considerable theoretical analyses and empirical re­
search efforts have been made to determine the fac­
tors that most influence travel behavior at the in­
dividual, zonal, and areawide levels (10-1d.). This 
study used the results of these efforts as the basic 
information for the selection of urban character 
variables. 

The three independent variables considered to 
reflect the urban character are urban size class, 
activity concentration, and geographic cluster 
(i.e., groups of cities that share similar geo­
graphic characteristics). The urban size class con­
tains five urban groups with a population of less 
than 50 000; 50 000 to 99 999; 100 000 to 249 999; 
250 000 to 750 000: and more than 750 000. This 
classification scheme is consistent with the overall 
transportation policy framework of the nation. Sec­
tion 134 of the Federal- Aid Highway Act of 1962, for 
example, specifies that urban areas with a popula­
tion of 50 000 or more have comprehensive, coopera­
tive, and continuing (3C) planning programs under 
way. In many local planning contexts, this legisla­
tive action draws a sharp distinction between cities 
of different sizes. Thus cities with population of 
50 000 or more form a logical group because of their 
common planning guidelines, while those below 50 000 
constitute a second grouping. 

Next, in many demographic and economic studies, 
the population size of 100 000 has often been re­
garded as a benchmark for distinguishing urban areas 
with respect to social structure and economic per­
formance. Because both factors have profound impact 
on travel demand, this study proposed that urban 
areas with a population of less than 100 000 and 
urban areas with a population of 100 000 or more 
should be divided into two different groups. Urban 
areas with in each group share common economic char­
acteristics. 
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The third distinction was made for urbanized 
areas with a population of 250 000 or more, most of 
which have performed multimodal planning programs 
including long-range transit planning. Thus, it 
would appear that urban areas with a population of 
250 000 or more constitute one grouping, while those 
less than 250 000 are referred to as another. 

Finally, a recent study indicated that a popula­
tion of 750 000 is the minimum size for a city to 
provide certain types of transit service such as 
light rail (13). Urban areas falling into this 
category could generate enough activity to effec­
tively use and financially support light rail facil­
ities and service. Other studies also showed that 
travel behavior in large cities is significantly 
different from that in smaller urban areas (li) . 
Large cities, for example, report a greater travel 
demand in terms of VMT on a per capita basis (15). 
In accordance with these research results, urban 
areas can be categorized into two groups--cities 
with population more than 750 000 and cities with 
750 000 people or less. 

The urban activity concentration includes the 
core-concentrated and the multinucleated <2,li). 
The reason for this distinction is that the distri­
bution patterns of population and employment have 
significant bearing on travel demand. Obviously, 
the greater dispersion of population and employment, 
the higher the travel demand in terms of VMT. On 
the other hand, the type of activity concentration 
can be expressed by density. A high urban density 
tends to favor public transportation and depresses 
automobile use due to the limitation of parking 
space and higher operating costs. 

The geographic cluster consists of nine different 
urban groups classified by Golob and others (~). 

The area characteristics used for the classification 
of 80 metropolitan areas included 53 variables re­
lated to arterial transportation requirements such 
as population, demographics, and socioeconomic mea­
sures, land use and economic activity measures, geo­
graphic factors, and travel mobility and accessibil­
ity measures. A principal components factor 
analysis was performed on the correlation matrix of 
the 53 variables (17). Based on eigenvalues, 15 
orthogonal latent factors were derived. Because the 
15 latent factors include most aspects of urban en­
vironment and particularly reflect geographic in­
fluence, the urban classification based on these 
factors was selected as representative of the geo­
graphic variables in this study. 

The city grouping shows that th_e first two of 
nine homogeneous groups reflect the uniqueness and 
dominance in the urban hierarchy of first, New York, 
and second, Chicago and Los Angeles. The third 
group consists of large northeastern cities charac­
terized by high residential density and transit ori­
entation, such as Baltimore, Boston, Pittsburgh, 
etc. The fourth group consists of southern cities 
including Atlanta, Charlotte, Memphis, etc. The 
cities in this group have high residential density 
and low income. The fifth group contains midwestern 
cities such as Denver, Indianapolis, Oklahoma City, 
etc. The cities in this group are characterized by 
average ind us trialization and personal income, and 
older families. The sixth group consists of mid­
eastern industrial cities including Akron, Cincin­
nati, Buffalo, etc. The cities in this group have 
high personal income and high residential density, 
and are oriented toward public transit. The seventh 
group includes young southwestern areas such as Dal­
las, Houston, Phoenix, etc. They are characterized 
by the lowest residential density and public transit 
orientation. The eighth group consists of Florida 
cities such as Miami, Tampa, Orlando, etc. These 
cities have a significant retired population and low 
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residential density. The ninth group contains young 
northern industrial areas of Davenport, Dayton, 
Omaha, etc., which have high personal income. Be­
cause the nine homogeneous groups were classified 
according to their arterial transportation needs and 
requirements, each group (except the first two 
groups that have only one and two cities, respec­
tively) can be used as an independent dummy variable 
to account for the spatial variation of geographic 
characteristics among urban areas. 

As indicated previously, little work has been 
done to incorporate all aforementioned urban charac­
ters (except for the urban activity concentration 
and part of urban size class) into a single urban 
character relative to travel demand. This research 
is the first to take such a comprehensive approach 
for examining the spatial transferability of demand 
models. 

Activity and Transportation System Variables 

Six activity system variables most commonly used in 
the zonal travel demand analysis are population, 
land area, household size, income, automobile owner­
ship, and activity density. The literature review 
of other studies has indicated that the relation­
ships of travel demand with these variables are con­
sistently stable, thus they were selected for model 
formulation (18) • 

Better trarIBportation systems encourage people to 
use transportation facilities more often. Thus, the 
selection of transportation system variables was 
based on the representativeness of variables to the 
system's level of service. This study considered 
the linear feet per capita of the arterial freeway, 
as well as commuter rail and bus service routes, to 
reflect transportation system supplies. The supply 
of roads was estimated by the sum of arterial linear 
feet per capita plus 2.7 times the number of freeway 
linear feet-per capita (19). On the other hand, the 
supply of transit was -e5timated by an assumption 
that the service efficiency for commuter rail and 
rapid transit is four times that for bus. There­
fore, 1 mile of commuter rail or rapid transit is 
equivalent to 4 miles of bus service route. 

Note that the U.S. Department of Transportation 
directly or indirectly uses many of the aforemen­
tioned activity and transportation system variables 
as factors for the distribution of federal funds. 
According to the urban transit formula program of 
the 1978 Surface Transportation Act, the factors for 
grant allocation are population, population weighted 
by a factor of density, commuter rail miles, fixed 
guideway system route miles, and bus seat miles. 

DATA COLLECTION 

Despite the massive acquisition of travel data in 
urban areas during the period 1940-1970, little has 
been done to develop a consistent set of data in 
different areas that could be used to define a set 
of relationships between travel demand and urbdn 
character for evaluating urban travel demand models. 

The data used in this study were collected from a 
variety of sources (2Q_-23) • Most of them were re­
sults of individual area transportation studies and 
are considered reliable. These data provide socio­
economic, demographic, and travel information for 
212 urban areas in the United States including 43 
nonrnetropolitan areas and 169 metropolitan areas .. 
The body of this information affords the possibility 
to examine factors determining aggregate travel be­
havior and the transferability of travel demand mod­
els. The 1960s data were used for model calibra­
tion, while data collected prior to 1960 and after 
1970 were used for model validation. The notations 
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Table 1. List of variables and notations used. 

Notation 

T~,d 

T~ , d 

Ap 
A' p 

Variable 

Logarithmic value of average number of person trips per dwelling 
unit (work) 

Logarithmic value of average number of person trips per dwelling 
unit (nonwork) 

Average number of person trips per capita (work) 
Average number of person trips per capita (nonwork) 
Average work trip duration (min) 
Average nonwork trip duration (min) 
Percentage of automobile travel 
Percentage of transit travel 
Logarithmic value of population (number of persons) 
Land area (miles2 ) 

Logarithmic value of the average number of automobiles per dwell­
ing unit 

Average number of automobiles per capita 
Logarithmic value of Ap 

of variables selected from the model calibration are 
listed in Table l. The statistical significance of 
the data sample is described below. 

As indicated previously, there are more data 
available for metropolitan areas than for nonmetro­
poli tan areas. For the metropolitan area trip fre­
quency model estimation, the sample contains 169 
observations that account for 69.5 percent of U.S. 
metropolitan areas, or 49.2 percent of the u.s. 
metropolitan population. For the metropolitan area 
trip duration model estimation, the sample consists 
of lll observations that have 46. 9 percent of U.S. 
metropolitan areas, or 43.5 percent of the U.S. 
metropolitan population. There are only 35 observa­
tions available for estimating travel distance equa­
tions. However, the size of this sample is still 
statistically significant (14. 4 percent of U. s. 
metropolitan areas, or 22.4 percent of the U.S. 
metropolitan population). Some 67 metropolitan 
areas were selected for mode choice model estima­
tion. This data set accounts for 27 .6 percent of 
U.S. metropolitan areas, or 43.2 percent of the U.S. 
metropolitan population. For nonmetropolitan areas, 
the sample contains 43 observations for trip fre­
quency model estimation and 22 observations for trip 
length modeling. 

ANALYSIS METHOD 

A number of techniques may be used to examine the 
impact of urban character on travel demand. Some of 
these techniques such as automatic interaction de­
tection (24) and contingency table analysis (25) 
have been widely applied to social science for de­
termining classification schemes. This study se­
lected Gujarati's generalized regression dummy vari­
able approach as an analytical tool for several 
reasons (1.£). First, this study not only observes 
the relationship between urban character and travel 
demand but also tells how strong the relationship 
is. Next, the relationship between the two can be 
verified by data other than those used in the model 
calibration. Finally, the impact of urban character 
on the relationship between travel demand and a par­
ticular independent variable is shown in a constant 
term or a variable coefficient, or both. Gujarati's 
technique is capable of accomplishing these ob­
jectives. 

The intent of Gujarati's generalized regression 
dummy variable technique is to portion the sample of 
nonoverlapping subgroups and to detect whether a 
subgroup can explain more of the variation in the 
dependent variable than any other such set of sub­
groups. By using the stepwise regression procedure 
it would allow differential intercept and slope for 
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Notation Variable 

H 
H' 
Dp 
I[ 
v 
K 
s, 

Average number of persons per dwelling unit 
Logarithmic value of H 
llopulnlion density (persons per mile2 ) 

Logarithmic value of median family in co me ( $) 
Supply of transit (linear feet per capita) 
I for multinucleated urban areas and 0 for core-concentrated cities 
I for urban size class group with population of 100 000 to 249 999 
and 0, otherwise 

I for urban size class group with population of more than 7 50 000 
and 0, otherwise 

J for large northeastern cities and 0, otherwise 
I for southern cities and 0, otherwise 
I for midwestern cities and 0, otherwise 
I for mideastern cities and 0, otherwise 
l for young southwestern cities and 0, otherwise 

each group of study areas entering the model. As­
sume the selected model structure includes N explan­
atory variables and M area characters, the general­
ized dummy variable equation can be expressed by 

i= 1, 2, ... , N 
j = 1, 2, ... ,M 

(1) 

where 

Y dependent variable (demand measure), 
Xi = independent variables (activity and trans­

portation system characteristics), 
Dj l if the observation lies in group j (urban 

character) or 0 otherwise, 
intercept for all subgroups, 
differential intercept for group j, 
slope coefficient of Y with respect to Xi 
for all subgroups, 

= differential coefficient of Y with respect 
to D·Xij• and 

U tt stocfiastic error term. 

