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of bias in the sampling and interviewing plans. 
Efforts were directed at reaching apartment dwell­
ers, single-family households, mobile hard-to-reach 
households, and ethnic minorities, and these efforts 
were largely successful. However, it is believed 
that there are some minor sources of bias, as de­
scribed below. 

Households with out telephones--1 percent of all 
California households--were not sampled. Persons 
who work odd hours, particularly those who work in 
the evenings, could have been missed, although calls 
were made during the afternoon as well as the even­
ing hours. Extremely mobile individuals, especially 
young, single adults, are difficult to reach and are 
underrepresented in the survey. In fact, the aver­
age household size in the sample is higher than in 
the 1980 Census due to higher probability of persons 
being home to answer the telephone. The lack of 
call-backs during the last week of the survey intro­
duces a bias against hard-to-reach households; how­
ever, since this procedure represents only 1/10 of 
the survey, the bias would be a minor one. House­
holds that refused to participate in the survey 
(28.7 percent) may represent a bias. Data collected 
on some of these households and individuals show 
little variation when compared with data on inter­
viewed households; there appears, however, to be a 
slight underrepresentation of households with low or 
no car ownership and of elderly persons, particu­
larly elderly females. 

RECOMMENDATIONS AND CONCLUSIONS 

The three recommendations for future surveys are (a) 
generate better publicity by augmenting news re­
leases with personal visits to media staff, (b) hire 
quality interviewers, and (c) modify the travel 
card, as noted in the section on coding problems, to 
provide more specific location information. 
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The experience with this survey showed that it is 
still possible to conduct a household-interview 
travel survey at reasonable cost and in a short time 
period. Telephone interviewing is a cost-effective 
technique for obtaining household travel data. The 
survey sample provides adequate geographic coverage 
and is representative of population groups in the 
Bay Area. It is believed that this success is due 
to (a) making interviewers aware at the beginning of 
the need to obtain responses from all population 
groups and (b) the use of random digit dialing to 
draw the sample. 
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Simultaneous-Equations Analysis of Growth 1n Bus 

Route Patronage in San Diego 

MICHAEL A. KEMP 

An analysis of data describing 40 months' operating experience for the San 
Diego Transit Corporation bus system is discussed . The analysis used a 
simultaneous-equations model estimated by using a pooled time-series/cross­
sectional data base. The model relates the ridership on a specific bus route in 
a specific month to various influencing factors, particularly the service and 
fare policies adopted by the system. It also attempts to capture complex in­
terrelations among the influencing factors. The structure of the overall model 
is summarized. Detailed results, however, are discussed tor only one ot the 
five equations in the system, the principal demand equation. Relatively clear 
bus fare and gasoline price effects were identified, but the separate influence 
of each of a range of service quality variables (average bus speed, average wait­
ing time, mean stop spacing, and duration of service) was obscured by multi­
collinearity. Estimates of demand elasticities with respect to a range of dif­
ferent influencing factors are presented, along with associated confidence 
intervals. Several general conclusions from the analysis are discussed. The 
work shows that it is possible to use a transit system's time-series operating 
data in more sophisticated ways than have been customary : The model proved 
successful in identifying credible structural equations for both demand and 
supply relations. However, multicollinearity problems are probably intrinsic 
to the overall approach, and replications of the method are currently strongly 
constrained by the lack of appropriate computer software. Some potential 
uses of a model of this type are also discussed. 

The San Diego Transit Corporation (SDTC) assumed 
operation of that city's bus system in July 1967 
after purchasing it from a financially ailing pr i­
vate owner. Public takeover was followed by greatly 
increased funds for capital and operating assistance 
from local, state, and federal governments, and ser­
vice was expanded through the introduction of new 
routes, extension of service periods, and increased 
frequencies. Between 1971 and 1975 the annual ve­
hicle miles operated increased by 81 percent, route 
miles grew by 57 percent, and the fleet size and the 
work force expanded by 54 and 66 percent, respec­
tively. 

