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Transit Operating Costs and Fare Requirements 

Forecasting by Using Regression Modeling 

JOHN W. BATES 

Because of increasing operating costs and a reduction in federal operating as­
sistance, transit operators are faced with the reality of increasing fares over the 
foreseeable future. The traditional approach of holding off on any fare increase 
and cutting service for as long as possible, then needing to increase fares more 
than is politically acceptable will result in a new cycle of increasing fares, re­
duced services, and declining ridership. An approach to intermediate-term fore­
casting of fare and revenue requirements by using simple regression models is 
described, and examples are given for alternative fare and service questions 
that might be raised. Such a procedure will be useful to transit operators in 
planning for staged changes in fare and service levels so as to avoid drastic and 
unanticipated ones. 

During the decade of the 1970s, a major emphasis in 
public transportation policy was fare stabilization. 
In 1974 federal policy joined with local efforts in 
this regard by providing direct operating subsidy 
funds through Section 5 of the Urban Mass Transpor­
tation Act of 1964, as amended. By 1981, however, 
increasing operating costs, both real and infla­
tionary, and an apparent reversal of federal policy 
intended to result in reduction and termination of 
Section 5 funding are forcing a rethinking of poli­
cies to maintain fares at artificially low levels. 
Today's environment requires transportation opera­
tors to deal with the reality of increasing fares 
over the foreseeable future. 

The traditional approach to increasing fares is 

to defer any action as long as possible, reducing 
costs as much as possible even to the point of 
seriously impairing service, and in the end still 
facing increases that are too large to be politi­
cally acceptable. The result is frequently a fare 
increase that is not large enough to restore or even 
maintain service but that has a negative psychologi­
cal effect in the community. 

From economic and competitive aspects, transit 
fares probably shoul<l he increased. However, it i.s 
important that these increases be made in a ra­
tional, well-planned manner and not in the tra<li­
tional fashion: long-deferred, large-increment 
increases coming only after the level of operations 
has been reduced to the point that some segments of 
the transit market have been denied service at any 
price and other existing and potential market seg­
ments are angry and resentful. Rational and well­
planned fare and service policies require anticipa­
tion of revenue requirements and a staging of fare 
increases in (relatively) small increments, matching 
fare increments to increasing costs of services 
provided and increased costs for alternative modes. 
Such policies, however, require some sort of inter­
mediate-term forecasting capacity for both operating 
costs and revenues. 

This paper discusses a very simple approach to 
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intermediate-term forecasting for operating costs 
and fare requirements and an example of the type of 
analysis that might be performed. Although some of 
the analysis is based on data from the Metropolitan 
Atlanta Rapid Transit Authority (MARTA), the discus­
sions are exemplary only and are not MARTA forecasts. 

FORECASTS OF OPERATING COSTS 

For the very short run, operating costs can be 
forecast by using the normal budget process. This 
approach has the benefit of comprehensiveness and 
near-horizon estimating but also the disadvantage 
that one cannot look beyond the next few months or 
forecast impacts of this year's decisions on next 
year's requirements. Fare requirements determined 
during the budget process also tend to be heavily 
biased by short-term political and policy factors 
that overshadow analytical findings. 

A very simple model for forecasting operating 
cost is the naive approach of an annual growth rate 
for aggregate costs or for the cost per unit of 
operation, such as vehicle miles. The total level 
of operations is a variable in the analysis for the 
latter case, not a given as in the budgetary ap­
proach. For one or two years into the future, the 
naive model is probably as good as any other. Fac­
tors that might cause drastic changes in the annual 
rate of change in unit costs (wages, fuel, infla­
tion, etc.) would probably not be included in a more 
precise "budget-type" forecast beyond the first year 
either. 

Beyond the naive model, cost forecasting can 
become as complex and as comprehensive as the ana­
lyst wishes to make it. One simple elaboration on 
the naive model is given here as an example, based 
on MARTA data for the 1973-1980 period. The average 
cost per vehicle mile for each calendar year is 
calculated and converted to "constant" 1980 dollars 
by using as the conversion factor the ratio of the 
consumer price index (CPI) for 1980 to the average 
CPI each year. This annual unit cost is then re­
gressed against the actual mileage operated each 
year to obtain an estimator that explicitly con­
siders the level of operations and "averages out" 
increases in overhead (management and supervision) 
that are related to the level of operation. In this 
example, the regression indicated a relation ex­
pressed by 

CVM 80 = 1.573 + 0.0158(AM1LES) 
(1.945) 

R2 = 0.387; SE= 0.063; 
OF= l,6;F=8;0W=2.6 

(!) 

where CVM90 is unit operating cost (in dollars per 
vehicle mile) and AMILES is millions of annual 
vehicle miles operated. 