Among various forms of the regression model, lin­
ear, product, exponential, logarithmic, and combina­
tion forms were all used for appropriate travel de­
mand measures. These forms were chosen in order to 
keep the statistical estimation problem tractable 
and to account for possible nonlinearities: 

Linear y a + bX 
Product y axb or lnY a + 
Exponential y abx or lnY a + 
Logarithmic y a + blnX 

where 

Y dependent variable, 
X independent variable, and 

a,h parameters to be estimated . 

blnX 
bX 

DETERMINATION OF TRANSFERABLE VARIABLES 

Explanatory variables included in trip frequency 
equations for nonmetropolitan areas are household 
automobile ownership and household size variables; 
for metropolitan areas, automobile ownership per 
capita, household size, and population variables. 
The transferability of these variables and the esti­
mated models are summarized in Table 2. Comparison 
of the estimated models for both types of urban 
areas reveals that trip frequency equations for 
metropolitan areas are more transferable than their 
nonmetropolitan counterparts. 

The type of urban activity concentration (core-
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Table 2. Significance of urban character influencing trip frequency. 

Activity Geo-
Explanatory Coeffi- Size Concen- graphic 

Trip Purpose Variable cient Class tration Cluster 

Nonmetropolitan area 
Work trips A' _d Intercept NA Gs 

Aci Slope NA Gs**, G~ 
H' Intercept NA K* 
H' Slope NA K** Gs• 
A.!.!!' 
H' Slope NA K*** 

Nonwork trips A' _d Intercept NA K*** 
H' 
~ci • .!:I' 

Slope NA K*** 

H' Slope NA K*** 
Metropolitan area 

Work trips Ai,,!'' 
Ai"!'', !:! 
H Slope G1** 

Nonwork trips A' P' -P'-
A[,,!'',!:! 

er• H Slope 

Notes: NA = not applicable. 
Total explanatory variables included in a model are underlined. 
Statistical signfficance is defined by• at the 10 percent level,*"' at the S percent 

Level, and • • * at the l percent level. 

concentrated versus multinucleated) appears to be a 
crucial element in determining the difference of 
both work and nonwork household trip frequency among 
nonmetropolitan areas, while its impact on the met­
ropolitan area trip frequency per capita is statis­
tically insignificant. The work household trip fre­
quency in nonmetropolitan areas of geographic 
cluster 5 {midwestern cities) is significantly dif­
ferent from that of other U.S. nonmetropolitan areas 
if the household trip frequency is explained either 
by household automobile ownership or by household 
size, respectively. On the other hand, the influ­
ence of activity concentration on metropolitan area 
trip frequency per capita is not significant. How­
ever, the relationship between trip frequency per 
capita and household size in metropolitan areas of 
geographic cluster 7 (young southwestern areas) is 
significantly different from that of the rest of 
U.S. metropolitan areas. 

Investigating the performance of each explanatory 
variable reveals that the relationship between 
household trip frequency and household size is not 
transferable between certain subgroups of nonmetro­
politan areas, i.e., nonmetropolitan areas of geo­
graphic cluster 5 versus the rest of U.S. nonmetro­
poli tan areas and the core-concentrated versus 
multinucleated nonmetropolitan areas. For metro­
politan areas, the trip frequency model with house­
hold size as the independent variable is not trans­
ferable between metropolitan areas of geographic 
cluster 7 and the rest of U.S. metropolitan areas. 
The relationship between trip frequency per capita 
and automobile ownership per capita is spatially 
transferable for metropolitan areas. Such a trans­
ferability is applicable to both trip purposes. 
However, the spatial transferability of the nonmet­
ropoli tan area household trip frequency model with 
household automobile ownership as the independent 
variable is only limited to work trips. 

Table 3 suggests that the spatial transferability 
of mode choice model is fairly high. Both percent­
age of travel by transit and automobile occupancy 
equations are independent of the influence of geo­
graphic factors, while the percentage of travel by 
automobile and the percentage of walking equations 
are influenced only by the urban character of geo­
graphic cluster 3 (large northeastern cities) and 
geographic cluster 7 (young southwestern cities), 
respectively. The most important urban size class 
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variable is urban size class 3 (cities with a popu­
lation of more than 750 000), which indicates the 
divergency of mode choice models between metropol­
itan areas with a population of more than 7 50 000 
and metropolitan areas of 7 50 000 people or less. 
The comparison between explanatory variables shows 
that automobile ownership per capita is a transfer­
able variable whereas the transferability of popula­
tion density, the supply of public transit service, 
and the income variables are limited to a certain 
degree. 

By using population, land area, and population 
density as variables to explain trip length, the 
transferability of the model is relatively low when 
compared with that of trip frequency and mode choice 
models. As indicated in Table 4, the slope of the 
population variable in trip duration for both trip 
purposes and for both types of urban areas is sig­
nificantly affected by the type of urban activity 
concentration. The slope of the population density 
variable differs among urban area groups as defined 
by urban size class, while the slope of the land 
area variable is significantly different between 
metropolitan areas of geographic cluster 4 {southern 
cities) and the rest of U.S. metropolitan areas. 
Because the transferability of explanatory variables 
is low, the estimated trip length models have less 
transferability than trip frequency and mode choice 
models. 

In general, the results of the above analyses 
indicate that the transferability of models depends 
on the type of demand measure and explanatory vari­
able as well as the number of explanatory variables 
included in the model. The combination of two or 
more explanatory variables in a model tends to en­
hance transferability. 

MODEL VERIFICATION 

Verification of the findings presented here can be 
accomplished by the traditional case-study approach 
or the validation of the developed models on which 
the preceding analysis was based. However, in order 
to exhaustively examine the validity of the findings 
the traditional approach would require 4x30 (120) 
case studies for nonmetropolitan areas and 6x90 
(540) case studies for metropolitan areas. Thus the 
second method of verification was selected in this 
study. The developed models were applied to real­
life situations. The validity of these models was 
evaluated by comparing the estimated and actual 
travel demand. The results of applications are 
presented below. Note that the selection of study 
areas was based on data availability, and the data 
for use in validation were collected either before 
1960 or after 1970. 

Demand Models for Nonmetropolitan Areas 

Trip Frequency Models 

The trip frequency equations contained in Table 5 
were applied to five U.S. nonmetropolitan areas to 
forecast the total person trips per dwelling unit. 
The forecast years (forward and backward) range from 
1947 to 1948 and from 1972 to 1973. The areas, 
which were selected in accordance with the diversity 
of urban character, include Nashaua, New Hampshire; 
Tri-cities, Virginia; Rapid City, South Dakota; 
Tucson, Arizona; and Pontiac, Michigan. The predic­
tion error ranges from 2 to 13.7 percent. The 
result of this application indicates that the pre­
dictive ability of trip frequency models is satis­
factory. 

Trip Length Models 

The equations for applying trip length models to 
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forecast the average trip duration for U.S. non­
metropolitan areas are shown in Table 5. The study 
areas are Tri-Cities; Beloit, Wisconsin; Hutchinson, 
Kansas; and Tallahassee, Florida. The forecast 
years range from 1971 to 1973. Comparison of the 
estimated and actual trip durations shows that the 
forecast error falls into a range of 3 .1-10. 4 per­
cent. The accuracy of these estimations is con­
sidered acceptable. 

Table 3. Significance of urban character influencing mode choice and 
automobile occupancy for metropolitan areas. 

Activity 
Explanatory Coeffi- Size Concen-

Transportation Mode Variable cient Class tration 

Percentage of auto- &p. l2p 
mobile travel Dp Slope 

Percentage of transit Ap. !?p. !'.:' 
travel Dp Slope sp• 

P' Slope sr• 
Percentage of walk Ap.Y 

v Slope Sj** 
Automobile occu- I' _f Slope Sj 
pancy 

Notes: Total explanatory variables included in a model are underlined. 

Geo-
graphic 
Cluster 

Gj** 

Gr* 

Statistical significance is defined by •at the 10 perceot level, •• at the 5 percent 
level, and • • • at the 1 percent leve l. 

Table 4. Significance of urban 
character influencing trip 

Explanatory Coeffi-
length. Trip Purpose Variable cient 

Nonmetropolitan area 
Work trips 

Trip duration P' Slope 
Travel distance f Slope 

Nonwork trips 
Trip duration P' Slope 
Travel distance f Slope 

Metropolitan area 
Work trips 

Trip duration ~', l1 l2p 
P' Slope 
B Slope 
Dp Slope 

Travel distance !'_:',11_ 
B Slope 

Nonwork trips 
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As to mode choice models, nonmetropolitan areas 
generally have a limited choice of travel modes. 
The data limitation and necessity precluded verifi­
cation of mode choice models for nonmetropolitan 
areas. 

Demand Models for Metropolitan Areas 

Trip Frequency Models 

Two trip frequency equations as shown in Table 6 
were applied to forecast the average work and non­
work person trips per capita for seven U.S. metro­
politan areas: Phoenix, Arizona; Wichita, Kansas; 
Huntington, West Virginia; Akron, Ohio; Anderson, 
Indiana; Denver, Colorado; and Duluth-Superior, Min­
nesota. The population of these metropolitan areas 
ranges from 90 000 (Anderson) to 1 220 000 (Phoe­
nix), while the forecast years range from 1970 to 
1976. The result indicates that the predictive 
ability of work trip frequency model is satisfac­
tory, with an error ranging from 0 to 9.3 percent. 
The prediction error for the nonwork person trip 
frequency equation is varied. It ranges from 0. 3 
percent in Wichita to 22.B percent in Denver, and to 
39.5 percent in Phoenix. The main cause of the 
large discrepancy between the estimated and actual 
is the dramatic change of automobile ownership. For 
example, the automobile ownership for Phoenix was 

Activity Geo-
Size Concen- graphic 
Class !ration Cluster 

NA K** G~, Gr* 
NA G~** 

NA K* G~**, Gl** 
NA Gr* 

K••• G7*' 
G~* ' 

Sf**, 
Sj** 

G4* 

Trip duration f',Jl , l2p Intercept Gr 

Table 5. Trip frequency and 
trip length models for non­
metropolitan areas. 

P' Slope K*** 
B Slope G4** 
Dp Slope Sf** K•• 

Travel distance f', !! 
P' Slope ST** 
B Slope sr· K••• G4*' 

Notes: NA== not applicable. 
Total explanatory variables included in a model are underlined . 
Statistical si:i;nlfkance is defined by *at the IO percent level, u at the S percent level, 

and • u at ll1ci I percent level. 

Factor Equation 

T:V,d =-0.702+ 1.026 A.j + l.285 H'-0.105 (KH') R2 = o.80l3 D.F. = 28 
[29.0]*** [33.3]*** [4.3]*** 

Work trip frequency 

T~,d = 1.835 + 1.080 A.j -0.251 (KH') R2 = 0.3728 D.F . = 29 
[10.2]*** [6.6]*** 

Nonwork trip frequency 

Lw,t = -30.671 + 3.506 P' + 0.181 (GsP') + 0.232 (G6P')-0.168 (kP') R2 = 0.7821 D.F. = 25 
[34.3]***[2.l]* [8.7]*** [4.2]** 

Work trip·duration 

L,,,1 = -26.180 + 2.896 P' - 0.131 (KP')+ 0.139 (GsP') + 0.248 (G6 P') R2 = 0.7618 D.F. = 25 
[27.2] ••• [3.0] * [7.6]*** [ 11.6] ••• 

Nonwork trip duration 

Notes: [] = F-value. 
• Significant at the 10 percent level. 
•• Significant at the 5 percent level. 
•• • Significant at the 1 percent level. 
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Table 6. Trip frequency, trip length, and mode choice models for metropolitan areas. 

