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comparison of transfer results to results obtained
by application of a local model., The cbjective for
the future is to use an understanding of the rela-
tion between model specification and characteristics
of both estimation and application contexts to pro-
vide prior guidance about the probable transferabil-
ity of different models estimated in different con-
texts for wuse in the application context of
interest. This will be the focus of future research.
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Wisconsin Work Mode-Choice Models Based on Functional
Measurement and Disaggregate Behavioral Data

GEORGE KOCUR, WILLIAM HYMAN, AND BRUCE AUNET

This paper describes a series of mode-choice models developed by the Wiscon-
sin Department of Transportation to assess transportation policy issues con-
sistently across four sets of urban areas in the state. The models were devel-
oped by using a combination of functional measurement (or by asking respond-
ents their likely mode choice in a series of situations) and disaggregate demand
modeling (to calibrate the models and provide a test of the correspondence be-
tween stated and actual behavior). Bus, walk, bicycle, ridesharing, and drive-
alone modes are included. Key variables includi li ilability, g:

price, queuing time to purchase gasoline, bicycle lanes, ridesharing programs,
and tia Tie modeis are being used in statewide poiicy
analysis, for local planning, and for quick-response analysis. They represent an

L.
it 5€

approach to demand analysis and may be an efficient and effective tool for
examining other demand issues.

In a single statewide modeling study, the Wisconsin
Department of Transportation (WisDOT) has developed
work trip mode-choice models for four sets of urban
areas of different character: one large city, one
medium city, and two sets of small cities. These

models permit WisDOT tc address key pelicy issues by

incorporating the effects of gasoline availability,
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gasoline price, queues for gasoline purchases, ride-
sharing programs, transit service improvements, bi-
cycle lanes, and other factors. The models are
estimated by a combination of functional measurement
(also called conjoint analysis) and disaggregate
demand modeling. Functional measurement models
(1,2) are based on asking respondents their 1likely
mode choice in a series of situations constructed
from an experimental design. One or more situations
closely resemble current conditions. We use a logit
model to compare stated behavior under current con-
ditions with actual behavior and adjust the models
derived from the functional measurement task if
there is a difference. The models are further re-
fined by using sensitivity analysis.

The department undertook this statewide effort to
enhance its ability to plan in a multimodal con-
text. By administering similar surveys in all the
urban areas of the state, it gained the ability to
examine a broad range of urban transportation poli-
cies in a consistent manner. The department can now
determine the absolute and comparative impacts of
many policy proposals on driving alone, sharing a
ride, walking, bicycling, and riding a bus.

Not only are the models useful for statewide
policy analysis, they also enhance WisDOT's ability
to provide technical assistance to urban areas in
preparing transportation plans. Also, the pivot
point and elasticity formulations of these models
are being used for quick policy analysis. Finally,
these urban work trip models complement a set of
intercity mode and trip-frequency models developed
earlier by using functional measurement (3,4). Ul-
timately, the department will have a comprehensive
set of models for statewide policy analysis and sys-
tem planning.

The functional measurement and disaggregate mod-
eling methodology was devised to address WisDOT's
forecasting requirements within a moderate budget
level and relatively short time frame. Functional
measurement was chosen because most key policy is-
sues that face WisDOT cannot be captured readily in
disaggregate models. Top administrators were spe-
cifically interested in learning the effects of gas-
oline rationing, long lines at gasoline stations,
large increases in gasoline price and parking costs,
improved bicycle facilities, and other issues not
customarily addressed by demand models. Fuel price
and availability exhibit no variability in the usual
cross-sectional data sets because all individuals
face the same conditions at a given point in time.
In small cities bus fares are constant and virtually
no parking fees are charged for work trips, Several
modes of interest, such as bicycle facilities and
commuter rail, are nonexistent in most areas. Fi-
nally, the data-collection effort for a statewide
disaggregate model would be extensive.

Model validity was a strong concern, so we per-
formed a second stage of analysis by using a logit
model to further calibrate the original models. 1In
this stage the forecasts derived from the functional
measurement model for the status quo are compared
with actual behavior, and the stated behavioral
model is adjusted if there is a discrepancy. The
calibration procedure can require fewer data than a
traditional disaggregate model.