By using a model as simple as this, as basic as a 
direct estimate of unit cost or as complex as de­
sired, a rational forecast of unit and aggregate 
operating cost can be made for various levels of 
operation. This particular model is presented only 
as an example and without any degree of confidence. 
The relation may not be linear, in fact; there may 
be (or may not be) scale economies, and there may 
well be other factors that should be included. In 
this derivation, a time-series term and a dummy 
variable for the first year of a new, multiyear 
labor contract were also tested but were not signif­
icant in the relation, even relative to the "poor­
ness" of the one shown. However, for the purposes 
of illustrating the use of a cost-estimating model, 
the relation given in Equation 1 will be accepted. 

FARE REQUIREMENT (REVENUE) FORECASTS 

Given operating costs and estimates of revenues from 
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all sources other than fares, the amount of aggre­
gate fare revenue required in a given year is de­
rived. This revenue is simply the product of aver­
age fare payment and total linked trips. There is, 
however, a simultaneity between fare and ridership 
that makes this computation cumbersome. This problem 
is relieved, however, if one has a model for di­
rectly estimating average fare given a total revenue 
requirement. Such a model can be obtained from a 
linear expression for total aggregate linked trips 
that includes explicitly the fare level to be used 
in the analysis. A comment should be made on the 
use of the term "average fare" in this discussion. 
There are probably very few transit operators whose 
published base fare is the same as the resulting 
average fare. Unlimited ride passes, such as those 
used by MARTA and others, as well as zone charges, 
transfer fees, and reduced fares for the elderly and 
the handicapped make the relation between published 
base fare, "standard fare", and average fare very 
complex. The determination of average fare value is 
specific for each fare structure and set of rider 
characteristics. If the number of linked trips is 
known, however, along with the total fare revenue, 
the average fare can be derived simply by division. 
In this sense, total fare revenue is the product of 
linked trips and average fare. 

A simple linear regression model has been derived 
for monthly aggregate transit ridership in Atlanta 
for a 120-month period beg inning in January 1970. 
This model included terms for total vehicle miles, 
average fare, the price of gasoline, and special 
adjustment factors for the number of nonholiday 
weekdays each month and the number of weeks of 
special school service operations each month. The 
model is given as 

TRIPS= -0.015(FARE) + 0.798(MILES) + 0.013(GAS) 
(-4.32) (3.89) (3 .32) 

+ 0.1 ll(WKOY) + O.IOO(SCH) - 0.081 

R2 = 0.919; SE= 0.219; OF= 5,114; F = 218.6; OW= 1.42 

where 

TRIPS 
FARE 

MILES 

GAS 

monthly linked trips (000 OOOs); 
average fare during the month (¢) : 
total vehicle miles operated during the 
month (000 OOOs): 
average price per gallon for gasoline 
during the month (¢): 

(2) 

WKDY number of nonholiday weekdays during the 
month; and 

SCH number of weeks special school services 
are provided during the month. 

This model was applied to MARTA monthly operating 
data for the period January-December 1980, the 
12-month period following the 10-year "calibration" 
period. The calendar-year total number of linked 
trips estimated by the model was 72.903 million 
compared with a reported figure of 72.911 million. 

Linear models of this type have been used by 
others in analysis of factors that cause changes in 
transit ridership. A few of these analyses have 
also included automobile costs, particularly gaso­
line price, in the relation. Although there may be 
some opinion that the linear form is not appropri­
ate, for any or all of the variables included, and 
that constant-elasticity formulations rather than 
the direct-value form used here are "better", such 
discussions are suited to a paper specifically on 
demand modeling. This paper presents a discussion 
o[ use o[ demand models and uses the relation ex­
pressed in Equation 2 for the exemplary purpose. 

Since revenue is the product of average fare and 
linked trips, revenue for any given month is 
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R= FARE* TRIPS 

or 

R= -0.015FARE2 + (0.798MILES + 0.0!3GAS + O.l l IWKDY 

+ O.lOOSCH - 0.08l)FARE 

(3) 

(4) 

Note that R must be expressed in dollars * 100 to 
maintain continuity of fare expressed in cents. 