Factor Equation 

Tw,p =0.708+0.939Ap -0.0316P'-0.0143(G7H) R2 =0.2915 D.F.= 110 
[24.7]*** [16.6]*** 13.0J*** 

Work trip frequency 

Tn,p = 3.001+4.300 Ap -0.193 P' -0.056 (G7H) R2 = 0.41 21 D.F. = 110 
[37.9]*** [ 41.1 J *** (3.0] ••• 

Nonwork trip frequency 

Lw,t = -17 .288 + 2.472 P' -0.183 (KP') - 0.153 (G7P') + 0.000 331 B + 0.0016 (G4B) - 0.0086 (S1 Dp) + 0.0038 (S3Dp) 
[11.71 ° 00 (9.8]*** [3.2]*** [3.4]*** [13.4]*** [6 .1'1 .. * [7 .9(•• • 

Work trip duration 

R2 = 0.7702 D.F. = 103 

Non work trip duration Ln,t = -4.729 + 2.268 G3 + 1.225 P' - 0.0227 (KP')+ 0.00 12 (G4B) + 0.0019 (KDp) - 0.0087 (S1 Dp) R2 = 0. 5729 D.F. = 104 
[2 .6] • * [5.4]*** [8.8]*** [8.9 ]*** [2.4]** [8.9]*** 

Percentage of automobile Ma= 45.536 + 95.773 A0 - 0.0044 (G3Dp) R2 = 0.4821 D.F. = 64 
travel [47.3]**' [9.3) • • 

Percentage of transit travel M1 = 31.143 - 64.377 A0 + 0.491 (S3D~) - 0.247 (S1 P') R2 = 0.5795 D.F. = 63 
[11.4]**" [12.8]*** [2.2]** 

Notes: [] = F-value. 
*Significant at the 10 percent level. 
*"' Significant at the 5 percent level. 
*"'* Significant at the l percent level. 

near 0 .6 cars per capita for the forecasting year, 
while the average automobile ownership of the 1960s 
sample was 0.37 cars per person with a range of 
0.25-0.45 cars per capita. The forecast error for 
total person trips falls into a range of 0. 4-31. 9 
percent. The accuracy of forecast is still compar­
able to that of zonal models. 

Trip Length Models 

Six U.S. metropolitan areas were selected to evalu­
ate the predictive ability of trip length models for 
metropolitan areas: Phoenix; Lima, Ohio; Wichita; 
Akron: Denver: and Duluth-Superior. Two models for 
this evaluation are contained in Table 6. The fore­
cast years range from 1970 to 1976. Comparison be­
tween the actual and estimated shows that both mod­
els perform fairly well. The discrepancy between 
them ranges from 2.2 to 10.0 percent for the work 
trip duration equation and from 2.0 to 12.0 percent 
for the nonwork trip duration model. The results 
indicate that the trip duration equations are capa­
ble of estimating trip duration for various metro­
politan areas with a diversity of demographic and 
geographic characteristics. 

Mode Choice Models 

The developed mode choice models as shown in Table 6 
were applied to forecast the modal-split between 
automobile driver, automobile passenger, and public 
transit for three U.S. metropolitan areas of Akron, 
Denver, and Duluth-Superior. The forecast year of 
the three applications is 1970. Comparison of the 
estimated and actual percent of each mode reveals 
that the developed models can predict the mode 
choice of the three metropolitan areas with a high 
degree of accuracy. The prediction errors are less 
than 5 percent. 

The results of these model verifications indicate 
that the predictive ability of the models developed 
in this study is comparable to specific models de­
veloped for particular areas as shown in zonal ex­
perience. They also imply that the relationships 
between travel demand and urban character as identi­
fied in this study are stable over time. 

CONCLUSIONS 

The purpose of this paper has been to call attention 
to the consideration of certain types of urban char­
acter when the transfer of travel demand models is 
desired. A generalized regression dummy variable 

approach was used to identify the effects of urban 
character on travel demand. The results provide 
some guidelines for determining model transfer­
ability. 

The effects of urban character on travel demand 
depend on the aspect of demand measure and the model 
specification. In accordance with the selected var­
iables this study has found no models (including 
trip frequency models) that are perfectly transfer­
able. However, with careful selection, the transfer 
of a model from one geographic areas to another is 
not impossible. 

The reliability of these findings was verified by 
testing the models that were developed for examining 
the relationships between urban character and travel 
demand measures. These models were applied to sev­
eral U.S. urban areas with satisfactory results. 
The findings of this study provide the following 
conclusions. 

1. For nonmetropoli tan area work trips, if the 
household trip frequency is explained by household 
automobile ownership, the model is not transferable 
between three urban classes: midwestern cities, 
mideastern cities, and the rest of U.S. cities. If 
the household trip frequency is explained by house­
hold size, both activity concentration (core-concen­
trated versus multinucleated) and geographic cluster 
(midwestern cities versus the rest of U.S. cities) 
become the dominant factors for determining model 
transferability. If both household automobile own­
ership and household size are included in the model, 
the model is not transferable between cities with 
different types of activity concentration. 

2. For nonmetropolitan areas, the nonwork trip 
frequency model composed of household automobile 
ownership and/or household size variables is signif­
icantly affected by the type of activity concen­
tration. 

3. For metropolitan areas, both work and nonwork 
trip frequency models composed of automobile owner­
ship per capita and household size are not transfer­
able between young southwestern cities and the rest 
of U.S. cities. 

4. For metropolitan area mode choice, if the 
percentage of automobile travel is explained by both 
automobile ownership per capita and population den­
sity, the model is not transferable between large 
northern cities and the rest of u.s. metropolitan 
areas. If the percentage of transit travel model is 
composed of automobile ownership per capita, popula­
tion density, and population, the model is not 
transferable among cities with population 50 000 to 
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99 999; 100 000 to 249 999; 250 000 to 750 000; and 
more than 7 50 000. If the percentage of walk is 
explained by both automobile ownership per capita 
and transit system supply, the model is not trans­
ferable between cities with a population equal to, 
less than, or more than 750 000 and between young 
southwestern cities and the rest of U.S. cities. If 
automobile occupancy is explained by the median 
family income the urban size becomes a significant 
dummy variable. 

5. For nonrnetropolitan areas, the trip length is 
explained by population and the model is not trans­
ferable between different types of activity concen­
tration and between geographic clusters of midwest­
ern cities, mideastern cities, and the rest of U.S. 
cities for trip duration, nor between mideastern 
cities and the rest of U.S. cities for travel dis­
tance. 

6. For metropolitan areas, the trip length is 
explained by population, land area, and population 
density. The model transferability is limited to 
urban groups defined by activity concentration, geo­
graphic cluster, and urban size class. 
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Goodness-of-Fit Measures and the Predictive 

Power of Discrete Choice Models 

CARLOS F. DAGANZO 

Although a number of goodness-of-fit measures for discrete choice models have 
been proposed and are widely in use, there have been few attempts at interpret­
ing their physical meaning at a practical level. This paper presents a family of 
goodness-of-fit measures, which contains currently used measures such as the 
pseudo-correlation coefficient and the percent right, and shows how its mem­
bers are related. More important, it is shown that one of these measures has an 
interpretation identical to the correlation coefficient of multiple regression in 
that it can be used to calculate the expected reduction in the root-mean-square 
prediction error afforded by a model. This goodness-of-fit measure, d, is 
uniquely defined for binary models, and can be approximated by an easy to cal­
culate consistent statistic, D. For models with more than two alternatives, the 
same can be done, but the measure depends on the alternative under considera­
tion. The d-measure usually takes values in between the commonly used nor­
malized percent right measure and the pseudo-correlation coefficient. 

A discrete choice model is a formula that relates 
some explanatory variables, X (sometimes called 
attributes), to the probability that an individual 
chooses one of a set of alternatives. The expres­
sion given below is the discrete choice model it­
self. It assumes that there are I alternatives, i, 
and is called the choice function: 

Pr[choose ilX] = P;(X), i = 0, I, ... , I - I (!) 

The closer the probabilities qiven by Equation 1 
are to either zero or one, the ~ore unequivocal will 
be the predictions of the model. A true model--it 
is assumed that Equation 1 does not contain specifi­
cation errors--that gives values close to either 
zero or one for most of the values of X that are 
likely to be encountered in practice is superior to 
a model that qives probabilities that barely depend 
on X. 

The distinction of qood and bad models can be 
captured by many measures of qoodness (of tit\ , and 
a purpose of this paper is to discuss these in a 
unified way. The multiple linear reqression analoq 
of these measures is the correlation coefficient. 
Ultimately, because a model is as good as its pre­
dictions, it will be shown that there is a goodness­
of-fit measure, d, which is related to prediction 
error reduction in the same way as the correlation 
coefficient of regression analysis. Thus, the model 
goodness can be readily interpreted by analysts used 
to workinq with reqression models. 

The a-measure will be related to other commonly 
used goodness-of-fit indicators such as the "percent 
predicted right" indicator of success tables and the 
pseudo-correlation coefficient of McFadden UJ. 
Hauser (2) provides a good review of goodness-of-fit 
measures-to which the reader is referred. 

ON MS PREDICTION ERRORS FOR REGRESSION MODELS 

The linear regression model is 

Y={3 · XT + e (2) 

where Y is a continuous dependent variable, and 
X are row vectors of constants and explanatory vari­
ables, and e is a zero mean random error term that 
is independent of X and of the error terms of other 
observations. 

The correlation coefficient, p, of a reqression 
model (see Equation 2\ can be expressed as follows: 

l -p2 = [var(e)]/[var(Y)] 

This is well known, and we also note that 

var(Y) = Ex[var(YIX)] + varx[E(YIX)] 

= [var(e)] +var [({3. XT)] 

(3) 

(4) 

In the regression terminology, var ( €) is called 
the unexplained variance and var(S • XT\ the 
explained variance. It should be noted that the ra­
tio of explained to total variance ( p 2 l can be in­
creased for the same real world phenomena by in­
creasing the spread in the sampling distribution of 
X. It cannot be increased, however, by increasinq 
the sample size. 

The correlation coefficient can also be related 
to an average reduction in prediction error that is 
afforded by the model if the sampling distribution 
of X coincides with the distribution of values for 
which predictions are desired. 

For a model without explanatory variables, the 
predictions will be constant, y0 • The mean squared 
prediction error for a model without explanatory 
variables, MSE, when the prediction is y0 is 

MSE = E(Y - Y0 )
2 = [var(Y)] + [E(Y) - y0 ] 2 

Because E(Y) is the value of y0 that minimizes the 
MSE, we assume that y0 = E(Yl and denote it by Y. 
Then, 

MSE = var(Y) (5) 

We note that the MSE for any given value of X, 
MSEx, is 

MSEx = E(Y - Y2 IX) 

= var(Y - y IX) + ({3 . xT - Y)2 

= var(YIX) + [{3 · (X - )(jT] 2 

= var(e) + [{3 · (X - XT)] 2 (6) 

That is, MSEx is made up of a random com~nent, 

var(E), and a systematic component, [S • (X - X)TJ 2 • 

As shown below, the systematic component is removed 
by the model with explanatory variables. Because 
Equation 5 is the average of Equation 6 over the 
distribution of X: MSE = Ex(MSExl· MSE will be 
called the average mean squared prediction error. 

For the model with explanatory variables, the 
mean squared prediction error for a given value of 
x, MSE~, can be shown to be independent of X. 
Since the model preaiction is a • xT, we may 
write 

(7) 

Thus, the average mean squared prediction error, 
MSEw, is also given by var(e). Clearly, then, 
the interpretation of the correlation coefficient, 
p, that is related to prediction errors is 

I - p 2 = average mean squared prediction error with model 

7 average mean squared prediction error without model 

and one can interpret ri-:7 as the after/ 
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Figure 1. Residual prediction error as a fraction, r0 , of the prediction error 
without a model for different values of the correlation coefficient, p, and the 
prediction group size, n. 
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before ratio of prediction errors that can be ex­
pected. This ratio will be noted by r. 

Instead of predicting the dependent variable for 
one observation, if one wants the average for a set 
of n observations with the same value of X, the pre­
diction errors will be reduced. A bar will be used 
over the MSE symbol to denote that Y is an average 
of n observations. The same arguments, as before, 
yields 

MSEw = MSEji' = (1/n)var(c) (8) 

This is the equivalent of Equation 7. For the model 
without explanatory variables, only the random com­
ponent of the prediction errors is diminished: 

MSEx = (1/n)var(c) + [(J · (X- 5()T] 2 (9) 

Of course, 

(IO) 

which is the equivalent of Equation 4. The before/ 
after prediction error ratio for an averaqe of n 
observations is defined as above: 

(11) 

This well-known expression is plotted on Figure 1 to 
clarify further the relationship between p and 
prediction errors. 