The service area provided a favorable setting for 
expansion. Compared with other cities of comparable 
population and land area, San Diego was growing fast 
and had a small bus system with relatively low 
ridership per capita. The large increase in supply, 
coupled with a major fare reduction in 1972 and a 
determined effort by the transit management to pro-
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mote the services, produced a marked response in de­
mand. Between 1971 and 1975, annual ridership rose 
by ll4 percent. 

Moreover, SDTC generated monthly operating data 
that were superior in scope, detail, and quality to 
the norms for U.S. bus transit properties. This re­
port derives from a study of 40 months' operating 
experience for the system, over a period when ser­
vice and ridership were both expanding most rapidly 
(January 1972 through April 1975). The primary 
focus of the work has been to estimate a simul­
taneous-equations model of demand and supply by 
using a pooled time-series (by month) and cross-sec­
tional (by bus route) data base. Full details of 
the analysis are presented elsewhere (1). The in­
tent of this paper is to discuss the principal find­
ings with respect only to the demand for rides on 
the system. 

OVERVIEW OF MODEL 

Any serious at.tempt to understand the demand for 
public transportation services needs to take ex­
plicit account of the complex interrelations among 
demand, supply, and service quality. There is ample 
evidence that travel behavior is influenced strongly 
not only by the pr ices of the various available op­
tions but also by the characteristics of the service 
that each provides. Such aspects of service quality 
as travel times and reliability have been found to 
be particularly influential in the decisionmaking of 
travelers. But service quality is in turn affected 
by both the level of supply and the level of de­
mand. Speaking broadly, changes in the quantity of 
transit services supplied are likely to affect such 
aspects as route coverage, frequency of service, the 
possibility of getting a seat, and so on. And, for 
a given level of supply, adjustments in the level of 
demand will imply changes in the crowding within 
vehicles and in the time that has to be spent pick­
ing up and dropping off passengers. 

It follows that the observed long-run ridership 
response to a supply or fare change can be regarded 
as the net result of two component processes: 

1. The fare or supply adjustment (the • instru­
mental change") itself influences demand in that it 
implies a change in the pr ice or level of service 
experienced when traveling by transit. 

2. The "direct" demand response will create ad­
ditional adjustments in service quality, potentially 
influencing ridership volumes further. This process 
can be referred to as an "induced" or "secondary" 
effect. 

Transportation analysts are not unfamiliar with 
interactions like these, for they apply analogously 
to the demand for highway travel. Both highway 
facilities and most passenger transportation ser­
vices can be characterized broadly by the following 
relations. Traffic volume (q) is a function of, 
among other things, the level of service provided by 
the highway or the public transportation facility: 

q = D(L, .. .. ) (I) 

where L is a vector of level-of-service attributes, 
including money price. The level of service itself 
depends both on the design and operational char­
acteristics of the transportation facility and on 
the traffic volume, through "performance function" 
relations of the following sort: 

L=P(T,q , .... ) (2) 

where T is a vector describing the design and opera­
tion of the facility. 
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There is also a third type of relation that in­
fluences the observed levels of demand and supply. 
Since transit services cannot be stored or stock­
piled, there is a strong incentive for the system to 
anticipate temporal and spatial variations in demand 
and to adjust the supply accordingly. The extent to 
which this is done in the short run is likely to 
vary between different properties, but over the long 
run it is likely that most transit systems will be 
supplying most service at those times and places 
where the demand is greatest. In consequence, one 
must anticipate a third relation of the following 
form: . 

T = S(cj, .... ) (3) 

where q is the transit management's expectation of 
q. The principal analytic::il problem is to specify 
these structural relations and to attempt to iden­
tify them from observations of equilibrium flows and 
service levels. 

The San Diego model comprises five equations es­
timated stochastically, one definitional identity, 
and one assumed relation: 

1. Demand relations-- (a) The volume of passen­
gers (on a particular route in a particular month) 
who do not transfer between routes (QNT) is ex­
pressed as a function of a large number of influenc­
ing factors, most significantly those describing the 
price and service quality of the average transit 
ride on the route, and (b) the volume of transfer 
passengers (QTR) is estimated as a function of total 
ridership (Q) and other factors. 