Two staff members completed the analysis in six
months. An additional six months was needed to pre-
pare reports and documentation, and some program-
ming, keypunching, and consultant assistance were
required.

FOCUS GROUPS

To begin the analysis four focus group interviews
were held. The discussions of the focus group
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either verified the factors believed to be important
a priori or suggested others to be treated in the
qualitative analysis of mode split. The focus group
consisted of 8-12 individuals who were convened for
1.5 h in a structured session. We obtained several
interesting qualitative results. For example, indi-
viduals said their travel behavior was more sensi-
tive to the change in the pump price of gasoline
than to gasoline price per mile, which suggests that
fuel efficiency was a consideration only when buying
a vehicle, Also, participants of the focus group
regarding bicycle travel said condition of the rid-
ing surface was a major concern, which was an unan-
ticipated factor. 1In addition, many women said that
under no circumstances would they stop driving alone
to work because they had to carry groceries or
children on the way to or from work. This suggested
that sex and the number of children should be in-
cluded in the final models to explain travel choice
(5).

DESIGN OF EXPERIMENTS AND SURVEY

Six experiments were prepared to meet the objectives
of the study. The four that pertain to ridesharing,
walking, bicycling, and local bus service are re-
ported in this paper. Two other experiments for
express bus and commuter rail were also adminis-
tered, but these modes are available to few travel-
ers in Wisconsin. The experiment for ridesharing is
illustrated in Figure 1, and other experiments are
very similar., All surveys used drive-alone as the
base mode.

A typical multivariable experimental model in-
volves a series of independent variables that affect
some dependent variable, such as mode choice. Each
independent variable is considered at two or more
values or levels, as designated by the experimental
plan. In the ridesharing experiment gasoline price
has four 1levels ($1.30, $1.70, $2.00, and $2.60),
and the four other factors have two levels, The
experiment is thus a 4! x 2* design.

The experimental results are analyzed to evaluate
the statistical significance of the independent var-
iables, estimate their effects, and establish func-
tional relations. 1In conducting such analyses, one
is interested in the main effect of each variable,
that 1is, the effect on experimental response of
going from one level of the variable to the next,
all other variables being at theilr average values.
In many situations the effect of two independent
variables is not additive, and the variables are
said to interact (i.e., the effect of one variable
on the response depends on the value of some other
variable).

A common multivariable experimental plan is the
full factorial experiment, which consists of all
possible combinations of levels for each of the var-
iables. In our case, this would require 4! x 2%, or
64 situations. A full factorial experiment permits
one to obtain estimates of the effects of all pos-
sible interactions.

Many higher-order interactions can be assumed to
be negligible, which leads, however, to a substan-
tial reduction in the number of situations re-
quired. Such designs are called fractional facto-
rial plans. In Figure 1 we use a one-eighth
fraction, or only eight situations; this assumes
that all interactions are negligible. This plan
allows approximate estimates of the effects of a
large set of policy variables in a relatively simple
mailout survey, although it is at the expense of
assuming a linear, additive model without interac-
tions. This trade-off between survey complexity and
model richness was made to ensure as high a response
rate to the survey as possible, and to allow high
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Figure 1. Ridesharing experiment.
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Under what situstions would you drive alone or share a ride (carpool or vanpool) to work?

Consider that you are going to work and that driving alone or sharing a ride in a car pool or van pool are your only choices.