The next section contains a similar discussion 
for binary discrete choice models and introduces a 
measure, a, of the difference in prediction accuracy 
with and without a model. The rest of the paper 
attempts to relate the different goodness-of-fit 
measures that exist. 

THE d-MEASURE 

Let us consider binary discrete choice models. For 
these models P1(Xl = 1 - P0 (Xl, and the dependent 
variable is either zero or one. It is assumed, how­
ever, that Pi(X) is strictly between zero and 
one. For any given value of X, the expected value 
of the Bernoulli dependent variable, i, is P1CXl. 
With this in mind, we can repeat the steps noted in 
the earlier section on MS prediction errors for re­
gression models. 

It y0 is the predicted value of i for a model 
without explanatory variables, the MSE is 

The value of y0 that minimizes MSE is E ( i l , the 

Transportation Research Record 874 

fraction of the population of individuals for which 
predictions are desired that chooses alternative 1. 
This value will be called f1 and clearly var(il = 
f 1 ( 1 - f1). The trivial cases with f1 = 0 or 
f 1 = 1 will not be considered in this paper. This 
is consistent with the postulate that P 1 (X) is 
different from zero and one since there are no spec­
ification errors. From now on, we assume that 
y0 = f1. Thus, 

(12) 

which is the equivalent of Equation 5. 
Analogously, 

MSEx = E[(i- fi) 2 JX] = var(iJX) + [E(iJX) - f, ]2 
=P1(X)[l-P1(X)] + [P1(X)-fi] 2 

(13) 

As in Equation 6, P1(Xl [l - P1(X)] is a random 
component and [P1 (X) - f 1J 2 is a removable 
systematic component. The difference is that the 
random component is not fixed. Nevertheless, it is 
true that MSE = ExCMSExl, and M.SE can still be 
called legitimately the average mean squared predic-
tion error. 

For models with explanatory 
is no longer independent of x. 
prediction, and write 

MSE: = E {[i -y0 (X)]2J X} 

= var(iJX) + [E(iJX) - y0 (X)] 2 

=P1(X)[l -P1 (X)] + [P1 (X)-y0 (X)]2 

variables, M.SEjt 
Let y0 (Xl be the 

Since a prediction of v0 ( Xl = P1 ( Xl minimizes 
the mean squared error, it will be assumed to be 
that way from now on. Thus, 

MsE: = P1 (X)[l - P1 (X)] (14) 

which as with regression is the random component of 
MSEx• 

Unlike in regression, however, the average mean 
squared prediction error must be calculated. It is 

(15) 

The mean of the (removed) systematic component is 

which is similar to the expression of the systematic 
error of the regression model. 

By analogy to the correlation coefficient of re­
gression, let us define a measure of goodness-of­
fit, d, which will capture the difference that the 
model makes: 

(16a) 

Alternatively, 

d2 = varx [P1 (X)] /f1 (1 - f1) (16b) 

It is not difficult to realize that Figure 1 also 
applies to the d-measure. This interpretation is 
even more important for discrete choice models be­
cause (at least in most transportation applications) 
one is usually interested in predicting the behavior 
of groups of people with more than one person 
(n > 1). 

ESTIMATION OF d: THE D-STATISTIC 

The value of d can be approximated from the data used 
for estimation. Assume that a random, attribute-
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Figure 2. Quadratic, log­
arithmic, and bang-bang 
loss functions. 
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based sample is used and define P1 equals the mean 
estimated choi ce probabili t y of alternative l in the 

2 • f sample, and Sp equals t he sample variance o 
the estimated choice probability for a l ternative l 
(or o--they are the same) in the sample. 

Then, the following statistic, 

(1 7) 

intuitively approximates d for larqe samples. Ap­
pendix A proves that under reqularity conditions, D 
is consistent. 

To show that D£[0, l], consider the set of es­
timated alternative l choice probabilities for all 
the observations in the sample. The sample mean of 
these probabilities was denoted _P1 and the second 
sample moment will be denoted Pi. Because all the 
eroba~ilities are betwe~~ zero and one, we wav WE~te 
~l ~ PlL or subtracting Pi on both sides, Pi - Pi~ 
P1(l - P1l. Since the sides of this inequality are 
the numerator and denominator of Equation 17, it is 
clear that D < 1. That D > 0 is obvious. 

FRAMEWORK FOR COMPARISON 

Let us now investigate how the a-measure is related 
to other measures currently in use. To do this more 
easily, the measures will be derived from a common 
model. 

Let us assume that when an observation is taken, 
one experiences the following penalty for predicting 
y as the choice probability for alternative l 
[y£(0, l)] when the choice is actually i (i = 0, ll: 

L(y, i) = Q(I y-il), 

where t(•l is a real-valued, nondecreasinq loss 
function defined in the ( 0, l l interval, with tim 
t(xl = o. The following are three possibilities 
for t(x) i they are labeled A, B, and C since they 
will be used in the sequel: 

(Al Quadratic loss: t(xl 
(Bl Logarithmic loss: t(xl 
(Cl Bang-bang loss: t(x) 

x• • 
= -loq(l - xl 
0 if x < ( l/2l 
1/2 if x ( 1/2) 
l if x > ( 1/2). 

Fiqure 2 depicts these functions. (Because the 
scalinq of the loss functions does not affect the 
qoodness-of-f it measures that one derives, the 
scales in the figure are such that of1 t!x)dx = l in 
all three cases.) 

The goodness of a model can, therefore, be mea­
sured by comparing the expected loss for a i;iredic­
tion with and without the model. 
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If we do not have a model, a prediction, y = P1 1 

that minimizes the expected loss (if it exists) is 
found by 

min { E1 [£( IY - ii)]} = min {f1 Q(l - y) +(I - fi)Q(y)} (18) 
yE(O,l) YE(O,I) 

where, as before, f1 is the fraction of the popu­
lation choosing l. As is commonly done in Bayesian 
analysis, only loss functions for which P1 = f1 
are considered. Otherwise, there would be a reward 
for providing the wrong prediction, and this should 
be avoided. Loss functions for which Pi = f1 
will be called reqular. 

For regular loss functions that are differenti­
able in [O, (1/2)], the derivative, t' (x), of the 
loss function must satisfy the following (necessary) 
symmetry condition in (0, ll if the minimum of Equa­
tion 18 is to be equal to f1: 

[Q'(x)] /x = Q'(I - x)/1 - x, x "° (1 /2) (19) 

Cases A, B, and C all satisfy Equation 19 and are 
regular. 

The minimum of Equation 18 is unique only for 
cases A and B, however. 

A regular loss function that is nondecreasing and 
differentiable in [O, (1/2)) may have a discontinu­
ity at x = (1/2). (See case C.l 

For regular loss functions, the expected loss 
without a model, L, is calculated with a prediction, 
P1 = f1: 

(20) 

The next theorem establishes some important prop­
erties of 1jJ (x). 

Theorem 1: Assume t(x) is real-valued, non­
negative, nondecreasing, regular, differentiable in 
[O, (1/2)), and such that tim t(xl = o. Then, ljl(xl 

x+O 
is continuous, bounded, concave, reaches a maximum 
at x = 1/2, and is such that tim ljl(x) = O. 

x+O,l 
Proof: Because it is nonneqative, 

bounded and must satisfy 

i/J(x) .;; xQ(l/2) + (1 - x)Q(l/2) = Q(l/2) 

since by regularity 1li(x) 
tion 18. Thus, t(l/2) 
regular. Since 1li(l/2) 
a maximum at x = 1/2. 

is the g. t. b. 
bounds ljl(x) if 
c 1(1/ 2) I ljl(X) 

ljl(X) is 

of Equa-
1li(xl is 
reaches 

To prove that ~(x) is continuous, it suffices 
to show that ljl{xl + ljl(l/2) as x + (1/21. 

Because t(x) is regular and 1li(l/2) = 1(1/2), Equa­
tion 18 with f1 = (1/2) enables us to wrjte: 

i/J(l/2) = Q(l/2)" (1/2) {£[(1/2) + €] + Q[{l/2)- EJ} '\f€€ [0 ,(1/2) ] (21) 

For f1 = (1/2) + £ , Equation 18 yields 

i/J[(l/2) + €] = 1/2 {Q[(l/2)+ €] + Q[(l/2) - €]} - € {£[{1/2) + €] 

- Q [(1/2) - €) f" i/J(i/2), \f€€ [0, (1/2)] (22) 

The inequality stems from the fact that 1li(l/2l is 
a maximum of 1li (xl. It is clear from Equations 21 
and 22 that 

I i/J[(l/2)] - i/J[(i/2) + E] I < € { Q[(l /2) + €] - Q[(l/2) - €)}, VEE[O, (1/2)] 

and since the RHS goes to zero when E + 0, ljl[(l/2) + 
£] + ljl[(l/2)]. This establishes continuity. Concav­
ity is next. 

By using Equation 19 we see that ljl'(x) = t(l -
x) - t(x), xe[O, (1/2)]. Clearly, ljl'(x) is nonnega-
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Figure 3. ijl(x) for quad­
ratic, logarithmic, and 
bang·bang loss functions. 

Figure 4. Example of 
irregular loss function. 
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tive and nonincreasing, Thus, ljl(x) is concave and 
nondecreasing in (0, (1/2)]. 

Since ljl (x) is continuous at 1/2 it is also con­
tinuous, concave, and nondecreasing in [O, (1/2)]. 
The concavity of ljl(x) in (0, ll follows immedi­
ately from the above properties and the symmetry of 
ljl(x) around 1/2. (Alternatively, the 
reader can verify that {aljl(x) = ljl' (xl if x 1 (1/2), 
aljl(x) = O if x = (1/2)} is a subgradient of ljl(x). 

To show that tim ljl(x) = 0, it suffices to show 
x+O ,1 

that (1 - x)t(x) + 0 as x + i·. If t(x) is bounded 
in a neighborhood of 1, this is obvious. Otherwise, 
t(x) +mas x + i· and the limit is the same as 

Qim (1 - x)Q(x) = '.l'im_ (1 - x)2Q'(x) 
x-1- x-1 

because of l'Hopital's rule. ([t(x)J is differen­
tiable in [(1/2), l] because of the symmetry condi­
tion implied by regularity.) By using Equation 19, 

.QJ.rp_ (1 - x)2 Q' (x) = .Q};r. x(I - x)Q'(I - x) = 0 ·QED 

Figure 3 plots ljl(x) for cases A, B, and c, 
Note in particular that ljl(x) is continuous at 
x = ( 1/2) for the bang-bang case, Figure 4 illus­
trates that the theorem does not hold for loss func­
tions that are not reqular. 

The next step will be to calculate the expected 
prediction loss when we use the true model P1 ( X) 
and to compare that with ljl(f1 l to derive a qoodness­
of-fit measure that will capture the reduction in 
loss achieved by the model. 

Goodness-of-Fit Measures from Reqular Loss Function~ 

Given X, the probability that i = 1 is P1(X) and 
because the loss function is regular, the optimal 
prediction is P1(Xl. The expected loss condi­
tional on x, with the model is: 
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L;i' = E1{£ [1i-P1(X)l] IX} =P1(X)Q[l-P1(X)] +[l-P1 (X)]Q [P1(X)] 

=iii [P1 (X)] 

The unconditional expected loss with the model is 

(23) 

Note that Ex!P1(X)J = f1, 
It makes sense to define the goodness-of-fit mea­

sure, g, to be the fractional reduction in expected 
loss from the introduction of the model: 

g = 1 - (LW/L), 

But before one can do that, it is important to find 
which loss functions result in values of g that 
range from zero to one: for otherwise, the loss 
function would not be reasonable. 

Theorem 2: 
zero to one. 