2. Performance functions--(a) Average bus speed 
(V) is related to, among other things, bus-stop 
density and the average number of riders per bus 
stop passed. 

3. Supply relations--(a) Seat miles operated (S) 
are estimated as a function of the current month's 
patronage on the route, the short-run average vari­
able costs, and certain financial and capacity con­
straints; and (b) average headway (H) is related to 
total seat miles operated, the average number of 
passengers per hour of service duration, and other 
factors. 

4. Definitional identity--The various measures 
of patronage are related through the identity, 

QNT + 2QTR = Q (4) 

where QTR has a coefficient of 2 because nontrans­
ferr ing patronage (QNT) is measured by the dif­
ference between originating trips and transfer trips. 

5. Assumed relation--Mean waiting time at a bus 
stop (W) is related to the mean headway on the route 
(H) through 

W =A [I - exp(-H/2A)J (5) 

For high-frequency services, mean waiting time is 
approximately half the headway; for long headways, W 
approaches a maximum of A, taken to be 20 min. 

The model was estimated by using data from 21 
routes that were in existence for the full 40 months 
of the study period. This provided a total of 840 
observations. These routes accounted for 99 percent 
of the systemwide patronage at the start of the 
study period and 86 percent by the end. All five 
stochastic equations were estimated by the two-stage 
least-squares method, with a correction for first.­
order autocorrelation by means of a generalized 
least-squares procedure. 
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DliMAND FOR NONTRANSFER RIDES 

The variable QNT (nontransfer rides) represents an 
estimate of the number of passengers on a particular 
route in a particular month who do not transfer to 
or from any other route in the course of their jour­
ney . Whereas their numbers cannot be inferred pre­
cisely from the data set, unless the pattern of 
transfers between routes is markedly asymmetrical 
(that is, many more riders transfer from a route in 
a month than transfer to it), the nontransfer pa­
trons are approximated by the difference between the 
originating passengers and the transfer passengers 
on the route; i.e., 

QNT = QR-QTR (6) 

where QR is a count of originating (or "revenue") 
passengers--i .e., ·each patron is counted once only 
in the course of a journey, as he or she boards the 
first (or only) bus used in the one-way journey; and 
QTR is the number of transfer passengers--i. e., pa­
trons boarding the second (or subsequent) vehicle 
used for the one-way journey. 

QNT is preferred to QR as the dependent variable 
in the equation because it represents journeys that 
do not involve any transferring and that presumably 
will be made as a result of appraisal of the rela­
tive service characteristics offered by that route 
alone. Empirically, it was confirmed that using QNT 
was slightly superior to using QR. It should be 
noted that passenger counts must be used here for 
the dependent variable because typical transit 
operating data do not contain any origin-destination 
information. For the same reasons, there is no 
stratification by peak/off-peak or trip-length 
characteristics. 

The range of factors that can influence the pa­
tronage on a particular bus route in a given month 
is obviously large. The primary focus of this 
analysis was on the influence of bus service char­
acter is tics in order to determine how instrumental 
changes made by the transit agency influenced pa­
tronage. But variations in the observed demand may 
be attributable to many other factors, and in order 
to avoid specification bias due to missing variables 
one should consider explicitly all possible sources 
of variation when specifying a demand function. In 
this work, the approach was to quantify as far as 
practical the characteristics of the bus service and 
alternative automobile journeys and to use dummy 
variables in an attempt to take account of the re­
maining factors, such as the characteristics of the 
markets served. 

The estimate of the demand function for non­
transfer rides is summarized below. In this equa­
tion, variables treated as endogenously determined 
have been identified with an asterisk. Reduced-form 
equations were first estimated for these variables 
by using the complete set of exogenous variables as 
regressors, and the predicted values of the vari­
ables were used in estimating the structural equa­
tions: 

QNT = 216.7 - 8 l.69PB + l4.53PG + 0.7843V* - 0.4606 log W* 
(3.1) (6.1) {l.7) (Ln {0.0) 

+ 0.070 49Y - 7''4.4BlNV + 0.3789E - S.546L - l l .l4NWD 
(3.5) (2.9) (2.8) (J0.6) (I.9) 