Below are a number of faciors describing eight different situations where you are faced with choosing whelher to drive alane or share a ride to

work, ——
S < N . . . . EASE~
tL:\:Il:"alt each situation across the entire line and please answer in the lasi column to the right how likely you are to drive alone or share a ride :«lr:lSWER N TS COLURN
T V— —
HOW LIKELY ARE YOU TO DRIVE ALONE
AUTO FACTORS | CAR POOL/VAN POOL FACTORS 0! A e hloE
|
I (CIRCLE A NUMBER)
Parking Cost 10 | People You Share Employee Work A IO Seaiabiy  RIwAG
Gas Availability Gas Price Drive Alone I A Ride With Schedule ,.m,:. :::: . :,:I,;n As,:l,u_‘
1 Co-Worker/ Flexi-time
1 3 4 5
SITUATION 1 Ample Supply $1.30/gallon Free : Neighbor (ks earsend iR 2
Ration of 10 | General Public Flexi-lime 3 " 5
SITUATION 2 gallons/week® $2.60/gallon Free | (Carpool Matching) (hours can vary daily) s :
Ration of 10 | Co-Worker/ Flexi-time
SITUATION 3 gallons/waek* $2.00/gallon $30/month | Neighbor (Hoiiis:an varyidaily) 1 2 3 4 5
SITUATION 4 Ample Supply $2.60/gallon $30/month 1 Fixed 8 hour day 1 2 3 4 5
Ration of 10 | Co-Worker/ ; y "
SITUATION § gallons/week* $1,70/gallon Free | Neighbor Fixed B hour day 1 2 3
T General Public )
SITUATION 6 Ample Supply $2.00/qallon Free | (Carpool Matching) Fixed 8 hour day 1 ? 3 4 5
1 General Public Flexi-time
30/month A 1 2 3 4 s
SITUATION 7 Ample Supply $1.70/gallon $30/ | (Carpool Matching) s can Varg g}
Ration of 10 ! General Public ixed 8 hour d
SITUATION 8 gatlons/week* $1.30/gallon $30/month | (Carpool Matching) Fixed 8 hour day 1 2 3 4 5

*|f your car gets 15 miles per gallon, you can travel 150 miles per week.

confidence in the responses received--both crucial
considerations for statewide policy planning.

Catalogs of experimental designs are available in
the literature (6,7). We developed our own simple
designs. 1In addition to the experiment, each survey
instrument contained background gquestions of two
types. Some were questions concerning socioeconomic
characteristics of respondents and thus were suit-
able for checking representativeness of the samples
and measuring the sensitivity of mode choice to
socioeconomic variables. The remainder gathered
data on actual travel choices of individuals and the
attributes of competing modes.

SURVEY ADMINISTRATION

The sizes of the survey sample were determined based
on desired levels of sampling error and expected
response rates. The sampling error was set at #5
percent, with 95 percent confidence for categorical

variables, particularly the 1-5 response scale in
the experiments. A conservative 20 percent usable
response rate was assumed. These considerations,

applied to the number of cities and separate modes
for which models were desired, resulted in the mail-
ing of about 17 000 questionnaires.

WisDOT mailed the surveys to residents who re-
newed their drivers' licenses in August and Sep-
tember 1980. The gross response rate was 57 percent
(9208 surveys), but some surveys had incomplete in-
formation, The usable response rate was 46 per-
cent. Because we received more than double the
expected response rate, we were able to exclude
respondents who did not travel to work, so we could
compare each person's stated responses with actual
travel choices. Respondents sorted out at this
stage were retired people, other individuals who do
not work, individuals who work at home, and stu-
dents. Also, some respondents who filled out the
walk or bicycle experiments were dropped because
they lived too far from work to consider walking
(more than 3 miles) or bicycling (more than 7 miles)
as practical choices. We retained 3185 surveys for
model development; 1791 of them pertain to the four
models reported in this paper. Between 273 and 679
surveys were used in the four sets of urban areas.

We checked the samples for representativeness by
comparing the frequency distribution of selected
sociceconomic characteristics of respondents with
1970 census data. The proportions of individuals in
any one-way tabulation by sex, age, household size,
and income (adjusted for inflation) were within
+10 percent of the census. The only exceptions
were that, in some cities, the 15-24 age category,
one-person households, and incomes under $5000 an-

nually were underrepresented. Exclusion of stu-
dents, retired, and other unemployed respondents
explains the difference.

As a further check of representativeness, we

compared the actual mode choices reported by respon-
dents with the results of a strict probability
sample conducted a year earlier by the Wisconsin
Survey Research Laboratory (8). The comparison was
satisfactory.

