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Procedure for Estimating Freeway Trip Tables 

NANCY L. NIHAN 

A method for estimating freeway trip tables with volume data by using a gravity­
based model is presented. The 1969 San Francisco Bay Area origin-destination 
survey is used to test the estimates. The results of using the gravity-based 
model are compared with the estimates obtained by using the SYNODM ap­
proach developed at the University of California, Berkeley. The gravity-based 
approach achieves a closer fit to the actual trip tables than does the current 
version of SYNODM. 

This paper describes a method for estimating freeway 
trip tables by using ramp volume data and compares 
the resulting estimates with those obtained by using 
the SYNODM approach (an estimation procedure cur­
rently used by traffic planners). Below is a de­
scription of both the general problem of estimating 
trip tables by using volume data and the freeway­
restricted problem. Also included is a summary of 
currently proposed estimation procedures and their 
limitations. 

GENERAL PROBLEM 

For the past few years there has been a surge of 
interest in developing a technique for estimating a 
trip matrix or origin-destination (0-D) matrix for 
urban areas by using street volumes as the primary 
source of knowledge. This is because the collection 
of trip origin-destination data is costly, time con­
suming, and less accurate than the more easily col­
lected traffic volume data. Volume data have been 
collected in most cities on a regular basis for a 
number of years through the use of automatic traffic 
counters. However, current 0-D data, which require 
extensive travel surveys of the urban population, 
are not available to today's transportation planner 
and are not likely to be available in the future for 
the majority of our urban areas. 

The state of the art in the general problem area 
is summarized by Willumsen (]J , who divides the es­
timation methods into three broad groups of models. 
These include gravity-based models, network-equilib­
rium models, and entropy-maximizing models. 
Gravity-based models assume that trips follow a 
gravity pattern. In the approaches considered so 
far this leads to linear or nonlinear regression 
solutions. The linear models (2-7) , where tested, 
are used to forecast link volumeS. They give ac­
ceptable estimates of link flows (errors of 20 per­
cent or less) . The nonlinear approaches (_!!-10) 
yield slightly better results. However, accuracy is 
still based on observed flows. Since a variety of 
0-D matrices can produce the same pattern of link 
volumes in a network, this is not a sufficient test 
of the accuracy of the trip tables. 

The second group of general models, network­
equilibrium models, is based on Wardrop's first 
principle. Such models (11-13) yield solutions that 
depend on the initial solution assumed. The solu­
tions are, therefore, not unique and have not been 
verified adequately. 

The last group of models uses an entropy-maximiz­
i ng approach to find the most likely trip matrix 
compatible with observed flows. In one such model 
the solution depends on an a priori estimation of 
the 0-D matrix. Other approaches (l, 15-.!1_) circum­
vent this problem but do not consider the impact of 
distance or travel time on tripmaking behavior. All 
three approaches to the general problem have not 
been tested against actual 0-D data, although some 
have been checked by using synthetic networks. 

FREEWAY OR CORRIDOR PROBLEM 

Unlike the general problem, the freeway or corridor 
problem lends itself to model verification. Also, 
in dealing with a restricted network of corridor 
flows, we avoid some of the problems created by the 
ubiquitous nature of vehicle travel. The natural 
constraints on freeway flows reduce the relative 
number of unknowns, although the problem is still 
underdetermined. 

Since an 0-D matrix of the freeway portion of 
vehicle trips is required for certain traffic­
planning models such as the FREQ6PE simulation model 
(18), these data are of immediate interest to traf­
fic and transportation planners. Yet the methods 
used to collect these data, although easier than 
comprehensive travel surveys, are still costly and 
time consuming. The most widely used method is the 
license plate survey, where observers are positioned 
at every ramp for a particular freeway segment and 
license plates of passing vehicles are recorded. 
These are then traced to determine points of vehicle 
entry and exit. Although the surveys are inconveni­
ent, they have been conducted in most major cities 
and therefore provide a basis for verification of 
models that attempt to estimate the freeway trip 
matrix by using ramp volumes as a basis. If suffi­
ciently accurate models can be developed for this 
problem, they can be used not only to help monitor 
existing traffic congestion problems but also to 
illuminate the general problem. A.lso, since volume 
data are available for different time intervals 
(e.g., hours of the day), accurate models could re­
produce the changes in trip patterns over time that 
would be of benefit to transit and traffic planners. 