If Theorem l holds, g ranges from 

~: First we show the Lwe[O, L). Note 
that (a) Lw > 0 because ljl(x) > 0, and (bl 
Lw 2 Ex{ljl(P1(XllT < ljl{Ex!P1!Xl]} = ljl(f1l = L because, 
by virtue of theorem 1, ljl(•J is concave. Thus, 
Lw£ (0, L]. 

That the limit values 0 and L can be reached is 
clear because if Pi ( X) is constant, it must equal 
f 1 , and L~ = Lw = L. On the other hand, if 
P1 ( Xl takes values differing from zero and one by 
less than except for a set of x-values with 
probability measure less than e, L~ + 0 as 
£ + O except for a set of x-values of measure zero. 
Thus, as £ + 0, Lw + 0, and g can be made ar­
bitrarily close to one by letting P1(•) resemble 
a simple function, 6(•), sufficiently well. 

It follows that any value of g in the (0, l] in­
terval can be attained with a convex combination of 
P1(X) = f1 and P1(X) = 6(X), QED 

The quadratic, logarithmic, and bang-bang losses 
yield three well-known goodness-of-fit measures. 
(A) Quadratic Loss, gq 
From Equations 12 and 20 and by using the quadratic 
loss formula in the latter, we see that L : MSE. 
Similarly, Equations 15 and 23 yield that 
Lw: MSEw. Thus, gq = d 2 , and the quadratic loss 
function generates the a-measure. 
(8) Logarithmic loss, g1 
Replacing the logarithmic loss function, t(xl, 
into Equations 20 and 23, we find that the expected 
loss, L, is 

and that Lw is 

If, as stated earlier, the distribution of X used 
represents its samplinq distribution (it is assumed 
that sampling is not choice-based), this expression 
is the negative expected value of log-likelihood 
function (for one observation) : 

..C (X) log P1(X) if i = 1 
log[l - P1(X)] if i 0, 

and 

Thus, Lw/L represents the reduction in log­
likelihood that is achieved by introduction of the 
model and g1 is the square of the pseudo-corre-



Transportation Research Record 874 

lation coefficient that is commonly used [l, 2]. 
(Cl Bang-bang loss, gb 

Repeating the steps with the new t(x), we find that 

and 

The quantity, min{P1(Xl, 1 - P1 (Xl }, represents 
the fraction of times that we will be wrong if for a 
choice-maker with attributes X we predict choice 1 
if P1(X) > 0.5 and choice 0 if P1(Xl < 0.5. 
Thus, LW represents the "% wrong" measure that is 
used with success tables, and gb is the reduction 
in the percentage of "wrong" predictions that is 
achieved by introduction of the model. 

It should be clear that other goodness-of-fit 
measures can be derived by proper redefinition of 
t (xl and that different measures may be called for 
depending on the application. The discussion at the 
outset of this paper and in the section on the 
a-measure argued in favor of the a-measure when the 
application aim is the prediction of market shares 
for large groups of individuals. 

The next subsection discusses the relative maqni­
tudes of Qq, gt, and qb and gives a formula 
relating qq and gt when they are small. 

RELATIONSHIP AMONG GOODNESS-OF-FIT MEASURES 

Recall that L is the heiqht of the curve on Figure 3 
(up to a factor of 2) when the abscissa is f 1 , and 
that Lw is the average of the height when the ab­
scissa varies with P1(X). This scaling does not 
affect the value gb that is ultimately obtained 
because gb depends on the ratio Lw/L. 

If the variation in the abscissa is small and 
f1 is substantially different from (1/2), the 
bang-bang function will yield L ~ Lw (and 
gb ~ 0) since the function is linear over the 
relevant range of P1 (X). On the other hand [and 
also for small var P 1 (Xl], if f 1 = (1/2), L is 1 
and LW = 1 - 2Ex[IP1(X) - (1/2) I]. Then, % = 
2Ex[IP1(X) - (1/2) 1]. This illustrates that tor the 
bang-bang function and for models with low variance 
for P1 (X) (as usually occurs), gb will be smaller 
when f1 is substantially different from (1/2). 

Since the quadratic and logarithmic losses yield 
smooth ljl(x) 's, we approximate Lw taking expecta­
tions on a two-term Taylor series expansion: 

Lw"' L+ iJ;"(f1 )varx[P1 (X)];varx[P1 (X)] ~ 0 

g"' I iJ;"(fi) I/ L varx (P1 (X)]; varx[P1 (X)] ~ 0 (24) 

Replacing in Equation 24 w" (f 1 l and L by the 
appropriate values we find 

(25) 

In this expression, Li is the logarithmic loss 
without model. It is clear from Figure 3 that 
Qq > Q2 if f1 is between (approx imately) 
0.2 and 0.8; and that gq < g 2 otherwise . If 
the probabilities are very unbalanced and 
varx[P1(Xl l is small: 0 ~ gb < gq <qt, but if f 1 ~ 
0.5, 9t < 9q < 9b· This is because if f 1 ~ 0.5, 
gb is comparable with (varx[P1 (X)]) (1/2) but qq and 
9t are comparable with varx[P 1 (Xl]. 

While Equation 25 allows us to approximate d from 
the output of most computer programs with 

d "' ~"' V 2[(1: -1:)/N] = Q (26) 

where £ is the background log-likelihood [3], £ is 
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the maximum log-likelihood, and N is the sample 
size, it is recommended to calculate d exactly by 
simple modification of the computer programs. 

Equation 26, thus, suggests that estimated log­
likelihood values can actually be used to assess 
prediction errors. It should be remembered, how­
ever, that the approximation is only valid when 
(varx[Pi(X)])(l/ 2 l is so small that value s of 
Pi (X) outside the range where the two-term Taylor 
series expansion of ljl (x) is a good approximation 
are rare. For this to happen, the a-measure must be 
small, which happens quite often in practice. 

EXAMPLE 

Assume that we have the following binary probit 
model: 

P1 = 1 - P2 = ~(8X), 

where ~ is the standard normal c.d.f., and e and 
X are scalars. Furthermore, assume that the sam­
pling distribution of X, F (x), is normal with zero 
mean and variance one. 

As the value of e increases, most of the indi­
viduals in the population face choices that can be 
predicted with less and less uncertainty because 
unless X = 0, Pl and P2 approach either zero or 
one as e + 00 • In the limit choices can be predicted 
deterministically and the a-measure is 1. 

This example illustrates this phenomenon. It 
will calculate d (0 l and show how it increases from 
zero to one as e goes from zero to "" It will 
also demonstrate that for small values of e, the 
approximation discussed in the preceding section 
holds. 

Let us first calculate 
X) l. Letting <t> (x) denote 
p.d.f., we write 

r, = L: <I>(Ox)</J(x)dx = L: <I>(-Ox)</J(x)dx 

= L: [I - <!>(Ox)] </J(x)dx = l - J_: <I>(Ox)</J(x)dx 

Also, 

varx [P; (0, X)] =I:,' <1> 2 (Ox)</J(x)dx - fr 
Consequently, 

d(O) = [ 4 f_: <1>2 (0x)¢(x)dx - I] (l/
2

) 

and varx [Pi ( e, 
standard normal 

(27) 

It is clear that if 8 = 0, d = 0 and that iim d (el 
1. Figure 5 plots d(el. 8+00 

The approximation given by Equation 26 can also 
be calculated: 

(l/N) £ = 2 x 0.5 log 0.5 = - 0.693 

(1/N) £ = 2 J_: <!>(Ox) [log <!>(Ox)] ¢(x)dx 

d(O) ~ [4 L: cJ>(Ox) [log cJ>(Bx)] </J(x)dx + 1.386] (l/
2

) 

Figure 5 
pected, 
values. 

also plots this equation, which, as ex­
tracks well low-to-moderate correlation 

CONCLUSION AND EXTENSIONS 

The a-measure and the D-statistic have been shown to 
be the binary model equivalent of the correlation 
coefficient of regression in the sense that they can 
be related to predictive RMS error in the same way. 
It was shown that D was a consistent estimator for d 
and that for the typical low-correlation models en-
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Figure 5. D-measure and its log-likelihood approximation . 

.---------------- LOGLll<ELIHOOO 
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2 
8 

countered in social sciences, d is in between the 
two other measures of goodness-of-fit that are com­
monly used: the likelihood ratio goodness-of-fit 
measure, g 11., and the success table measure of 
goodness-of-fit, gb• 

If, as is usually the case, the goodness-of-fit 
measures are not high, it is possible to obtain an 
approximation for d that is based on the log-likeli­
hood function, Equation 26. For models with low 
correlation, the measure R. itself may be regarded 
as a goodness-of-fit measure but care must be exer­
cised because II. may exceed one. 

Equation 26 is also useful because under the usual 
regularity conditions, l (the estimator for R. from 
the sample log-likelihood! is such that (Nl 2 l is x• 
distributed with as many degrees of freedom as pa­
rameters. Of course, D has approximately the same 
distribution if small. 

For models with more than two alternatives (i = 
O,l, ••. ,I-1), a prediction goodness-of-fit measure 
can be developed in the same way. In this instance, 
however, the goodness-of-fit measure is not the same 
for all the alternatives because varx[Pi(X)] is 
not the same for all. Consideration shows that the 
measure for the ith alternative, di, is 

di= l{varx [Pi(Xl]} / !fi(l - fill, 

and that a D-statistic can be derived in the same 
way. The interpretation in terms of prediction RMS 
error reduction (Fiqure ll is unchanqed. 
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Appendix 

CONSISTENCY OF THE D-STATISTIC 

Let us assume that a random, attribute-based sam­
pling process was used to qather a sample for esti­
mation of a b inary choice model. We denote by 
x<nl the attribute vector of t he nth observation, 
by i (nl, the choice of said observation and by N 
the number of observations. We assume that there is 
a set of parameters, e, that are entered in the 
specification of the model: 

0 < p1 =G(O.,X)=1-p 0 < 1 (Al) 

and that for a true (unknown), B0 , G(B0 , X) 
coincides with P1(X). 

Let Fx (xl denote the sampling distribution of X 
and write a 2 (0l for the variance of G(B, Xl: 
a 2 ( e0 l represents the variance of the choice 
probabilities in the numerator of Equation 16b. We 
assume that some regularity conditions to make the 
MLE of B0 , §, consistent hold, and in particular 
that 

(A) G(e, X) 
function 

is 
of 

a continuously 
a0 in a o0 

differentiable 
neighborhood 

of iti 
(Bl The sample space of x is bounded, and 
(C) 0 < G(B, Xl < 1. 

These three properties will be used in the consis­
tency proo~ of D. 

Let SN [ ••• J denote the sample variance 
function of the N elements in brackets. Then, Prop­
erty (Cl ensures that a 2 (B0 l is finite and the 
consistency of the sample variance statistic enables 
us to we ite: 

(A2) 

where 2 denotes the limit in probability of the se­
quence in braces as N + ~. Note that the x!nl 
are i.i.d. drawings from Fx(xl. 

Because ~ is consistent and because of Equation 
A2, we can write for arbitrarily small values of 
£•, c", cS', and c5": 

Pr{IS~[G(00 ,X(l)), ... ,G(0 0 ,x<nl)] -a2(00 )I .;; E'};. I 

- Ii ' ; V n";. N'(E', Ii') 

and 

Pr [ 11 ecx <1l . . . x<nl ; i(l ) . .. i("l)- Oa II .;; e" l ., I 

- Ii" ; 'efn";. N"(E",o" ) 

(A3) 

(A4) 

In these two expressions, the r a ndom variab1es 
(X(l) •.. x<n» are the same, N' ( E ' , o'l and 

N" ( £", o"l represent finite positive numbers 
that depend on (£', o'l and (£", o"l, II • II repre­
sents the Euclidean norm, and~( ••• ) is the function 
that relates the data, (x<ll ••. x(nli i!ll ... i<nl1, 
to the MLE of e0 • 

Before proceeding, we need the following prelimi­
nary result: 

Lemma l 

Under the regularity conditions previously stated, 
we can write for sufficiently small but positive 
values of (€". o"l: 

Pr (Is~ { G[El(X(I) .•. x<nl ; i(I) ... j(nl), x<O] , ... ' 

G[El(X(l) ... x<nl; i(1) . .. i(nl), x<nl]} - S~ [G(Oo, x<l))' . . . ' 

G(0 0 ,xCnl)] I.;; kE" ) ;. I -Ii"; 'v'n" > N"(E",li") (AS) 
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for a positive, finite constant, k, which is inde­
pendent of n. 