+ 7.2X I SCHL + 0 .2456T + route-specillc uummy variables (7) 
(9.1) (2.3) 

where 

QNT = number of nontransfer patrons (OOOs) ; 
PB mean bus fare (1967 dollars); 
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PG real gasoline index (January 1972 = 1.0); 
V average scheduled bus speed (miles/h) ; 
W a average passenger wait time (h); 
Y a duration of service (h/month) ; 

BINV average bus stop spacing (miles); 
E = gasoline supply shortfall (percentage of 

expected demand); 
L route length (miles) ; 

NWD • proportion of nonworking days in the month; 
SCHL ratio of school days to working days; and 

T month sequencing variable (January 1972 = 
l). 

The values of the t-statistic appear in parentheses 
beneath each coefficient value. The mean value of 
the dependent variable was 54.09, and that of the 
coefficients of the route-specific dummies was 
10.65. A two-stage least-squares estimation method, 
autocorrelation-corrected (an asterisk denotes in­
strumental variables), is used; R2 (adjusted for 
degrees of freedom) = 0.934 and F (31 808) = 365.l. 

As might be expected with such a large number of 
independent variables, the nontransfer patronage 
equation exhibited high levels of multicollinearity 
in all of the many specifications tested. This was 
most problematic for the variables that differed 
mostly across routes rather than over time. Un­
fortunately, some key aspects of service quality-­
bus speed, mean waiting time, and average bus-stop 
spacing--fall in this category, and the estimates of 
their effects have a relatively high level of un­
certainty. 

All of the signs of the estimated coefficients 
for Equation 7 either conform with a priori expecta­
tions or else can be rationalized credibly. In the 
discussion that follows, each of the key variables 
appearing in the nontransfer patronage equation is 
reviewed in turn, and the 95 percent confidence 
range is indica t ed for the demand elasticities with 
respect to each variable (see Table l). Many al­
ternative specifications of the equation were esti­
mated, and these generally implied elasticity values 
within the confidence ranges given in Table l. 

Price Variables 

Two of the variables in the equation measure 
prices: PB measures the real price of a complete 
bus trip (from joining the SDTC system to leaving 
it), and PG traces the real price of gasoline as a 
proxy for the costs of making a competitive journey 
by private car. The coefficient (and hence the im­
plied elasticity value) for the bus fare variable 
remained relatively stable as the model specifica-

Table 1. Ninety-five percent confidence range for elasticities with respect to 
key variables. 

Elasticity Value at Mean of All Observations 

Vuiahle Expected Lower Limit" Upper Limit" 

Mean bus fare (PB) -0.31 -0.21 -0.41 
Gasoline price index (PG) +0.29 -0.05 +0.63 
Mean bus speed (V) +<l.24 -0.16 +0.63 
Mean wait time (W) -0.01 -0.54 +0.52 
Service duration (Y) +0.65 +0.29 +I.OJ 
Mean stop spacing (BINV) -2.65 -0.85 -4.45 
Gasoline shortfall (E) +0.01 +0.00 +0.0l 
Route length (L) -1.57 -1.28 -1.86 
Nonwork days (NWD) -0.06 +0.00 -0.13 
School days (SCHL) +0.10 +0.08 +0.12 

3Thc vo;lm:1 gh·co r-cprcsont rho 4JS Jlttrec o1 conridonco li mi1:1 for Che e l.io .tlcily osl httflh~ , 
.11ssu r11in• thn1 lh" mcc11111 of the d~pcmdtin l and ndepcnd1,1nt \'.t1riabh:J ure ghi.t-n. In 
01l1cr word:1. fh1,1; :1 l ~ndnr'ii davl0ition Qf I.ha rce:rculon totffithmt is taken a1 tllC! on! 
icrmrec of un(ctblnly In the t1l;1 1tioltr va lur. 
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tion was changed. Associated values of the t-sta­
tistic typically showed the variable to be signifi­
cant at the 0.1 percent level. At the mean of the 
observations, a fare elasticity of -0.31 was implied 
and a 95 percent confidence range of -0.21 to 
-0. 41. The values obtained from alternative model 
specifications tended to cluster in the numerically 
high end of the range, around -0.3 to -0.4. 