Although some work on generating freeway 0-D 
tables (ramp-to-ramp trip tables) from link volumes 
has been reported, the results in this area are in­
conclusive and the theoretical basis of the proposed 
models is weak. The primary activity in this area 
comes from the developers of FREQ6PE, a combination 
traffic simulation and ramp control optimization 
model. This model requires a ramp-to-ramp trip 
table for every time interval (e.g., 15-min inter­
vals) for the period of study (e.g., peak-hour pe­
riod). A computer model called SYNODM (19) has been 
developed to synthesize the required trip tables. 
It is a simple proportionality scheme that distrib­
utes off-ramp traffic to upstream on-ramps. Specif­
ically, if we let 

Then, 

M set of all freeway entrances upstream of 
exit j, 
total trips originating at i that have not 
yet been assigned a destination and are up­
stream from j, 
total trips exiting at destination j, and 
total trips originating at i and exiting at 
j. 

T-=o-(v-·;~ v:) 
IJ J 1 Q=l " (1) 

The trips are assigned beginning with the first up­
stream off-ramo and continuing to successive down­
stream off-ramps. 

There are several problems with such a simplistic 
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approach. The most noticeable is the implicit as­
sumption that trip distance or travel time is not a 
factor in travel behavior. Thus, if there are 100 
still unassigned vehicles that enter at on-ramp 1 
(10 miles upstream from off-ramp j) and 100 vehicles 
enter at on-ramp 10 ( 1 mile upstream from the near­
est off-ramp j), the number of vehicles from 1 to j 
and from 10 to j would be equal. Yet, intuitively 
one would expect that vehicles that enter at 10 
would have a relatively low probability of getting 
off at the next exit. By the same token, vehicles 
that have already traveled 10 miles would have a 
relatively high probability of exiting at the next 
stop. Therefore, one could expect significant er­
rors here in the form of overpredicting the number 
of very short trips and very long trips. The au­
thors admit that the proportionality assumption is a 
crude approximation. In assessing the accuracy of 
their model they state that it " ..• does tend to dis­
tribute correctly 70-80 percent of the traffic in 
most cases, and in the absence of an 0-D study that 
is probably a reasonable approximation" (20). 

The level of error in those cases that are not 
correctly assigned is not discussed. If, as our 
intuition indicates, these errors could be substan­
tial, the resulting 0-D table is not valid. The 
developers are currently investigating other methods 
and have recently revised SYNODM to include known 
interchanges as inputs to improve accuracy (~rBl • 
The gravity-based method proposed below also has 
this capability and includes an impedance factor as 
well. 

RESEARCH DESIGN 

A description of the proposed estimation procedure, 
the data base used for testing the trip estimates, 
and the error measurements used in comparing this 
procedure with the estimates obtained by using 
SYNODM is presented in this section. 

Estimation Procedure 

The procedure assumes a gravity-based model to be 
applied along a particular section of freeway. 
Three inverse impedance functions are calculated 
based on average trip distance along the section. 
(A separate curve was used for internal-internal or 
ramp-to-ramp trips, external-internal or mainstream­
to-ramp trips, and internal-external or ramp-to­
mainstream trips.) Since Voorhees <±2l has shown 
that a gamma function is most appropriate for total 
trip patterns, a gamma function was assumed with 
adjustments made for external trip ends. Also as­
sumed was that one could obtain a reasonably good 
estimate of through trips either by collection that 
used overpasses or from knowledge of previous 0-D 
percentages, 

The gravity-based model has the formulation shown 
below: 

(2) 

1Tii =Di 

f(dij) = [~a/r(a)) dfr1l exp(-ildij) 

(3) 

(4) 

where 

f 

trips from origin ramp i to destination ramp 
j, 
trips that originate at ramp i, 
trips that exit at ramp j, 
impedance of travel between i and j (e.g., 
distance or travel time) , 
inverse impedance function (i.e., travel 
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propensity function) , and 
normalization factor for destination point 
j. 