ANALYSIS OF SURVEY RESPONSES

The first stage in building the actual models was to
fit linear additive models on the experimental re-
sponses obtained in the survey. The functional form
and variables were already set in the design step so
that model estimation is a simple task at this
stage. The only flexibility in model estimation is
in the socioceconomic variables and their functional
form because they are not part of the experimental
design. Multiple linear regression is used to esti-
mate the models. The dependent variable is the
response on the 1-5 scale, assuming that the stated
likelihood of choosing a nonautomobile mode is pro-
portional to utility. This is equivalent to using a
linear approximation to a logit function. The inde-

pendent variables are the experimental variables
(level of service) and the background responses
(socioeconomic characteristics).

The automobile-related variables appear in each

survey form because automobile was the base mode
against which each competing mode is set. Restric-
tions that the coefficients of the automobile vari-
ables be equal across all experiments are required
for consistency in the multimodal model developed in
the next step; the easiest way to apply these re-
strictions is to estimate a multiple linear regres-
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sion across all the surveys jointly. The results of
this are given in Table 1.

Formally, the equations in the table are as
follows:

Uy = 'Ecakxak + chlxsl + Ecwmxwm + Ecbnxbn + Ectpxtp

=-U, + Uy + Uy + U, + U 1)
where
U, = utility of mode relative to driving alone

(i.e., the response to a situation on the
1-5 scale from any experiment 1i); i = s
(shared ride), w (walk), b (bicycle), or t
(transit);

c = vector of coefficients;

X = vector of variables in experiment s, w, b,
or t; variables for mode a appear in all
experiments;

k = index that corresponds to drive-alone and
socioeconomic variables;

The

drive alone),
step.

= index that corresponds to shared-ride vari-

ables;

ables; and

variables.

utilities Uy,
the absolute utilities of each mode (not relative to
in the calibration
for example,
Equation 1 en-

Xjg = 0 except when

compasses each binary experiment but allows a multi-
incorporating the

modal treatment by

that the automobile utility coefficients
same in all binary comparisons.

Table 1 gives the results of analyzing the exper-
imental responses for each city.
ficients show relatively 1little
cities, which suggests that transferability of these
coefficients among urban areas 1is a possibility.

Table 1. Variables, coefficients, and goodness-of-fit statistics for regressions on experimental responses.

which are
The Xs are dummy variables;
i= s,

Us,

used

Thus,

Upr

and

m = index that corresponds to walk variables;