The estimated equation for transfer rides (QTR) 
can be combined with this equation to derive fare 
elasticity values associated with some other defini­
tions of patronage. For instance, the elasticity 
for originating (or revenue) passengers (QR) was 
-0.29, for transfer rides (QTR) it was -0.22, and 
for total ridership (Q) it was -0.27. These relative 
magnitudes are consistent with a hypothesis that the 
people who will tolerate having to transfer are more 
likely to be captive to the system. 

Almost all of the variation in the PB variable 
occurred over time rather than across routes, and 
most of it was associated with the major fare reduc­
tion that took place in September 1972. The base 
fare was cut from 40¢ to 25¢, and all zonal sur­
charges were abolished. This meant that in some 
case's rides that had previously cost as much as 90¢ 
were reduced to 2 5.6. Other analyses of this fare 
reduction have provided independent estimates of the 
fare elasticity. Kemp !ll used systemwide operating 
data for a period of 38 months to derive point elas­
ticity values at the mean of roughly -0.55 to -0.6, 
after taking account of the changes in bus miles 
operated. Conway (_~) compared the March 1973 pa­
tronage for an aggregate of 19 routes that did not 
experience major service changes with the figure for 
March 1972 and computed an arc fare elasticity esti­
mate of -o. 72, uncorrected for the 6 percent in­
crease in bus miles on those routes. Goodman, 
Green, and Beesley (_~) used systemwide statistics 
from the same data base used in the present study to 
derive a point fare elasticity value at the mean of 
-0.51, after accounting for the effects of the 
growth in bus miles operated. All of these esti­
mates are larger numerically than the estimate from 
this study. This is probably due to the much 
greater number of explanatory variables used here 
and in particular to the incorporation of a gasoline 
price variable; it is also partly due to the use of 
constant dollar pr ices in this analysis, a practice 
not followed in any of the three earlier studies. 

Estimates of the coefficient of the gasoline 
price variable (PG) were also quite stable. The 
Equation 7 specification implies an elasticity of 
nontransfer patronage with respect to gasoline price 
of +0.29 and a 95 percent confidence range of -0.05 
to +0.63. Values implied by other specifications of 
the equation ranged from +0.26 to +0.46. 

Bus Service Characteristics 

Equation 7 contains four variables that are aspects 
of transit service quality: average bus speed, 
average passenger wait time, average bus-stop spac­
ing, and monthly duration of service. The lion's 
share of the variation in all of these variables was 
caused by differences across routes rather than over 
time. Multicollinearity presented a problem in 
identifying the individual effect of each variable, 
and the elasticity estimates consequently have a 
higher level of uncertainty than was found for the 
price variables. 

Duration of service (Y) was the most significant 
of the four service characteristics. In Equation 7 
the coefficient is significantly different from zero 
at the 0.04 percent level. This variable captures 
three sources of variation: differences in month 
lengths, changes in the operating hours on certain 
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routes, and (most important) differences in operat­
ing hours across routes. The implied demand elas­
ticity at the mean with respect to Y was +0.65, and 
the 95 percent confidence interval was +0.29 to 
+1.01. Estimates derived from other specifications 
ranged from roughly +0.30 to +1.69. 

The next service characteristic in order of ex­
planatory power was average bus-stop spacing (BINV), 
which served as a proxy for mean walking time to and 
from the bus. The negative coefficient value was 
significantly different from zero at the 0.4 percent 
level. The implied elasticity value at the mean of 
the observations was -2.65. 

The best available supply-oriented descriptor re­
lating to bus travel time was average operating 
speed, if it is assumed that journey distances were 
determined independently of speed. According to the 
model, there are two ways in which ridership is ex­
pected to be associated with bus speed. In the de­
mand equation, higher average speeds are associated 
with shorter travel times, and this should help to 
boost ridership. But on the supply side, increased 
demand at a fixed level of supply tends to slow down 
the buses. The two effects work in opposing direc­
tions, and a negative correlation coefficient be­
tween QNT and V (-0.24, significantly different from 
zero at the 0 .1 percent level) suggests that the 
supply-side process was the stronger of the two. 