Given the impedance function, an iterative procedure 
is used to solve for xj. This procedure has been 
shown to always converge to a unique solution 
(24, 25). 
~Although several forms of inverse impedance func­

tions have been tested in the past, Voorhees <±2> 
showed rather conclusively that the gamma function 
gave the best fit when calibrating models to gener­
ate total travel matrices. This would appear to 
also apply to freeway trip tables because one ex­
pects a unimodal function to discourage both very 
short and very long trips. The shape parameter 
(a) was found by Voorhees to be approximately 1. 5 
for total travel for most cities. Since this was 
obtained for a total inverse impedance function, and 
since freeway travel can be expected to tolerate 
longer distances than can other types of trips, one 
would expect that a distribution less skewed to the 
left would be appropriate. A preliminary value for 
a of approximately 3 is suggested. (Note, for a 
sample experiment described later in this paper, 
values of the shape parameter were varied from 2 to 
4 with minor differences in the resulting trip 
table.) 

The size parameter (B) is equal to a/d where d is 
the average impedance for the network. Since we 
know the total number of trips and the link volumes 
and impedances, this can be calculated as 

where 

T 

(5) 

total trips (i.e., total number of origins 
or destinations) , 
volume on freeway subsection ~. 

number of freeway subsections in study sec-
tion, and 

dk length of freeway subsection ~. 

In determining the impact of origins farther up­
stream or downstream from the freeway section, a 
simple constant that is equal to the largest possi­
ble value for that inverse impedance function was 
chosen. Thus, for example, for a travel function 

with a = 3 and d = 5. 0, a gamma function would be 
generated as shown in Figure 1. If one end of the 
trip originated at the mainstream-on point or ended 
at the mainstream-off point this constant (f*) would 
be used for short trips (trips that have study sec­
tion length d* or less). Thus, the external­
internal and internal-external functions would 
resemble the solid line in Figure l and the 
internal-internal function would be a strict gamma 
function. 

Figure 1. Example of inverse impedance curve. 
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Table 1. Freeway subsection characteristics. 

Sub- Subsection Description 
section No. of Length 
No. Lanes (ft) Input Entry Point Exit Point 

1 5 1630 OD Mainline origin Powell off 
2 5 1960 Powell off Powell on 
3 5 1550 OD Powell on Ashby off 
4 4 1960 Ashby off Ashby on 
5 4 500 0 Ashby on 500-ft point 
6 4 4790 D 500-ft point University off 
7 4 3030 University off University on 
8 4 2160 OD University on Gilman off 
9 4 2030 Gilman off Gilman on 

10 5 1250 OD Gilman on Buchanan off 
11 4 900 D 1 Buchanan off Hoffman off, left 
12 3 1320 D Hoffman off Pierce off 
13 3 720 Pierce off Pierce on 
14 3 2610 OD Pierce on Central off 
15 3 1660 Central off Central on 
16 3 1890 OD Central on Carlson off 
17 3 2310 Carlson off Carlson on 
18 3 1460 OD Carlson on Potrero off 
19 3 3800 Potrero off Cutting on 
20 4 1100 0 Cutting on Grade change point 
21 4 660 D Grade change point Macdonald off 
22 4 1480 D 0 Macdonald off San Pablo off 
23 3 1480 San Pablo off San Pablo on 
24 4 800 OD San Pablo on Solano off 
25 3 4690 D Solano off San Pablo Dam off 
26 3 2190 Dam Road off Dam Road on 
27 3 2320 OD Dam Road on Road 20 off 
28 3 830 Road 20 off Grade change point 
29 3 1180 Grade change point Road 20 on 
30 3 2560 OD Road 20 on Mainline destination 

Hote: 0 = origin, D = destination. 