This expression can be restated as 

(FARE)2 - (53.3MILES + 0.867GAS + 7 .4WKDY + 6.667SCH 

- 5.4)FARE + 66.67R = 0 

(5) 

which may be solved by the quadratic formula to give 
the average fare necessary given the revenue re­
quired for the month and service level, gasoline 
pr ice, number of weekdays, and number of weeks of 
school services. For an annual forecast, the compu­
tation can be made for the "average month" during 
the period, times 12, or by using 1/12 annual fig­
ures for revenue, service, miles, weekdays, and 
school weeks and annual average pr ice of gasoline 
and fare. 

The presence of the term for special school 
services requires some explanation. Until the 
1980-1981 school term, City of Atlanta schools did 
not provide school bus services and public school 
trips were made on MARTA services. This was a 
special situation and required the specific term in 
the regression. Beginning in September 1980, free 
bus services were initiated by the City of Atlanta 
schools for trips more than 1 mi le in length and 
there was a substantial reduction in MARTA rider­
ship. For projections, the value of the SCH term is 
zero, and the term is removed from the model in the 
examples that follow. 

All of the variables in the model shown are 
"controllable" by the transit operator except the 
price of gasoline. Values for this variable in 
projections must themselves be forecast. One way to 
deal with the "weakness" this causes is to do rang­
ing-type projections, by changing the values for 
gasoline price used in the analysis to estimate the 
sensitivity of the forecasts to variations in actual 
future gasoline prices versus predicted ones. 

Note again that the models presented here for 
linked trips and fare/revenue--Equations 2 and 5, 
respectively--were developed for MARTA by using 
MARTA and Atlanta data. Although other researchers 
have done similar analyses and obtained similar 
results, there have been published results that were 
quite different. This model is presented only as 
part of a discussion of how such models can be used 
in transit management, not as a specific model for 
general use. 

INTEGRATING COST AND REVENUE MODELS 

If one takes the operating cost model from Equation 
1, or 

CVM = k* (1.573 + O.Ol 58AMILES) (6) 

where k is an escalation factor or percentage in­
crease in unit cost over the base year and AMILES is 
the total annual service level, as distinguished 
from MILES, which denotes average monthly mileage, 
then average monthly operating cost can be calcu­
lated by 

COST= k(l.573 + 0.0158AMILES) *MILES (7) 

and average monthly revenue required from fares by 

REV= k(l.573 + 0.0158AMILES) *MILES - INC (8) 
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where INC is the average monthly income from sources 
other than fare (including subsidy). 

Given these relations, one can substitute into 
Equation 5 and state a comprehensive cost/revenue 
model: 

FARE2 - (53.3MILES + 0.867GAS + I 54.9)FARE (9) 

+ 66.67[k(l.573 + 0.0!58AMILES) *MILES 

- INC) * 100 = 0 

which is simplified by deleting the term for special 
school services and assuming 21. 7 weekdays/average 
month. Having established this relation, one can 
solve the equation for any one of the variables when 
all of the others are known (or when values are 
assigned). 

EXAMPLE APPLICATIONS OF THE MODEL 

The following examples demonstrate how a model of 
this type might be used for fare policy analysis and 
financial planning. Imagine a transit operation 
that for the current year has the following values 
for the pertinent parameters: 

Parameter 
FARE (¢) 

MILES (000 OOOs) 
GAS (¢) 

TRIPS ( 000 OOOs) 
REV ($000 OOOs) 
COST ($000 OOOs) 
INC ($000 OOOs) 

Value 
so.o 

18.0 
135.0 

54.4 
27.2 
33.4 
6.2 

The operator would like to estimate the average fare 
required (and the resulting number of linked trips) 
if the following conditions occur over the next 
three years: 

1. Unit operating costs increase at 10 percent/ 
year, 

2. The service level is increased at 1.0 million 
miles/year, 

3. There is an annual growth in the pr ice of 
gasoline of 10 percent/year, and 

4. There is no income available other than that 
from fares (i.e., no subsidy, advertising, etc.). 

With these assumptions or assignments of values 
to the parameters in the model for each of the three 
projection years, the average fare payment required 
and resulting annual ridership can be obtained from 
the model. The results are given in Table 1. Equa­
tion 8 is used to derive the average fare value. 
Then Equation 2 provides the number of linked trips, 
which can be multiplied by average fare to yield 
passenger revenue: or Equation 5 can be used to 
derive revenue, divided by average fare, to yield 
linked trips. Operating cost is derived from Equa­
tion 6. All of these computations were made for an 
"average" month and then multiplied by 12 for the 
annual figure. The process provides the additional 
benefit of allowing for an analysis of the sensitiv­
ity of the required fare to each of the parameters 
whose values must be assigned. For example, what 
would be the result if the unit cost increased at a 
rate of 11 percent instead of 10 percent, or what 
would happen if gasoline prices stabilized at cur­
rent levels? 