The lemma states in words that the difference 
between the estimated and true sample variances con­
verges uniformly in probability to zero as the sam­
ple size increases. This lemma in conjunction with 
(A3) will be used to show that the estimated sample 
variance converges in probability to cr 2 (00 ) 

(lemma 2). First we prove this lemma. 
Proof: Let us rewrite for convenience the esti-
--- •2 

mated sample variance as Sn and the sample variance 
for a given value of e as S~(01X). Because of prop­
erty (A), S~(01X) is a continuously differentiable 
function of e with derivatives: 

[oS~(81X)]/[a8i] fe=eo =iii (2/n){G(8 0 , X(i))- j, G(80 , x<m)) 

-;- n]} [aG(8, x<il)!a8i] [
8

_
0 - 0 

Because all of the elements in this sum are continu­
ous for all values of X = (x(l) , ••• ,x(n)), and 
by property (B) the X (i) values that can possibly 
occur are bounded, the addends are bounded by a num­
ber, Mj/n. Thus, the partial derivatives of 
S~(01X) are uniformly bounded and for any 
e in a small neighborhood of e0 we can write: 

for some 
of this 

e" ~ o~). 

Lemma 2 

Proof: 
( €, 0) : 

o~ > O and finite k > 0. The combination 
fact and (A4) proves the lemma (as long as 

We now show that {S~} f cr 2 (0 0 l. 

We shall prove that for any positive 

(A6) 

where N(e, o) is a finite positive integer that 
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depends on e and o. 
can write: 

Combining (A3) and (AS) we 

Pr[IS~ - a2 (8o) I.; e'+ ke"] 

,, Pr[IS~ -S~(80 IX) I.; ke" and IS~(OolX)- a2 (8
0

) I.; e'] 

;;, 1-(li'+li"),ifn;;, max[N'(e',li');N"(e",li")] (A7) 

It is now clear that Equation A6 follows from 
Equation A7 with o' = o" = o/2, e' = ke" = e/2, and 
N(e, o) = max{N'[(e/2), (o/2l]; N"[(E/2kl, (o/2ll }. 

Lemma 3 

Identical arguments show that the sample mean Gn: 

converges in probability to f1 = Ex!P1(X)J 

Theorem: The D-statistic is a consistent esti­
mator for d. 

Proof: From the definition, 

(A8) 

where the function f(.,.) is continuous if f 1 e(O, 1). 
Regularity condition (C) implies that f1 = Ex[G(e0 , 

X)] is in the open unit interval and therefore con­
firms the continuity off(.,.). 

This continuity implies that if 

cr 2 (0 0 ) are replaced by consistent estimators, 

s~. as the arguments off(.,.), the result: 

is a consistent estimator. 

Publication of this paper sponsored by Committee on Traveler Behavior and 
Values. 

Evaluation of Usefulness of Two Standard 

Goodness-of-Fit Indicators for Comparing 
Non-Nested Random Utility Models 

JOEL L. HOROWITZ 

The likelihood ratio index and the percentage of correctly predicted choices in 
the estimation sample are two well-known goodness-of-fit indicators for logit 
and other random utility models. They are used frequently for comparing non­
nested models (i.e., models such that neither can be obtained from the other 
by choosing suitable values of the estimated parameters) to determine which 
best explains the available data. The results of an investigation of the abilities 
of the two statistics to distinguish between correct and incorrect models in 
such comparisons are reported. It is shown that with estimation data sets of 
practical size, a slightly modified form of the standard likelihood ratio index 
has good ability to distinguish between correct and incorrect models when 
the root-mean-square (RMS) difference between the two models' choice 
probabilities exceeds 10 to 15 percent. In addition, very small differences 
between the values of two models' modified likelihood ratio indices indicate 

with high probability that the model with the lower index value is incor-
rect. The percent-correctly-predicted statistic is considerably less useful for 
comparing models. It can fail to distinguish between correct and incorrect 
models whose choice probabilities differ by at least 25 percent (RMS), even 
with arbitrarily large estimation samples. Moreover, there are no readily avail­
able criteria for determining how large the differences between the values of 
two models' percent-correctly-predicted statistics must be to justify a conclu­
sion that the model with the lower value likely is incorrect. Several travel­
related examples are given. 

Travel decisions frequently entail choices among 
discrete sets of alternatives, such as frequencies, 
destinations, modes, and routes of travel, and it 
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often is necessary in travel behavior research and 
practical transportation studies to be able to 
predict the outcomes of such choices. In recent 
years, multinomial legit and multinomial probit 
models have begun receiving extensive use for this 
purpose. These models are examples of a broader 
class of models, called random utility models, that 
are derived from the behavioral principle of utility 
maximization. In models of this class, it is as­
sumed that an individual's preferences among the 
available alternatives can be described with a 
utility function and that the individual selects the 
alternative with the greatest utility. The utility 
of an alternative is represented as the sum of a 
deterministic and a random component. The determi­
nistic component accounts for systematic effects of 
observed factors that influence choice whereas the 
random component accounts for the effects of unob­
served factors. The random utility model then 
predicts the probability that a randomly selected 
individual with given values of the observed factors 
will choose a particular alternative (i.e., the 
probability that the utility of the particular 
alternative exceeds the utili t ies of all other 
alternatives). [See Domencich and McFadden <l l and 
Hensher and Johnson (~) for detailed discussions of 
the behavioral foundations of random utility models.] 

A legit, probit, or other random utility model 
constitutes a functional relation between the ob­
served factors (or explanatory variables) and the 
probabilities that an individual chooses the various 
alternatives. These relations usually are not known 
a priori and must be estimated by fitting a model to 
observations of choices and the explanatory var i­
ables. The fitting process usually takes place in 
two steps. [See McFadden (1_) and Daganzo <il for 
detailed discussions of the fitting process.] In 
the first step, the functional form of the relation 
between the explanatory variables and the choice 
probabilities is specified up to a finite set of 
constant parameters. For example, it might be 
specified that a mode choice model has the multi­
nomial legit functional form with a utility function 
that is a linear combination of a certain set of 
travel time and cost variables. The coefficients of 
these variables in the linear utility function would 
then constitute the set of constant parameters. In 
the second step of the fitting process, the values 
of the parameters are estimated statistically from 
the observations. The method of maximum likelihood 
usually is used for this purpose. The statistical 
theory on which this two-step process is based 
assumes that the first step is carried out without 
error. If this assumption is true and certain mild 
regularity conditions are satisfied, then the maxi­
mum likelihood estimates of the parameter values 
have a variety of desirable statistical properties. 
Most importantly, the estimated parameter values and 
the values of the choice probabilities computed from 
the estimated parameters approach the true values as 
the size of the estimation data set increases toward 
infinity. 

In practice, of course, the correct functional 
forms of the relations between the choice probabil­
ities and the explanatory variables are not known a 
priori, even up to a set of constant parameters. 
Not surprisingly, use of an incorrect functional 
form in the second estimation step can lead to 
models that produce highly erroneous forecasts of 
travel behavior (2_-2l. Consequently, the develop­
ment of empirical random utility models, like the 
development of most other statistically based 
models, usually includes comparing several models 
with different functional forms in an effort to 
distinguish forms that are likely incorrect from 
ones that may be correct. 

Transportation Research Record 874 

This paper is concerned with comparisons that 
involve two models. Several procedures are avail­
able for carrying out such pairwise comparisons, 
depending on whether the models being compared are 
nested or non-nested. Two models are nested if one 
model can be obtained from the other by assigning 
appropriate values to the latter model's parameters. 
In non-nested models, this cannot be done: given the 
values of either model's parameters, it is not 
possible to choose values of the other model's 
parameters so that the two models become identical. 
(Examples of nested and non-nested models are given 
in the following section of this paper.) Compari­
sons of nested models usually are carried out by 
using likelihood ratio or t-tests (_l). The statis­
tical properties of these tests are well known, and 
numerical experiments with the tests have indicated 
that they have good ability to distinguish between 
correct and seriously erroneous random utility 
models in the nested case (6,7). 

Comparisons of non-nested m odels usually are made 
with so-called goodness-of-fit statistics, such as 
the likelihood ratio index and the percentage of 
choices correctly predicted if each individual in 
the estimation data set is assumed to choose the 
alternative with the highest probability in the 
estimated model. The basis for using these statis­
tics for comparing models is largely intuitive. 
Plausibly, it is assumed that a correct model is 
likely to have larger values of these statistics 
than are incorrect models. Thus, models with rela­
tively large values of these statistics are presumed 
more likely to be correct (or to be less erroneous) 
than models with relatively low values of these 
statistics. However, there has been no systematic 
investigation of the abilities of these statistics 
to distinguish reliably between correct and incor­
rect models. This paper reports the results of such 
an investigation. It is shown that with estimation 
data sets of practical size, a slightly modified 
form of the standard likelihood ratio index statis­
tic has good ability to distinguish between correct 
and incorrect models when the root-mean-square (RMS) 
difference between the choice probabilities of the 
two models exceeds 10-15 percent. The percent-cor­
rectly-predicted statistic is considerably less 
reliable. It can fail to distinguish between models 
whose choice probabilities differ by at least 25 
percent (RMS), even if the size of the estimation 
data set is allowed to increase without bound. 

EXAMPLES OF NESTED AND NON-NESTED MODELS 

The results presented in this paper apply only to 
comparisons of non-nested models. Serious errors 
can result from attempting to apply the results in 
the nested case. Therefore, it is important to 
understand the distinction between nested and non­
nested models. This distinction is illustrated by 
the following examples. [See Horowitz (_!!) for a 
precise mathematical definition of non-nestedness.J 

Example 1 (Nested Models) 

Suppose that two legit models are being considered 
for possible use in forecasting mode choice. For 
simplicity, assume that there are only two modes, 
automobile and transit. The two models differ in 
the specifications of their utility functions. (In 
the following discussion the term "utility function" 
will refer to the deterministic component unless 
otherwise noted.) The utility function for mode 
(i =automobile or transit) in model 1 is 

U; = a 1 (Time;)+ ~ 1 (Cost;) (I) 

where 
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ui 
Timei 
Costi 

"l and 81 

utility of mode i, 
travel time of mode i, 
travel cost of mode i, and 
constant parameters. 

In model 2 the utility function is 

(2) 

In either model, the probability of choosing mode i 
is given by the binomial logit function 

Pi = exp(Ui)/ [exp(U1) + exp(U2)] (3) 

where Pi is the choice probability. Then model 2 
is nested with model 1, since model 2 can be ob­
tained from model l by setting "l = "2 and 
81 = 0. 

Example 2 (Non-Nested Models) 

Suppose that in the same mode choice study a third 
model (model 3) is being considered and that its 
utility function for mode i is 

(4) 

As in models l and 2, the choice probabilities in 
model 3 are related to the utility function by 
Equation 3. Then models l and 3 and models 2 and 3 
form non-nested pairs. Apart from the degenerate 
case in which all of the parameter values are zero, 
it is not possible to choose parameter values for 
models l and 3 so that the two models coincide, nor 
is it possible to choose parameter values for models 
2 and 3 so that those models coincide. 