In developing the above functions, an initial 

value of e = a/d was chosen for all three curves. 
After each run of the model, new parameters were 
calculated for the external-internal (81l, 
internal-internal (8 2), and internal-external 
(8 3 ) functions based on the average distances of 
these trips. Thus, for a freeway section that has N 
points of entry or exit, 

d2 = L L T··d .. / L L r .. 
i=#=1 j=#=N lJ lJ i:;t':l j:;l::N IJ 

(6) 

(7) 

(8) 

where point 1 represents the mainstream-on-node and 
point N the mainstream-off node. 

Assuming that T1N is given, the estimation pro­
cedure is as follows: 

1. Calculate di 
2. Remove through trips (e.g., subtract T1N 

from 01 and ~) i 
3. Letting a= 3 and r(al = 2, calculate initial 

values of 01 = 82 = 83 = a/d, where 81• 82r and 83 
are the size parameters for the three inverse im­
pedance curvesi 

4. Run the gravity modeli 

S. For the run obtained in step 4, calculate dl, 

d 2 , and d3 and use these new estimates to calculate 
81• 82• and 831 and 

6. Repeat steps 4-5 until the dis used in the 

travel functions agree with the dis calculated (usu~ 
ally one or two iterations). 

Step 2 was suggested by Willis of the University of 
California, Berkeley. 

3 

Data Base 

The experiment was performed for a subsection of the 
San Francisco Bay Area freeway network. The study 
corridor included the northbound portion of the 
Eastshore Freeway (I-80), beginning upstream from 
the Powell exit ramp and terminating downstream from 
the CA-20 entrance ramp. Table 1 describes this 
freeway section and its points of entry and exit. 
Volume data for five 15-min time slices starting at 
3:45 p.m., October 1969, were used as the 0-D inputs 
for the gravity-based model. An 0-D survey per­
formed during the same time periods was used for 
comparing the accuracy of gravity-based model out­
puts with those estimated by the SYNODM procedure. 

Error Measures 

Three types of error measures were considered. 
These were average absolute trip errors, average 
total percentage of trip errors, and average indi­
vidual percentage of trip errors. These are defined 
below. 

Avg trip error = ti I Tfi - Tfi l/N (9) 

Avg total percentage trip error= O:C l'ffi - Tfi l/T) x 100 (10) 

Avg individual percentage trip error= ti [(l'ffi - Tij 1/Tij)/N] x 100 (11) 

where 

T~. trips from i to j calculated, 
1] 

T~. trips from i to j observed, 
1] 

N number of error values, and 
T total trips in cells used. 

Cells that have less than five observed trips were 
ignored in the above calculations to avoid unreason­
ably high individual percentage errors associated 
with very few trips. 

RESULTS 

Observed and calculated trip tables that represent 
the 15-min slices from 3: 45 to 5: 00 p. m. were com­
pared. SYNODM trip tables were also calculated. 
Figure 2 shows an example comparison for time slice 
3. As expected, the SYNODM trip tables were more 
likely to overpredict short trips than. was the 
gravity-based model. A summary of the average trip 
distances given in Table 2 bears this out. The 
average distance for internal trips for the SYNODM 
estimate is consistently shorter than that observed; 
however, the gravity-based approach is very close in 
its estimates of all three types of trip lengths. 

Figure 3 shows an example comparison of the trip­
length distributions for the actual and gravity­
based calculated trips. For all five time slices 
these frequency distributions are very close. 

A final comparison of observed, estimated, and 
SYNODM estimated trips is given in Table 3. In all 
three error measures, the gravity-based approach is 
consistently better. However, as total trip volumes 
increase (time slices 4 and 5) the SYNODM approach 
becomes competitive. As expected, the individual 
percentage of error is somewhat high due to rela­
tively low numbers of trips in some cells. 