The increases in average fare given in Table 1 
are substantial. The imaginary operator may well 
believe that these are too much for the community to 
accept and may then try alternatives, such a~ deter­
mining the fare required if the current level of 
subsidy and other nonfare revenues is continued. The 
result under this condition is given in Table 2. 
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Table 1. Fare required when unit costs and service levels increase and nonfare 
revenue is reduced to zero. 

Value by Year 

Parameter 0 2 3 

Average fare(¢) 50.0 (73.8) (84.3) (96.0) 
Service miles operated (000 OOOs) 18.0 19.0 20.0 21.0 
Area gasoline price ($/gal) 1.350 1.485 1.634 1.797 
Annual linked trips (000 OOOs) 54.4 ( 53 .0) (54.2) (55.4) 
Fare revenue ($000 OOOs) 27.2 (32.l) (45 .7) (53.2) 
Operating cost ($000 OOOs) 33.4 (39.1) (45.7) (53.2) 
Non fare revenue ( $000 OOOs) 6.2 0 0 a 

Note: Values no t in parentheses are assigned; values jn parentheses are calculated. 

Table 2. Fare required when unit costs and service levels increase and nonfare 
revenue is held constant. 

Value by Year 

Parameter 0 2 3 

Average fare (¢) 50.0 (59.2) (69.5) (80.8) 
Service miles operated (000 OOOs) 18.0 19.0 20.0 21.0 
Area gasoline price ($/gal) 1.350 1.485 1.634 l .797 
Annual linked trips (000 OOOs) 54.4 (55.6) (56.9) (58.2) 
Fare revenue ($000 OOOs) 27.2 (32.9) (39.5) (47.0) 
Operating cost ($000 OOOs) 33.4 (39.1) (45.7) (53.2) 
Nonfare revenue ($000 OOOs) 6.2 6.2 6.2 6 .2 

Nole: Values not in parentheses or~ assignt!d; valut!s in ponmlh~ses are calculalt:d. 

Table 3. Nonfare revenue required when unit costs increase and fare and 
service levels are held constant. 

Value by Year 

Parameter 0 2 

Average fare(¢) I 
50.0 50.0 50.0; 

Service miles operated (000 OOOs) 18.0 18.0 18.0 
Area gasoline price ($/gal) 1.3 50 1.485 1.634 
Annual linked trips (000 OOOs) 54.4 (55 .6) (58.8) 
Fare revenue ($000 OOOs) 27.2 (28.2) (29.4) 
Nonfare revenue ($000 OOOs) 6.2 (8.5) (11.0) 

Note: Values nol in parentheses are assigned; values jn parentheses are calculated. 

Table 4. Level of service possible when unit costs increase and fare and 
nonfare revenue are held constant. 

Value by Year 

Parameter 0 2 

Average fare(~) 50.0 50.0 50.0 
Service miles operated (000 OOOs) 18.0 (16.8) (15 .7) 
Area gasoline price ($/g•I) 1.350 1.485 1.634 
Annual link ed trips (000 OOOs) 54.4 (55.5) (57.0) 
Fare revenue ($000 OOOs) 27.2 (27.8) (28.5) 
Operating cost ($000 OOOs) 33.4 (34.0) (35.7) 
Nonfare revenue ($000 OOOs) 6.2 6.2 6.2 

Note: Values not in panmthcses ure assigned ; values in parentheses are calculated. 

3 

so.a 
18.0 
1 797 
(61.3) 
(30.7) 
(13.8) 

50.0 
(14 .8) 
1.797 
(58.8) 
(29.4) 
(35.6) 
6.2 

Certainly, this type of analysis might be useful in 
discussing whether an existing subsidy payment might 
be continued. 