= index that corresponds to bicycle

p = index that corresponds to local bus transit

Ut

restriction
are

Most of the coef-
variation

Milwaukee County

Fox River Valley

Madison (n = 305) (n=273) Cities (n = 534) Other Cities (n = 679)
Variable
Name Definition Coefficient  t-Value Coefficient  t-Value Coefficient  t-Value Coefficient  t-Value
Automobile Utility (U,)
CA Automobile constant -5.271 -4.697 -4.448 -5.051
GA Gasoline availability, 0 if ample -0.320 -6.30 -0.377 -6.57 -0.318 -7.93 -0.315 -8.99
supply, 1 if rationing
GP Gasoline price ($/gal) -0.234 -5.48 -0.320 -6.62 -0.284 -8.41 -0.284 -9.59
PK Parking costs ($/month) -0.016 -6.93 -0.017 -6.91 -0.017 -8.77 -0.016 -9.82
WT Wait time to buy gasoline (min) -0.008 -0.89 -0.004 -0.38 -0.013 -2.30 -0.007 -1.29
IN Annual household income ($000s +0.012 6.02 +0.010 3.73 +0.001 0.59 +0.008 5.09
in 1980)
A2 4 Vehicles per person 16 years old +0.178 3.12 +0.078 1.19 +0.096 2.48 +0.004 0.13
and over in household
T Travel time (min) -0.030 =211 -0.025 -2.27 -0.019 -1.89 -0.33 -3.70
Shared-Ride Utility (Us)
CR Shared-ride constant 0.216 3.08 -0.090 -1.21 0.360 5.91 0.085 1.61
RD Ridesharing partner, 0 if general +0.222 2.58 +0.216 2.21 +0.138 2.00 +0.081 1.41
public matching, 1 if coworker or
neighbor
LA Work schedule, 0 if flexitime, 1 if +0.401 4.66 +0.384 3.94 +0.581 8.46 +0.399 6.93
fixed 8-h day
T Travel time (min) -0.030 -2.77 -0.025 -2.27 -0.019 -1.89 -0.033 -3.70
Walk Utility (Uy,)
Ccw Walk constant 0.386 4.46 0.268 2.820 0.151 2.30 0.119 2.01
WD Walk distance to work (miles) -0.897 -3.36 -0.936 -3.08 -0.925 -5.48 -0.784 -5.03
sw Sidewalks, 0 if all the way, 1 if part 0 A 0 2 0 2 -0.053 -0.68
of the way
SN Season, 0 if summer, 1 if winter -0.756 -5.66 -0.750 -4.93 -0.868 -10.29 -0.848 -10.83
Bicycle Utility (Uy )
CB Bicycle constant -0.275 -3.81 -0.130 -1.610 -0.225 -3.56 -0.418 -7.49
BD Bicycle distance to work (miles) ~-0.245 -5.24 -0.213 -3.67 -0.254 -6.69 -0.276 -8.19
BL Bicycle lane, 0 if marked lane in -0.356 -3.81 -0.216 -1.87 -0.330 -4,27 -0.296 -4.40
street, 1 if no lane
SS Street surface, 0 if smooth, 1 if -0.383 -4.11 -0.470 -4.05 -0.431 -5.57 -0.400 -5.93
rough
TR Traffic, 0 if quiet, 1 if busy -0.517 -5.53 -0.500 —4 .31 -0.417 -5.39 -0.378 -5.61
Bus Utility (Uy)
BT Bus transfer time (min) -0.044 -2.00 -0.035 -1.58 -0.019 -0.96 0 A
BF Bus fare (§) -0.221 -0.81 -0.443 -1.58 -0.240 -0.96 -0.195 -0.88
HW Bus headway (min) 0 a 0 — -0.006 -0.84 -0.007 -1.14
TT Travel time (min) -0.030 -2.77 -0.025 -2.27 -0.019 -1.89 -0.033 -3.70
R? 0.151 0.116 0.139 0.131
F 21.44 14.24 32.56 38.73
Data points 2440 2184 4272 5432

ACoefficient was set to zero because the t-value was less than 0.3 and the wrong sign occurred.
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Gasoline availlability, gasoline price, and parking
cost all have a significant effect on mode choice.
A wait in line of between 5 and 20 min to purchase
gasoline is less significant but has a stronger im-
pact in small cities, where currently it may be more
convenient to purchase gasoline and where there has
been no previous experience with long queues to buy
gasoline. 1Income and vehicles per person are gener-—
ally significant also. This use of socioeconomic
variables as additive terms in the automobile util-
ity was chosen for simplicity and consistency across
urban areas. The use of different socioeconomic
specifications could improve the model goodness-of-
fit somewhat but at the price of added complexity.

The travel time coefficients for drive alone,
shared ride, and transit were constrained to be
equal for consistency. Work schedule and rideshar-
ing partner were both significant variables in the
ridesharing utility.

The walk utility is strongly dependent on dis-
tance and season, but sidewalk availability was not
perceived as a major factor, except by some respon-
dents in the small cities, which have less extensive
sidewalk systems. Bicycle utility also depends
strongly on distance, but it also depends on the
presence of a bicycle 1lane, street surface, and
traffic levels. (Season was not included in the
bicycle~automobile experiment, but the season coef-
ficient from the walk model is used in the bicycle
utility function for policy analyses.)

The bus utility equation (Equation 7) contains
surprising results over the ranges of variables
tested, which show strong sensitivity to overall
travel time but relatively little to headway (15- to
30-min range) and fare (40- to 80-cent range).
Transfer times of 0-5 min had a modest affect.
Respondents may have had difficulty in assessing
individual time components for a bus trip and,
therefore, used the total time variable to determine
their choice.