INTERPRETATION OF RESULTS 

Although the results of this experiment are by no 
means conclusive, distance impedance should be con­
sidered in estimating freeway trip tables, even for 
relatively short freeway subsections. If through 
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Table 2. Average trip distances along 
freeway section. 

TI me 
Slice 

I 
2 
3 
4 
s 

Figure 2. Freeway trip tables for time slice 3. 
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trips can be estimated or measured, the gravity­
based approach looks reasonably accurate. If this 
were coupled with knowledge of one or two other in­
terchange values, the results should approach ob­
served values. For example, for some reason the 
number of observed vehicles getting on at Gilman and 
directly off at Buchanan is high in some time 
slices. If this were suspected in advance, trips 
f ram Gilman to Buchanan might be measured and used 
as an additional factor in calibrating the model 
(adjusting the travel distance factor for that par­
ticular interchange) • 

Most ramp interchangt:s that ate closely spaced, 
however, do not exhibit this property. Thus, dis-
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Extemal-!ntemal, d 1 Internal-External, d3 

Gravity- Gravity-
Based Based 

Actual Estimated SYNODM Actual Estimated SYNODM d 

3.67 3.65 3.85 4.74 4.48 4.16 4.29 
3.51 3.56 3.84 5.40 5.10 4.88 4.57 
3.88 3.94 3.95 5.04 5.04 4.44 4.51 
3.35 3.32 3.93 5.35 5.24 5.19 4.86 
3.78 3.66 3.81 4.96 5.08 4.67 4.31 

Figure 3. Trip length distribution for time slice 3. 
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Table 3. Comparison of trip erron. 

Avg No. of Trips 
in Error 

Avg Total Trip 
Error(%) 

-- Observed 

----- Estimated 

8 10 

Avg Individual Trip 
Error(%) 

Time Proposed Proposed Proposed 
Slice Method SYNODM Method SYNODM Method SYNODM 

I 
2 
3 
4 
s 

5.9 
8.1 
6.6 

11.4 
8.3 

9.1 
10.0 
12.8 
11.S 
8.5 

12.6 
17.0 
12.1 
20.7 
17.1 

15.4 
22.2 
23.9 
21.S 
17.4 

21.1 
33.1 
18.4 
39.2 
27.5 

21.7 
34.9 
31.5 
40.2 
27.6 

tance appears to be a factor and methods such as 
SYNODM, which do not take distance into account, 
will not do as well. The errors that result from 
this omission are higher than indicated by our ertor 
measures because cells that have four or fewer trips 
were dropped from the analysis. Consider, for ex­
ample, the observed trip table for time slice three 
and the estimated tables shown in Figure 2. Because 
of the short time interval, several of the less 
frequented interchanges have no observed trips and 
were dropped before calculating the percentage error 
terms. Yet SYNODM in several cases estimates sig­
nificant numbers of trips for these cells, thus the 
true error differences between the two procedures is 
even larger. In both cases, the predictions might 
improve if larger time intervals were used. 

Note also that SYNODM overpredicts through 
trips. These represent very long trips, and this is 
another indication that distance is a factor. Even 
if through trips were assumed as known in the SYNODM 
procedure, other very long trips would probably be 
overpredicted. 
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SUMMARY AND CONCLUSIONS 

Knowledge of the number of through trips on a free­
way section appears sufficient to calibrate a rea­
sonably accurate gravity-based trip-table esti­
mator. Whether knowledge of the number of trips for 
any major 0-D pair would work as well should be ex­
plored because overpasses may not always coincide 
with the freeway subsection under study. In an up­
coming revision, SYNODM may also assume knowledge of 
through trips to improve its accuracy. However, 
without incorporation of an impedance factor, it may 
still have unreasonably high predictions for very 
short and very long trips. 