It says a great deal for the overall specifica­
tion of the model, therefore, that in all of the de­
mand functions tested the speed variable emerged 
with a positive sign, after correction for autocor­
relation. In other words, despite a net negative 
correlation between demand and speed, the model 
structure was able to separate out credible de­
mand- and supply-side components of the overall as­
sociation. The coefficient of V in Equation 7 im­
plies an elasticity of +0.24 at the mean of the 
observations. 

If it is assumed that the reciprocal of the speed 
variable is proportional to the average travel time 
in the bus, the elasticity of demand with respect to 
in-vehicle time is -0.23 at the mean of the observa­
tions. The extent to which the inverse of speed is 
a good indicator of travel times, however, depends 
on how much passenger trip lengths vary across 
routes. If trip lengths do vary significantly (and 
there is circumstantial evidence to suggest that 
they do), then the elasticity with respect to the 
reciprocal of V will provide a biased estimate of 
the in-vehicle time elasticity. 

The fourth characteristic of bus service appear­
ing in the nontransfer patronage equation is mean 
passenger waiting time (W). But, despite its 
strongly negative correlation with nontransferring 
rides, the multicollinearity problem led to a wide 
range of different coefficient estimates, many with 
anomalously positive signs. This is despite the 
fact that demand- and supply-side forces in this in­
stance are likely to be mutually reinforcing: 
Shorter wait times should spur demand, and increased 
ridership will create a reason to reduce headways. 
But the coefficient value in Equation 7 is barely 
negative, implying an elasticity value with respect 
to W of -0.009 at the mean of the observations. 

The findings from this equation suggest that, in 
comparing the various components of passengers' 
door-to-door travel times, demand was most sensitive 
to walking time and least sensitive to waiting time 
and the sensitivity to in-vehicle time was inter­
mediate between the two. This general hierarchy was 
sustained for most alternative formulations of the 
equation. The relatively low elasticity for waiting 
time is somewhat out of 1 ine with the consensus of 
previous research findings, most of which are 
derived from cross-sectional analyses of tripmaking 
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and might, therefore, be expected to produce numeri­
cally higher absolute values for the elasticities. 
Wai ting-time elasticities are generally believed to 
be greater than elasticities for in-vehicle time, 
although a number of studies have produced values in 
the same hierarchy found here. 

Other Explanatory Variables in the Equation 

Of the remaining variables appearing in the equa­
tion, the length of the bus route ( L) was clearly 
the most influential. This variable had a high ex­
planatory power and relatively stable negative coef­
ficient, significant at the 0.1 percent level, in 
every specification of the nontransfer patronage 
equation in which it was included. The elasticity 
value at the mean with respect to L was -1.57. 

The clearly negative effect of bus-route length 
on demand merits discussion. One might expect that 
this variable most strongly represents the size of 
the population of the catchment area, which would 
presumably imply a positive effect on patronage. 
This expectation is reinforced by a highly signifi­
cant positive correlation coefficient between L and 
QNT (+0. 59). In the presence of the set of route­
specif ic dummy variables, however, some underlying 
factor causes the variable to appear in the demand 
equation with an unambiguously negative sign and a 
relatively sharp coefficient value. The most likely 
explanation is that all of the "market-size" effects 
have been (as hoped for) loaded onto the route dum­
mies and that the route length is standing proxy for 
a journey-length variable. If, as seems credible 
considering the high proportion of transit trips 
that are typically for commuting, longer routes 
imply longer average trip distances, then L is prob­
ably characterizing the effects of competition with 
travel by private automobile. The travel time, com­
fort, and convenience advantages of car travel will 
increase quite markedly with trip length, particu­
larly on a reasonably free-flowing highway network 
such as that in the San Diego area. The longer the 
trip, the more attractive it appears for potential 
patrons to choose the pr iv ate automobile in prefer­
ence to transit, all other factors remaining con­
stant. Such a rationale is consistent with a great 
deal of the empirical evidence and analysis of 
modal-choice behavior, and it is a quite credible 
explanation for the strength of the effect observed 
in the model. 