The city-to-city variations in the constants are
as anticipated. Madison shows the highest propen-
sity to use non-drive-alone modes, and other cities
have lower constants in those cases. The R? of
the regressions ranges from 0.116 to 0.151, which is
expected given the lack of market segmentation, the
inclusion of invariant respondents who indicated all
1s or all 5s on the survey, and the simple socioeco-
nomic descriptions used. The F-statistics are all
significant.

Calibration

In the calibration step of the analysis, the models
built from stated behavior in the experiment are
tested against actual, current behavior as a check.
We substitute levels of independent variables that
represent current conditions into the experimentally
derived utility functions to obtain values of Uge Tgi
Uys Up, and Uy for each respondent. These values are
then substituted into a logit formulation to test
how well they explain current choice:

pi=exp(atdiU)/F. exp(atb;0y) @
where

Pj = probability of a respondent choosing mode

N i (equal to 0 or 1 in actual data);

U; = a respondent's computed utility value for
mode i under current conditions, calcu-
lated from regression results; and

= coefficients to be determined in logit
estimation.

ai, bi

The equations below represent the regression results
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for Madison as five separate utility equations, as
required for the validation. These separate equa-
tions sum to the original equation, with a negative
sign for drive alone.

The 1linear utility equations for Madison from
regressions on experimental responses are as follows:
For automobile,

U, =-5.271 - 0.320GA - 0.234GP - 0.016PK - 0.008WT
(-6.30 -5.48 -6.93 -0.089

+0.012IN + 0.178VP - 0.030TT 3)
6.02 3.12 -2.77)

For shared ride,

U; =0.216 + 0.222RD + 0.401WS - 0.030TT @
(3.08 2.8 4.66 =277

For walk,

U, =0.386 - 0.897WD - 0.756SN 5)
(446 -3.36 -5.66)

For bicycle,

Uy =-0.275 - 0.245BD - 0.356BL - 0.383SS - 0.517TR ©6)
(-3.81 -5.24 -3.81 -4.11 -5.53)

For local bus transit,

Uy = -0.044BT - 0.221BF - 0.030TT ()
(-2.00 -0.81 -2.77)

where

U, = automobile utility,

GA = gasoline availability,

GP = gasoline price ($/gal),

PK = parking costs ($/month),

WT = wait time to buy gasoline (min),

IN = annual household income ($000s in 1980),

VP = vehicles per person > 16 vyears old in
household, =

TT = travel time (min),

Uy = shared-ride utility,

RD = ridesharing partner,

WS = work schedule,

U, = walk utility,

WD = walk distance to work (miles),

SN = season,

Up = bicycle utility,

BD = bicycle distance to work (miles),

BL = bicycle lane,

SS = street surface,

TR = traffic,

Ug = bus utility,

BT = bus transfer time (min), and

BF = bus fare ($).

In order to gain some understanding of the values
of aj and bj that indicated satisfactory corre-
spondence between the experimental model and actual
behavior, a simple analysis was performed., We know
immediately, of course, that we wish all by >0
and all a; to be small in some sense. Figure 2
shows the hypothesized relation in a binary case
between linear regression results and the binary
logit equation. If stated behavior (linear model)
corresponds to actual behavior (logit model), then
we expect the linear utility equations to perform
well in the logit model. A 1linear approximation
tangent to the logit function at p = 0.5 (as drawn)
has a slope of 0.25 and thus intersects the p =0
and p =1 axis at U = -2 and U = +2, respectively.
This scale, from -2 to +2, is our 1l-5 response scale
shifted downward three units. We can expect bj to



Transportation Research Record 895

Figure 2, Comparison of linear and logit model forms. 10
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Probability P
2

Logit
Coelfficient ———

-g— Linear

Linear

Logit

Coefficient

Mean Response lo Experiment

-1 0 1 2
True Utility U

=

Table 2, Multinomial logit calibration resuits.