In any event, further exploration of the accuracy 
of these techniques with other 0-D data bases is 
needed to determine whether existing models are suf­
ficiently accurate. The possibility of improving 
accuracy by obtaining data on one or more inter­
changes in lieu of a complete 0-D survey should also 
be investigated. 
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Corridor Evaluation 
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Ouick-response procedures and programmable calculator routines have been of 
increasing interest in transportation planning. As part of a continuing Highway 
Planning and Research Program study, the PASSER IV system of quick-re­
sponse methodologies is being developed for analyzing urban freeway corridor 
alternatives. This will provide a practical and user-oriented tool to evaluate several 
classes of transportation system management alternatives. An algorithm is pre­
sented for estimating the levels of traffic flow on individual parallel facilities in 
an urban freeway corridor. based on equilibrium traffic assignments. A quick· 
response routine for the algorithm has been developed for use with a program­
mable calculator. The level of detail for the routine is ultramacroscopic and 
determin.istic. The routine was designed to be modular to permit additional 
scenarios, extensions, and modifications to be easily appended. The routine as 
described is undergoing continuing revision and evolution. 

Increased traffic demand and traffic congestion 
along freeway corridors in major Texas cities are 
making the effective management and use of existing 
facilities, as well as the implementation of minor 
geometric modifications for improving traffic flow, 
important functions of the various agencies in­
volved. Existing analytical methods and related 
computer programs offer proven performance capabili­
ties to address these problems, but most are seri­
ously deficient in addressinq analyses that require 
quick response: 

1. They do not permit quick and simple analyses 
of problem areas to allow evaluation of several 
alternative improvements in a cost-effective manner, 

2. They do not fully treat continuous frontage 
roads that are almost unique to Texas, and 

3. They require a large amount of field data and 
computational effort to conduct the evaluation. 

As a result, the use of quick-response procedures 
and programmable calculator routines has become of 
increasing interest and implementation. 

Practical and user-oriented methods have been 
proposed. The Signal Operations Analysis Package 
(SOAP) programmable calculator routines can be used 
in the design, evaluation, and analysis of signal 
operation (ll • The routines incorporate several 
computational techniques for analysis of a single 
approach to an intersection. Routines are available 
for calculation, analysis, and evaluation of signal 
settings and measures of effectiveness. Other 
procedures have been developed such as evaluation 
routines based on the PASSER II computer program (£) 
and critical movement analysis procedures (3). 

Quick-response routines have been developed for 
travel-estimation procedures (4,5) and simplified 
methods have been developed - for transportation 
analysis (§_-.!!_). Analysis techniques, including air 
quality evaluation (9) and energy impacts on travel 
(10), have been proposed. The development of sim­
plified methods implementable on a programmable 
calculator has great interest. 

The PASSER IV system of quick-response methodol­
ogies is now being developed for analyzing urban 
freeway corridor alternatives to provide transporta­
tion system analysts with useful tools to evaluate 
several classes of transportation systems management 
(TSM) feasible alternatives. This paper presents, 
as a part of the PASSER IV system, an algorithm for 
estimating the levels of traffic flow on indi,_ridual 
parallel facilities in an urban freeway corridor, 

for 
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based on equilibrium traffic assignment. The algo­
rithm can be applied to multiple parallel facilities 
quickly and efficiently. A quick-response routine 
for the algorithm has been developed for use with a 
programmable calculator. 

SITUATION 

The urban freeway corridors are the existing trans­
portation backbone of every major city in Texas. The 
potential operational capacity of the freeway 
frontage roads and adjacent parallel arterial 
streets are major factors in the urban area. In 
order to manage and improve these critical transpor­
tation facilities, several situations and problems 
must be addressed. 

Several of these problems have already been 
identified, regarding the effective transportation 
analysis of urban freeway corridor traffic manage­
ment strategies and the application of TSM improve­
ments to Texas freeways and parallel facilities. The 
analysis of these available alternative strategies 
can be time-consuming, costly, and data intensive. 