The variable E measures the percentage shortfall 
in gasoline supplies in the State of California for 
a period of seven months as a result of the 1973-
1974 oil embargo by the Organization of Petroleum 
Exporting Countries. During this period there was a 
national surge in transit ridership. The positive 
coefficient for the E variable, significant at the 
0.6 percent level, suggests that the SDTC system 
shared in this temporary surge in ridership. Part of 
the effect is, presumably, captured by the gasoline 
price variable. The patronage elasticity with 
respect to the non pr ice aspects of the sher tage, as 
characterized by E, was +o.uuo, which denotes a 
small but nevertheless statistically significant 
effect. 

GENERAL CONCLUSI0.NS FROM SAN DIEGO STUDY 

The San Diego analysis provided substantial evidence 
on many of the questions that were identified as ob­
jectives of the study. These questions can be 
broadly grouped as either "methodological "--con­
cerned with the value and practicalities of using 
this type of method to analyze transit demand and 
supply--or "substantive"--concerned with the actual 
findings from the San Diego experience. The method-
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ological issues are the more important of the two 
categories in the scope of their implications. 

First, this work shows that it is possible to use 
the time-series operating data of a transit system 
in somewhat more sophisticated ways than have been 
customary in the past. Although the problems and 
deficiencies of the approach must be acknowledged, 
overall the exercise was judged to be quite success­
ful. In particular, the ability to identify mean­
ingful demand and supply functions is impressive, 
especially so in the case of those variables (such 
as average bus speed) for which it has proved pos­
sible to separate out different demand- and supply­
side relations with ridership. Also remarkable is 
the extent to which quite simple model formulations 
produced coefficients and signs substantially in 
line with theory and consensus evidence from other 
empirical studies. 

Second, beyond the scope of the one model equa­
tion reviewed in this paper, it was also encouraging 
that some of the effects that, a priori, one might 
expect to be fairly subtle in nature and magnitude 
appear to be detectable by this method despite the 
level of aggregation of the data, difficulties in 
measurement, and the need to characterize certain 
influences very imperfectly. Since a large number of 
previous studies have been able quite easily to 
identify simple yet credible transit demand rela­
tions from time-series operating data, the success 
of this study in doing so is not remarkable; what is 
more innovative and notable is the ability to iden­
tify both an average-bus-speed equation and a mean­
headway equation. 

A third general conclusion from the San Diego 
study is that multicollinearity problems are likely 
to make it difficult to fine-tune the demand equa­
tion sufficiently to provide precise estimates of 
service elasticities by using this method. The 
multicollinearity problems encountered in the San 
Diego analysis are unlikely to be unique to this 
data set but are probably intrinsic to the overall 
approach. They appear to be the result of several 
factors: the large number of causal variables in­
cluded in the demand equation, the need to use 
route-specific dummy variables to take account of 
market-size variations across routes, the practice 
of concentrating service changes into a small 
number of points in time, and intercorrelations be­
tween service variables caused by operating poli­
cies. Investigations suggested that one standard 
approach to alleviating multicollinear ity--adding 
more observations--would not be likely to provide 
much relief in the San Diego case despite a greatly 
increased variability in key service variables as 
data on express and feeder routes were added. The 
time-series transit demand model estimated by Gaudry 
(~),which also incorporated a large number of inde­
pendent variables, suffered from a similar multicol­
linearity problem. 

The final methodological conclusion is that both 
this work and any attempted replications of the 
method with other data sets are strongly constrained 
by the lack of appropriate software packages Yble to 
cope flexibly with pooled time-series/cross-sec­
tional data. Despite an initi.al concern to keep 
costs low by restricting the study to using readily 
available data and off-the-shelf software, the exer­
cise proved to be quite costly in terms of both 
analyst time and computer time. In part, lllis was 
because of the large number of variables considered, 
but it was also largely because of the cumbersome 
and inflexible method that had to be devised to 
manipulate the data and to estimate the model by 
using available programs. Although the development 
of similar models for other transit systems could 
have considerable value for short-range planning 
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purposes (as discussed below), the benefits of doing 
so will probably not outweigh the costs until more 
appropriate software is available. 