Another type of analysis possible from the model 
is given in Table 3. Here the service level is held 
constant along with the fare, and the amount of 
subsidy and other nonfare revenue required to main­
tain the operation is computed. Table 4 reflects 
nearly the same situation, but the level of subsidy 
and other nonfare revenue is held constant along 

Transportation Research Record 877 

Table S. Level of service possible when unit costs increase, nonfare Is held 
constant, and fare is increased St/year. 

Value by Year 

Parameter 0 2 3 

Average fare(¢) 50.0 55.0 60.0 65.0 
Service miles operated (000 OOOs) 18.0 (18.0) (18.0) (17.9) 
Area gasoline price ($/gal) 1.350 1.485 1.634 1.797 
Annual linked trips (000 OOOs) 54.4 (55.5) (57 .0) (58.6) 
Fare revenue ($000 OOOs) 27.2 (30.5) (34.2) (38.1) 
Operating cost ($000 OOOs) 33.4 (36.7) (40.4) (44.3) 
Nonfare revenue ($000 OOOs) 6.2 6.2 6.2 6.2 

Note: Values not in parentheses are assigned; values in parentheses are calculated. 

Table 6. Nonfare revenue required when unit costs increase, level of service is 
held constant, and fare is increased St/year. 

Value by Year 

Parameter 0 2 3 

Average fare(~) 50.0 50.0 60.0 65.0 
Service miles operated (000 OOOs) 18.0 18.0 18.0 18.0 
Area gasoline price ($/gal) 1.350 1.485 1.634 1 797 
Annual linked trips (000 OOOs) 54.4 (55.6) (57.0) (58.6) 
Fare revenue ( $000 OOOs) 27.2 (30.6) (34.2) (38.1) 
Operating cost ($000 OOOs) 33.4 (36.7) (40.4) (44.5) 
Non fare revenue ( $000 OOOs) 6.2 (6.1) (6.2) (6.4) 

Note: Values not in parentheses are assigned; values in parentheses are calculated. 

with the fare while the total level of operations is 
decreased to the level that can be supported with 
the funds thus available. 

Finally, Tables 5 and 6 demonstrate the cases in 
which fare is increased at the rate of 5¢/year. In 
Table 5 the level of nonfare revenue is held con­
stant and mileage is set at the resulting affordable 
level, and in Table 6 mileage is held constant and 
nonfare revenue is changed as appropriate. Note 
that the "alternatives" in Tables 4-6 show increased 
annual volumes for linked trips, even when service 
level is decreased and/or fare is increased. This 
is due to the impact of the assumed increase in 
gasoline price, which overrides negative impacts of 
fare increases and service decreases in the rider­
ship model (Equation 2) • 

CONCLUSIONS 

The model used in these discussions is based on work 
done for MARTA and is not suggested as a general 
model for any other transit system. However, the 
values of the coefficients for the variables in the 
basic regression of linked trips are in the same 
general ranges as those of models derived for other 
areas. What is suggested here is that a relatively 
simple research process can be applied to provide 
transit operators with an analytical tool that might 
be very useful in deriving fcire policies and finan­
cial plans that look beyond the immediate budget 
year and allow for more rational decisions and 
consideration of longer-term impacts of fare deci­
sions. 

The sensitivity of ridership to the price of 
gasoline in the models used here calls for further 
comment. In the alternatives in Tables 4-6 dis­
cussed above, as noted, increases in annual rider­
ship are projected even with increases in fare 
and/or decreases in service level. This is because 
of the projected increase in gasoline price. The 
potential impacts of this condition must be consid­
ered. The increase in fare and/or decrease in 
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service level causes some previous transit trips to 
be lost, while the increase in gasoline prices 
generates a net gain in total transit trips. The 
increase in trips, however, more than likely repre­
sents diversions from the automobile and may well 
occur principally during the peak periods. The 
overall result is an increased burden on current 
transit-depenrlent riders and a relative increase in 
peak-period transit use, which miqht cause operating 
costs to increase more rapidly. The social as well 
as the financial implications of this conaition 
should be carefully considered. 