CRITERIA FOR EVALUATING COMPARISON PROCEDURES 

In this paper the likelihood ratio index and per­
cent-correctly-predicted goodness-of-fit statistics 
will be evaluated according to their abilities to 
distinguish between correctly and incorrectly speci­
fied models. Two factors must be taken into account 
in making these evaluations: the abilities of the 
statistics to distinguish between correct and incor­
rect models in the absence of random sampling error, 
and the effects of random sampling error on the 
comparisons. Random sampling error arises because 
different individuals with the same observable 
character is tics (i.e., the same values of a model's 
explanatory variables) and the same sets of alter~a­
tives may make different choices, owing to the 
effects of unobserved factors (i.e., the random 
component of the utility function). As a result, 
the estimated parameter values, choice probabili­
ties, and goodness-of-fit statistics for a model 
tend to have different values in different finite 
samples of individuals, even if the model involved 
is correctly specified. These random fluctuations 
in estimation results can cause a goodness-of-fit 
statistic for an incorrectly specified model to be 
more favorable than that for a correctly specified 
model. Random sampling error, therefore, consti­
tutes a "noise factor" that impairs the ability of 
test statistics to distinguish correct models from 
incorrect ones. 

Random sampling error always can be made insig­
nificantly small by making the estimation sample for 
a model sufficiently large. Moreover, if the esti­
mation sample is large enough to make the effects of 
sampling error insignificant, then it always is 
possible to determine unambiguously if a model is 
correct by comparing the values of its choice prob­
abilities for each set of values of the explanatory 
variables with the observed choices of individuals 
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with the same values of the explanatory variables. A 
model whose choice probabilities for the available 
alternatives differ from the observed proportions of 
individuals choosing these alternatives is incor­
rect. Accordingly, it is reasonable to demand of 
comparison statistics, such as the goodness-of-fit 
statistics discussed here, that they be capable of 
distinguishing without error between correct and 
incorrect models in the absence of random sampling 
error. In formal statistical terms, this property 
of a test is called consistency. Statistical test 
procedures that are not consistent usually are 
considered to be unacceptable. 

In practice, of course, it usually is not possi­
ble to work with samples sufficiently large to 
eliminate the effects of random sampling error. As 
has already been noted, random sampling error can 
cause comparison procedures to give misleading 
results (e.g., to cause an incorrectly specified 
model to have a more favorable goodness-of-fit 
statistic than a correctly specified one), even if 
the procedures always would give correct results in 
samples large enough to eliminate sampling error. In 
general, it is not possible to guarantee that a 
comparison procedure always will distinguish cor­
rectly between correct and incorrect models when 
sampling error is present, particularly if the 
choice probabilities of the two models would not be 
greatly different in the absence of sampling error. 
However, to be useful, a comparison procedure should 
be capable of making the distinction correctly most 
of the time (i.e., with high probability) if the two 
models would have significantly different choice 
probabilities in the absence of sampling error. 

The foregoing discussion suggests that to be 
useful, a test procedure should have the following 
two characteristics: 

1. It should be consistent. In other words, in 
the absence of random sampling error it should 
always distinguish correctly between correctly and 
incorrectly specified models. 

2. It should not be highly sensitive to random 
sampling error. In other words, in samples of 
practical size (typically 100-1000 observations) the 
procedure should have a high probability of reject­
ing an incorrect model in a comparison with a cor­
rect one if the two models would yield substantially 
different values of the choice probabilities in the 
absence of sampling error. 

It also is desirable that the value of the test 
statistic associated with a comparison procedure be 
easy to compute. However, the two procedures dis­
cussed in this paper have roughly equal computa­
tional requirements so that computational considera­
tions do not provide a basis for a comparative 
evaluation of the procedures. 

In the following two sections, the likelihood­
ratio-index and percent-correctly-predicted statis­
tics will be evaluated according to the foregoing 
two criteria. 

LIKELIHOOD RATIO INDEX 

The most commonly used form of the likelihood ratio 
index, and the only form that will be discussed 
here, is defined as follows. [See Daganzo (4) and 
Tardiff (9) for definitions and discussions of- other 
forms.) Let L denote the value of a model's log­
likelihood function when the values of the model's 
parameters equal their maximum likelihood estimates. 
Let L0 denote the value of the log-likelihood 
function of a model that assigns equal values to the 
choice probabilities of all alternatives, regardless 
of the values of the explanatory variables. Then 
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the likelihood ratio index, p 2 , is defined as 

p 2 = 1 - L/L0 (5) 

If there are N individuals in the estimation sample 
and each individual chooses among J alternatives, 
then L0 is given by 

L0 = -N log J (6) 

(Throughout this paper it will be assumed that all 
individuals face the same number of alternatives. 
Allowing different individuals to face different 
numbers of alternatives would add complexity to the 
presentation without changing the results signifi­
cantly.) 

The likelihood ratio index is a goodness-of-fit 
statistic for random utility models that is similar 
in many respects to the coefficient of multiple 
determination, R2 , in regression models. The 
larger the value of p 2 for a model, the better the 
model fits the given data. Therefore, two non­
nested models P and Q can be compared by comparing 
the likelihood ratio indices pp 2 a nd PQ' 
for the t wo models . If Pp' PQ~ > ~. 
this suggests that model P is s uperior to model Q, 
whereas pp 2 PQ' < 0 suggests that 
model Q is superior. 

Suppose that model P is correct and model Q is 
incorrect. Then, to evaluate the likelihood ratio 
index according to the criteria given in the previ­
ous section it is necessary to determine (a) if 
pp 2 PQ 2 > 0, always, when the sample 
size N is large enough to make the effects of random 
sampling error insignificant and (b) if Pp 2 

PQ 2 > 0 is a high probability outcome in 
samples of practical size if models P and Q would 
yield substantially different values of the choice 
probabilities in the absence of random sampling 
error. These determinations can be made if the 
probability distribution of pp 2 PQ' is 
known. 

The following notation will be used in describing 
the probability distribution of pp 2 

PQ 2 and in the subsequent discussion. Let 
P (i ,X) denote the true probability that an individ­
ual chooses alternative i when the explanatory 
variables have the value x. (Here, X denotes the 
entire set of values of all of the explanatory 
variables of both models. If some elements of X are 
not variables of one of the models, then the choice 
probabilities of this model are independent of' the 
values of these elements. l Let Q(i,X) denote the 
choice probability for alternative i that model Q 
would yield when the explanatory variables have the 
value X if there were no random sampling error. 
P(i,X) and Q(i;XJ, respectively, are the large-sam­
ple limits (i.e., the limits as the sample size 
approaches infinity) of the maximum likelihood 
estimates of the choice probabilities of models P 
and Q. Let Px(X) denote the proportion of indi­
viduals in the population being studied for wh'om the 
values of the explanatory variables equal x. Let 
kp and k0 , respectively, denote the numbers of 
estimated parameters in models P and Q. As before, 
let N denote the number of individuals in the esti­
mation data set, and let J denote the number of 
alternatives available to each individual. Finally 
define ll 2 by 

6.2 =. ~ { [P(i, X) - Q(i, X)) /P(i, X)}2 P(i, X)px(X) 
1,X 

(7) 

t; 2 is the weighted mean square fractional error in 
the choice probabilities that would result from 
using the incorrect probabilities Q(i,Xl in place of 
the correct probabilities P (i ,XJ. The weight for 
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given i and X values equals the proportion of the 
population that has explanatory variable values X 
and selects alternative i. 

Note that o 2 always exceeds zero unless Q ( i ,X) 
P ( i ,X) for all i and x. In other words, ll 2 

exceeds zero unless model Q is identical to model P 
and, therefore, is correctly specified. 

The probability distribution 
PQ 2 is derived in Horowitz (8). 

of P.p 2 

rt ls shown 
approximately tnere that pp 2 PQ1 has 

the normal distribution with the 
(µ) and variance (a 2 l: 

following mean 

µ = 6.2 /2 log J + (kp - k0 )/2N log J 

a2 = 6.2 /N (log J)2 

(8) 

(9) 

The accuracy of the approximation increases as the 
sample size, N, increases. It follows from Equa-
tions 8 and 9 that pp 2 PQ 2 exceeds 
zero, thereby indicating that the correct model is 
superior to the incorrect one, with the following 
probability: 

(JO) 

where <I> is the cumulative standard normal distri­
bution function. 

It is easy to see from Equation 10 that the 
likelihood ratio index satisfies the consistency 
criterion given in the previous section. As N 
approaches infinity, Pr(pp 2 PQ 2 > O) 
approaches 1. Since the limit of an infinite sample 
corresponds to eliminating random sampling error, 
this result implies that in the absence of sampling 
error, pp 2 always exceeds p0

2 • Thus, if 
there is no sampling error, the likelihood ratio 
index always indicates that the correct model is 
superior to the incorrect one. 

It also can be seen from Equations 8-10 that with 
finite samples, adding parameters to an incorrect 
model (i.e., increasing k~l tends to decrease the 
value of pp 2 - PQ and of Pr(pp 2 

PQ 2 > 0), even if the variables associated 
with the added parameters are incorrectly specified 
or irrelevant to the choices being studied. This 
clearly is an undesirable characteristic of the 
likelihood ratio index because it means that in 
finite samples the index tends to favor models with 
large numbers of parameters, regardless of whether 
these models are correct. However, this character­
istic can be removed by making a simple modification 
in the definition of the likelihood ratio index. 
Define p 2 , the modified likelihood ratio index, 
for a model with k estimated parameters by 

p 2 
= p2 

- k/2N log J 

or, equivalently, 

p 2 = l - (L - k/2)/N log J 

The modified statistic p 2 is used in 
as p 2 for comparing two models. 
PQ' > 0 indicates t hat model P 
to model Q, and Pp' PQ 2 

cates that model Q is superior. 

(11) 

(12) 

the same way 
Thus, pp 2 

is superior 
< 0 indi-

Equations 10 and ll imply that the probability 
that pp 2 - PQ' exceeds zero is given by 

(13) 

It can be seen from Equation 13 that p 2 is consis­
tent and, in contrast to the unmodified likelihood 
ratio index, is not biased in favor of models with 
large numbers of parameters. This makes p 2 more 
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Table 1. Probabilities that modified likelihood ratio index selects correct 
model (P) in comparison with incorrect model (Q). 

N /',. Pr(pp2 
- ilo2 > O) N /',. Pr(p P2 - PQ2 > O) 

100 0.05 0.60 250 0.15 0.88 
0.10 0.69 0.20 0.94 
0.15 0.77 500 0.05 0.71 
0.20 0.84 0.10 0.87 

250 0.05 0.66 0.15 0.95 
0.10 0.79 0.20 0.99 

Notes: N =size of the estimation data set. 
6 =RMS difference between the large sample limiting values of the choice proba­

bilities of models P and Q. 
Pr(/) p2 - P Q2 > 0) =probability that the correct model is selected. 

usetul than p 2 tor comparing models. Accordingly, 
only the modified index p 2 will be used in the 
remainder of this paper. 

The performance of p 2 according to the second 
criterion given in the previous section can be 
assessed by computing Pr(pp 2 PQ 2 > 
0) for various values of N and /'>. Table 1 shows 
the results of such a computation. It can be seen 
that if the sample size exceeds roughly 250, a 
comparison of two models using µ 2 has a prob­
ability of at least 0 .BO of selecting the correct 
model when the RMS percentage difference between the 
two models' choice probabilities (i.e., 100/'>l 
exceeds 10 to 15 percent. 

The probability distribution of pp' 
PQ 2 can be used to derive a simple upper bound 
on the probability that p 2 for an incorrect model 
(Q) exceeds p 2 for a correct model (Pl by an 
arbitrary amount z. The bound is [see Horowitz (~)] 

(14) 

This inequality implies that in moderate size sam­
ples, very small differences between the p 2 values 
of two models indicate with high probability that 
the model with the lower p 2 value is incorrect. 
For example, if N;;, 250, z" 0.01, and J "2, 
inequality (15) yields 

(15) 

In other words, if N ;;, 250 and the p 2 values of 
two models differ by 0 .01 or more, the model with 
the lower p 2 value almost certainly is incorrect. 