T T
2 3 4 s

Survey Response Scale

Madison (n =312)

Milwaukee County (n = 282)

Fox River Valley Cities (n = 661) Other Cities (n = 873)

a b a b a b a b

Coeffi- t- Coeffi- t- Coeffi- t- Coeffi- t- Coeffi- t- Coeffi- t- Coeffi- t- Coeffi- t-
Mode cient Value cient Value cient Value cient Value cient Value cient Value cient Value cient Value
Drive alone  +13.221 3.13  +2.558 2.57 +5.166 1.17  +2.716 1.54 +12.437 1.94 +2.496 1.50 +7.942 2.21 +1.398 0.93
Rideshare -1.510 -1.47 -0.404 -0.58 -17.173 -0.09 +3.419 0.06 -1.332 -1.02 +0.228 1.05 -1.308 -1.49 +1.600 0.62
Walk +0.813 1.49 +2.39 3.29 +2.812 3.88 +2.758 2.78 +1.646 1.47  +2.211 4.15 +2.000 2.66 +3.108 6.21
Bicycle -0.390 -0.60 +0.740 0.90 +1.525 1.10  +2.119 1.12 +0.347 0.30 +1.602 1.66 +1.403 1.64 +2.090 2.80
Bus 0.0 2 41,331 0.98 0.0 4 +0.575 1.06 0.0 4 +4.550 199 0.0 A +1.665 1.12

Note: The b coefficients are tested against the null hypothesis that b = 1, and the a coefficients are tested against the null hypothesis that a = 0, except for drive alone, where the null
hypothesisis a = 3. The -2* log-likelihood ratio was 319.07 for Madison, 507.71 for Milwaukee County, 1032.53 for Fox River Valley cities, and 1246.10 for other cities.

dcoefficient was set to zera because the t-value was less than 0.3 and the wrong sign occurred.

approximately equal 1 and ay to equal 0. The use
of p= 0,5 as the point at which the approximation
is made is justified by the experimental design,
which can create sets of situations in which the
alternatives are well matched.

In the multinomial case, the approximation will
necessarily be centered at p < 0.5 for most modes;
this implies that bj > 1 because the lower slope
of the logit curve at p # 0.5 produces a linear scale
longer than four units between the p =0 and p=1
axes, We still expect all a to be 0 if there are
no systematic biases across experiments, with one
exception. (The a4 for automobile is expected to
be +3 because automobile's position on the survey
response scale is the reverse of the other modes.)
One a4 must be set arbitrarily, so we set the bus
a equal to 2zero; thus, the bicyecle, walk, and
s?]al:ed ride aj are also expected to be zero.

These arguments are intended only to give an
approximate sense of the values of a4 and bj to
expect from the logit-estimation step. ~Furthermore,
this calibration is approximate for the same reasons
that limit our ability to estimate a revealed pref-
erence model for the study-~-lack of variability in
several major variables, unavailability or low use
of alternatives, multicollinearity, and other prob-
lems. Even so, it is important to attempt to cali-
brate the models to test their accuracy. Because we
are estimating only two coefficients per mode in the
validation (a4 and bj), we may succeed in estab-
lishing them “when trying to estimate all coeffi-
cients would fail.

Most data required for calibration were self-
reported, although a few items were gathered from
transportation planning data bases. Self~-reported
data were checked against planning data where pos-
sible, but the comparison was inconclusive because
of the aggregation errors in the planning data

(e.g., multiple bus lines in a zone, varying parking
charges).

The calibration results appear in Table 2. We
describe the calibration results for Madison in
detail and briefly compare them with those of the
other areas. (The number of respondents is higher
than in the regression step because responses with
incomplete experimental data could be used in this
step.) The results show a very strong relation bhe-
tween the experimentally derived utilities and
actual behavior, so we turn to an examination of the
adjustment coefficients a4 and bs. The coeffi-
cients a4 are tested against a nuil hypothesis of
zero (+ for drive alone), and bj is tested
against a null hypothesis of one.

The Madison drive-alone utility derived from the
experiment apparently understates the sensitivity of
actual behavior t