Rational fare policy is essential if the competi­
tive position that transit has established over the 
past several years is to be maintained and, it is 
hoped, improved. The 1970s saw a recapitalization 
of transit systems that strengthened the competitive 
position. Increasing gasoline price alone is a 
major factor that favors transit, as are increasing 
costs for dispersed housing and automobiles. The 
situation is much different from that in the postwar 
era when the combination of release from shortages, 
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increasing real incomes, subsidized suburban hous­
ing, cheap gasoline, and deteriorated capital struc­
ture of transit was overwhelming in its bias for 
increased automobile travel and decreased transit 
travel. Pricing the improved transit product in line 
with the competition will allow increasing fares to 
match increasing costs. However, the fare increases 
imposed must be incrementally small, regularly 
instituted, and anticipated. Planning for fare 
changes, operating costs, and service levels must 
extend beyond the current budget year if this is to 
be accomplished. The process described here is one 
approach to doing this. 

Publication of this paper sponsored by Committee on Public Transportation 
Planning and Development. 

Examining Likely Consequences of a New 

Transit Fare Policy 

ROBERT CERVERO 

An evaluation model is presented for examining the likely consequences of im­
plementing alternative transit fare policies. The model weights responses to 
on-board ridership survey responses based on disaggregate fare elasticity esti­
mates in projecting future patronage levels and revenue income. Revenue and 
cost data associated with specific users' trips are also combined in comparing 
the farebox recovery levels among various categories of trip distance, time of 
day, and user demographics. The functional components of the model are de­
scribed and its use is demonstrated. Fare, cost, and travel data from the South­
ern California Rapid Transit District are used to examine the current fare policy 
of the system. Uniform fares are found to be both inequitable and inefficient. 
Both distance-based and time-of-day fare scenarios are designed and tested in 
terms of their ability to correct some of the problems associated with flat fares. 
Finely graduated fares are found to be best suited for mitigating inequities, and 
stage fares seem to be a more cost-effective pricing strategy. As transit funding 
sources continue to shrink, it is imperative that analytic tools be developed for 
examining the full range of impacts of alternative fare systems. 

The American transit industry today finds itself in 
a financial stranglehold. The nationwide transit 
deficit stood at $4 billion in 1980, the product of 
precipitous cost increases and declining real dollar 
fares during the 1970s (1). '!'he Reagan Administra­
tion's planned phase-out -;f federal operating subsi­
dies portends a future of major fare increases and 
service cutbacks. As the going rate for a bus ride 
threatens to reach the $1 mark in Los Angeles, 
Chicago, and other major cities in the not-too-dis­
tant future, transit managers are scrutinizing 
current fare practices and pricing rationales more 
closely. More finely graduated, distance-based 
pr icing and peak/off-peak fares, in particular, may 
become prevalent during the 1980s as operators 
attempt to capture some of the differential costs of 
providing services. During the past several years, 
more than 20 American transit properties have intro­
duced some form of time-of-day pricingi Tri-Met in 
Portland, Oregon, and several other operators have 
recently expanded their zonal fare systems <ll· 

Understanding the likely effects of alternative 
transit fare systems is essential to effective 
ongoing transit planning. Not only is it necesssry 
to examine the likely ridership and fiscal impacts 
of a proposed fare change, but one must also be able 
to discern the distributional consequences. Citi­
zens' groups and minority organizations are increas­
ingly becoming outspoken and militant in their 
opposition to unilateral fare hikes, as demonstrated 
by recent court challenges charging violation of 
Title VI requirements of the Civil Rights 11.ct of 
1964 in such places as Dallas, Pittsburgh, and 
Memphis. Recent evidence suggests that today's 
reliance on predominantly flat fares is grossly 
inequitable in that short-distance, midday, and 
lower-income users typically cross subsidize the 
long-distance, usually more affluent, rush-hour 
commuter (3, 4). Mitigating any maldistributive 
effects of a -fare change is particularly important 
because of transit's universally accepted role in 
providing mobility opportunities to disadvantaged 
persons. 

This paper presents a model originally used in 
examining the likely consequences of proposed fare 
changes for three California transit properties 
(5). In addition to estimating the revenue and 
ridership impacts of a fare change, equity conse­
quences were assessed. The er i ter ion variable used 
in evaluating equity impacts was a farebox recovery 
ratio disaggregated at the level of the individual 
user (i.e., a ratio of what share of a user's trip 
costs is met through the farebox). Trip costs were 
estimated by using a multistage cost allocation 
technique that is described in detail in a companion 
paper in this Record and elsewhere (6). Fare revenue 
and patronage information was gather;d from on-board 
ridership survey responses. The use of passenger­
level data enabled the analysis of distributional 