PERCENT-CORRECfLY-PREDICfED STATISTIC 

The percent-correctly-predicted statistic for a 
model is obtained by "predicting" that each individ­
ual in the model's estimation data set chooses the 
alternative that has the highest choice probability 
according to the estimated model. The predictions 
are compared with the observed choices of the indi­
viduals in the estimation data set, and the percent­
age of correct predictions (i.e., the percentage of 
individuals for which the predicted and observed 
choices coincide) is computed. The result yields 
the percent-correctly-predicted statistic. In this 
section an example is presented in which the per­
cent-correctly-predicted statistic fails to satisfy 
either of the previously defined evaluation cri­
teria. The implications of the example for the 
usefulness of the percent-correctly-predicted sta­
tistic are discussed following the presentation of 
the example. 

Notation and Formulas 

The example is based on binomial logit models (i.e., 
legit models of choice between two alternatives). 
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Before presenting the example, it is necessary to 
present the notation and formulas that will be used 
in computing the percent-correctly-predicted statis­
tic for the example. 

Let model P be correct and model Q be incorrect. 
As before, let P(i,Xl denote the true probability 
that an individual with explanatory variables X 
chooses alternative i (i = 1 or 2), and let Q(i,X) 
denote the large-sample limit of the model Q esti­
mate of the probability that this individual chooses 
alternative i. Let the number of individuals in the 
estimation sample be N, and let these individuals be 
indexed by n (n = 1, 2, ••• , N). Let P(i,X) and 
Q (i, X) , respectively, denote the maximum likelihood 
estimates of. the model P and model Q choice prob­
abilities obtained from the estimation sample. Thus, 
for example P ( i ,Xnl and Q ( i ,Xnl are the 
estimated probabilities that individual n chooses 
alternative i by using models P and Q. Note that as 
N approaches infinity, P approaches P and Q ap­
proaches Q. 
For each individual n in the estimation sample 
define jn by 

in = 1 if individual n was observed to choose 
alternative 1, 0 otherwise (16) 

Thus, jn indicates the observed choice of individ­
ual n. Also, for each individual n in the estima­
tion sample define Sp(n) and SQ(nl by 

!OOifP (l,Xn)> 1/2andjn = 1orP(l,Xn)<1/2 

andin=D; 

Sp (n)= 50ifP(l,Xn)= l/2;and 

OifP(l,Xn)> l/2andin =OorP(l,Xn)< 1/2 

and in = 1 

1
100 . l~Q~ l •. Xn) > 1/2 and j0 = I or Q(I . X.,) < 1/2 

nnd Jn - O. 

: 0 (n) = SOlfQ(l . X.,) = l/2:a nd 

Oif Q(l . X,,) > 1 /2 ~ nd j ,, = Onr Q ( l.X,, ) < 1/2 

nnd i ,, : I 

(17) 

(18) 

Then Sp(n) equals 100 if indiv idual n was observed 
to choose the alternative with the larger value of 
P (i, Xnl (i = 1 or 2), Sp (nl equals 0 if individ­
ual n was observed to choose the alternative with 
the lower P value, and Sp(n) = 50 if th~ two P 
values for individual n are equal. Thus, Sp (n l is 
the percent-correctly-predicted statistic for model 
P by using the single individual n. An analogous 
interpretation applies to 80 (n). The percent-cor­
rectly-predicted statistics for models P and Q by 
using the entire estimation sample, Sp_ and SQ, 
are .obtained by averaging Sp(nl and s0 (n) over 
all of the individuals in the sample. Thus, 

Sp= (l/N) 2: Sp (n) (19) 

" 
SQ = (1/N) L SQ(n) (20) 

n 

Sp and s0 coincide with the usual ·definitions of 
the percent-correctly-predicted goodness-of-fit 
statistics for models P and Q. 

The large-sample limits of Sp and ~ can be 
computed by applying the strong law of large numbers 
to Equations 19 and 20. This yields the following 
result: 



24 Transportation Research Record 874 

Table 2. Values of the explanatory variables and 
LIT (min) LlC (cents) P (auto, LIT)" P (transit, LIT)" Q (auto, LlC)' Q (transit, LlC)' choice probabilities for the example. 

5 20 0.62 0.38 0.71 0.29 
10 5 0.73 0.27 0.56 0.44 
20 40 0.88 0.12 0.86 0.14 

3
p and Qare computed as large-sample limits and, therefore, are free of random sampling error. The large-sample limit 

of the maximum likelihood estimate of (3 is 0 ,045 . 

Sp = 100 L Px (X) max [P(I, X), P(2, X)] (21) 

So= 100 L PxCX) {'CX) P(I, X) +[I -I(X)]P(2, X)} 
x 

(22) 

where Sp and SQ! respectively, denote the large­
sample limits of Sp and So and I(X) is defined by 

{ 

I if Q(l , X) > I /2; 
I(X) = 1/2 if Q(l, X) = 1/2; and 

0 if Q(l , X) < I /2 (23) 

Equation 21 has been derived previously by Daganzo 
(10). Sp and SQ are the values that the per­
cent-correctly-predicted statistics for models P and 
Q would have if there were no random sampling error. 

'Example 

Suppose that two binomial legit models, P and Q, of 
mode choice between automobile and transit are being 
considered. In model P the probability of choosing 
automobile is given by 

P(auto,LlT)= l/[I +exp(-allT)] (24) 

where 6 T is transit travel time minus automobile 
travel time, and a is a constant. In model Q the 
probability of choosing automobile is given by 

Q(aulo, Ll C) = l/[1 + exp(llllC)] (25) 

where 6 C is transit travel cost minus automobile 
travel cost and B is a constant. The transit 
choice probabilities are equal to one minus the 
automobile choice probabilities. 

Suppose that model P is correct and that the true 
value of a is 0.10. Suppose also that in the 
population being studied there are only three possi­
ble combinations of values of 6 T and 6 C, as 
shown in Table 2, and that these combinations occur 
with equal probability. Thus Px(X) = 1/3 for all 
values of the explanatory variables of both models. 
Given the values of a and 6 T, the values of the 
true choice probabilities P(i, 6 T) (i = automo­
bile or transit) can be computed from Equation 25, 
and the large-sample-limit of Q(i, 6 C) can be 
computed by using methods described in Horowitz 
(§). The results are shown in Table 2. It can be 
seen from the table that the differences between the 
t.rlle choice probabilities P and large-sample-limit 
model Q choice probabilities vary from 2 to 63 
percent. The RMS percentage difference, as computed 
from Equation 7, is 25 percent. Thus, the true and 
erroneous models yield substantially different 
values of the choice probabilities in the absence of 
random sampling error. 

The large-sample limits of the percent-correctly­
predicted statistics for models P and Q can be 
computed from Equations 21 and 22. The result is 
Sp SQ 74 percent. Thus, the large-sample 
limits of the percent-correctly-predicted statistics 
for the two models are equal. This means that when 
there is no random sampling error, these statistics 
provide no information useful for distinguishing 
between the correct model P and the incorrect model 
Q, even though there are large differences between 

the choice probabilities of the two models. Clearly, 
the percent-correctly-predicted statistic fails to 
satisfy the first of the previously defined 
evaluation criteria in this case. 

It also can be shown that the percent-correctly­
predicted statistic is not useful for distinguishing 
between models P and Q with finite samples. (This 
is to be expected because reducing the sample size 
from infinity reduces the information content of the 
sample.) With a finite sample, the percent-cor­
rectly-predicted statistics of models P and Q can 
differ only if there are values of 6 T and 6 C 
for which the alternative with the highest estimated 
model P choice probability is different from the 
alternative with the highest estimated model Q 
choice probability. In terms of the notation devel­
oped in the previous subsection, this means that 
there must be pairs of values of 6 T an~ 6 C 
such that either } (auto, 6 T) > 0.5 and Q(auto, 
6 C) < 0.5 or P(auto, 6 T) < 0.5 and Q(auto, 
6 T) > 0 .5, as can be seen from Equations 18 and 
19. The probability that either or both of these 
events occurs can be computed from the information 
in Table 2 by using methods described by Daganzo 
(4,11) and Horowitz (12). The result is that with 

a;:;- estimation data setof 100 or 'more observations, 
the probability that either or both of these events 
occurs is virtually zero (i.e., less than 5 x 
10-•). Thus, the percent-correctly-predicted 
statistics of models P and Q are virtually certain 
to be equal with any reasonable estimation sample 
size. It follows that the percent-correctly-pre­
dicted statistic almost certainly will fail to 
distinguish between the two models with any reason­
ably sized estimation sample. Thus, the statistic 
fails to satisfy the second of the previously de­
fined evaluation criteria. 

The performance of the percent-correctlypredicted 
statistic in this example may be contrasted with 
that of the modified likelihood ratio index. The 
6 value tor comparing models P and Q is 0. 25. It 
follows from Equation 13 that Pp' - PQ' 
exceeds zero with probability 0 .89 if the sample 
size is 100 and probability 0 .98 if the sample size 
is 250. The probability approaches 1.0 as the 
sample size increases further. Thus, in contrast to 
the percent-correctly-predicted statistic, the 
modified likelihood ratio index has a high prob­
ability of distinguishing correctly between models P 
and Q with any reasonably sized estimation sample. 

Discussion of .Examp'le 

The foregoing example shows that the percent­
correctly-predicted statistic may fail to distin­
guish between a correct and an incorrect model, even 
if the choice probabilities of the two models differ 
substantially. Of course, this does not mean that 
the statistic always will fail to make such distinc­
tions. On the contrary, it is possib1.e to construct 
examples in which the statistic distinguishes be­
tween correct and incorrect models quite satisfac­
torily. However, the example shows that the statis­
tic is an unreliable diagnostic tool. The fact that 
two models have similar values of the percent-cor­
rectly-predicted statistic does not necessarily 
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imply that the two models have similar abilities to 
explain the available data or are equally likely to 
be correct. 

Al though small differences between the values of 
two models' percent-correctly-predicted statistics 
do not necessarily imply that the two models are 
equally satisfactory, the possibility remains that a 
large difference between the values of the statis­
tics implies with hiqh probability that the model 
with the lower value is incorrect. This possibility 
clearly is fulfilled qualitatively. However, it does 
not appear to be possible to develop for the per­
cent-correctly-predicted statistic an inequality 
analogous to inequality 14 for the modified likeli­
hood ratio index. Thus, it does not appear possi­
ble, at least analytically, to specify quantita­
tively a minimum difference between the values of 
two models' percent-correctly-predicted statistics 
that enables one to conclude with high probability 
that the model with the lower value is incorrect. As 
was discussed in connection with inequality 14, it 
is possible to specify such a minimum difference for 
the modified likelihood ratio index. Although the 
apparent lack of a "minimum significant differ­
ence" for the percent-correctly-predicted statistic 
is disappointing and clearly impairs the statistic •s 
usefulness, it should not be considered surprising 
or unusual. For example, there also is no known 
minimum significant difference for the R2 values 
of two linear regression models. 

CONCLUSIONS 

The results presented here indicate that the modi­
fied likelihood ratio index provides a powerful 
method for comparing non-nested random utility 
models. It has been shown that very small differ­
ences between the values of the modified likelihood 
ratio indices of two models indicate with hiqh 
probability that the model with the lower index 
value is incorrect. Moreover, if one of the models 
being compared is correct and there are substantial 
differences between the choice probabilities of the 
correct and incorrect models, the modified likeli­
hood ratio index has a high probability of indicat­
ing that the correct model is superior to the incor­
rect one with estimation samples of practical size. 

The percent-correctly-predicted statistic is much 
less useful for comparing models. The statistic may 
fail to distinguish between correct and incorrect 
models, regardless of sample size, even if the 
choice probabilities of the two models are very 
different. Moreover, there are no readily available 
quantitative criteria for determining how large the 
differences between the values of two models per­
cent-correctly-predicted statistics must be to 
justify a conclusion that the model with the lower 
value likely is incorrect. 
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In summary, the modified likelihood ratio index 
is a much more useful tool for comparing non-nested 
random utility models than is the percent-correctly­
predicted statistic. 
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