USES OF THE MODEL 

How might a model of the San Diego type be used 
productively? What are its advantages and limita­
tions? First, the model can make a valuable short­
range planning tool for forecasting the outcomes of 
fare and service changes on an existing route net­
work. If the structural equations have been esti­
mated over a fairly wide variety of service condi­
tions or service changes (as in the San Diego case), 
they can be used to produce predictions of, say, the 
patronage response to adjustments in headway or 
average speed or to changes in fare level or struc­
ture or duration of service. With the exception of 
forecasting the demand response to a s ystemwide fare 
change, transit planners generally do not have the 
tools available to allow them to make good ex ante 
assessments of a range of possible operating poli­
cies. The San Diego type of model could be par­
ticularly valuable for this type of planning and 
management application; once estimated, the model 
could be updated periodically at a quite low level 
of effort and cost to incorporate the most recent 
operating experience. 

For short-range planning purposes, the multicol­
linearity in the demand equation should not present 
any serious problems, unless perhaps a proposed ser­
vice change contravened previously established 
operating policies. The restriction of the model to 
appraising service changes on the existing route 
network only is caused, of course, by the decision 
not to include variables that describe the size and 
structure of the catchment area of each route. Be­
cause of this, the model does not take account of 
the varying propensities of different types of 
people to use tr ans it services. In theory, these 
types of effects could easily be incorporated into 
the model by making the effort necessary to add data 
on, say, the numbers of residents and jobs located 
within a given distance of each route and the types 
of people in those homes and workplaces. In prac­
tice, this extension to the demand equation might 
prove to be problematic, for it would be impossible 
to obtain monthly time-series data for these var i­
ables and it would therefore be necessary either to 
change the structure of the data base or to inter­
polate the demographic and socioeconomic data from 
the 1970 and 1975 censuses. 

So, as the model currently stands it cannot pro­
vide strong guidance as to the likely performance of 
alternative new route alignments or indicate which 
of the existing routes may have the demographic and 
socioeconomic conditions most conducive to service 
expansion. The same constraint also limits the 
transferability of the demand elasticity findings to 
other areas or systems, although the usual robust­
ness of transit elasticity values and the fact that 
the values obtained in the San Diego analysis lie 
invariably within the ranges established in the most 
comprehensive surveys suggest that the findings may 
have some wider transferability. 

These limitations aside, the most valuable use of 
a San Diego-type model would be to simulate a set of 
possible service or fare policy changes in order to 
forecast the near-term patronage (and hence gross 
revenue) implications of each. If the estimation 
period for the model were up to date, then predict­
ing the monthly ridership and farebox revenues for 
each of the policy options over the next full fiscal 
year should be a relatively simple exercise. 
Coupled with some improved operating cost models 
that would allow one to project the cost implica-
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tions of the various policies under investigation, 
such a model would provide a very valuable tool for 
operational planning. It would be particularly 
suitable to assessing which routes stand to show the 
largest ridership gains from spending a given sum on 
service enhancement or, conversely, where costs 
might be reduced for the minimal loss in patronage. 

The second major application of a model of this 
type lies in the interpretation of the ridership 
data generated by, say, an experiment that involves 
significant fare and service changes. A good ex­
ample of the type of demonstration that would prob­
ably benefit from using a similar analysis approach 
is provided by the series of UMTA-sponsored experi­
ments with various forms of fare reduction or fare 
abolition carried out in the late 1970s. In these 
demonstrations, a major focus was on identifying the 
patronage response ascribable to the fare change 
alone in order to provide a basis for predicting the 
ridership implications of more extensive or more 
radical fare-reduction policies contemplated for 
other cities. Insofar as the demonstrations created 
significant ridership gains, the possible interac­
tions between the operating policies, the patronage 
volume, and the resultant service quality need to be 
considered if the effects of the fare change per se 
are to be correctly identified . An analysis scheme 
of the type developed for the San Diego bus system 
offers a means of doing this without extravagant 
data requirements. 
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