Simplified methods (quick-response techniques) 
were needed to permit the tr.ansportation engineer or 
planner to expeditiously evaluate a wide range of 
TSM-based alternatives by using a minimum of data 
complexity and effort. As part of the Texas Highway 
Planning and Research Program (HPR) continuing study 
on development of freeway corridor evaluation sys­
tem, PASSER IV, a quick-response analysis method­
ology for expedient evaluation of several classes of 
TSM-based feasibility studies from an operational 
viewpoint has been derived. The PASSER IV concept 
is to permit the decisionmaker the option of effi­
ciently obtaining credible performance measures for 
various proposed scenarios. The algorithm presented 
here is based on equilibrium traffic assignment. It 
estimates the traffic flow levels (and measures of 
effectiveness) on parallel ·facilities in an urban 
freeway corridor. 

The algorithm assumes that 

1. Travelers behave in a manner that minimizes 
their travel time, 

2. Travel time versus volume/capacity (v/c) ratio 
curves that describe the parallel paths may be 
determined, and 

3. Piecewise linear approximations of these 
curves may be computed. 

The algorithm is limited by the accuracy of 
origin-destination estimates, corridor volume esti­
mates, and the travel time versus v/c curves. 

The level of detail for the calculator procedure 
is ultramacroscopic and deterministic in design. 
Simplicity and user-oriented operation were empha­
sized. The routine was designed to be modular in 
design to permit additional TSM alternative sce­
narios to be addressed by subsequent additions and 
subroutines. 

Algorithm Background 

The algorithmic approach to the three alternate-path 
traffic-assignment problems is base~ on Wardrop's 
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Figure 1. Alternate urban freeway corridor paths. 

Figure 2. Urban freeway speed versus v /c. 
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first principle (user optimization) of equilibrium 
flows (11). The original corridor scenario for the 
three alternate paths was freeway, frontage road, 
and a parallel arterial street. The algorithm uses 
travel time relations for allocating the traffic to 
the three paths. 

The freeway travel time is based on the relation 
between average freeway speed and v/c ratio as 
developed by Texas Transportation Institute (TTI), 
The frontage road travel time and the arterial 
street travel time is based on speed, volume, capa­
city, and signal density. These relations are 
developed as a piecewise linear function of travel 
time to v/c ratio for each alternate path. 

The procedure allocates corridor travel demand to 
the facilities based on travel times. As these 
volumes are added to each facility, the travel time 
on the facility is increased. The procedure itera­
tively determines the allocation of the demand to 
provide equal travel times for all facilities by 
using piecewise linear representations of the travel 
time curves. 

Algorithm Development 

Traffic flows on three parallel paths are illus­
trated in Figure 1. Travelers wish to go from point 
A to B. Point A might be a suburban community and 
point B could be a central business district. These 
travelers may choose among paths 1, 2, and 3 for 

7 

their trip. Each path has its own distances, speed, 
and capacity attributes. For a typical urban free­
way corridor in Texas, path 1 is the freeway main 
lanes, path 2 is the frontage road, and path 3 is a 
parallel arterial street. 

The solution approach presented here for allocat­
ing traffic among these competing paths is based on 
Wardrop' s first principle of equilibrium flows in a 
transportation network (11). This principle states 
that each individual traveler will choose a path 
that gives him or her minimum travel time under the 
perceived operating condition. This assumption is 
known as user optimization and is in general agree­
ment with observed behavior. The driver perceives 
(or anticipates) the operating conditions on each 
path and then chooses the path that he or she thinks 
will minimize travel time from point A to point B. 

Traditional nonequilibrium traffic assignment 
techniques have not addressed allocation of traffic 
explicitly so that this condition is met. For 
example, in an all-or-nothing assignment, the tech­
nique finds the minimum travel time between two 
zones under specific conditions. All traffic is 
then assigned to the path that has that minimum 
time. The presence of this traffic causes the 
resulting travel time on that path to become much 
greater than the calculated value and, if minimum 
travel times were again computed, another path 
between the two zones would probably be chosen. This 
diversion of traffic is addressed in capacity-re­
straint assignment, yet travelers may still not be 
on a path that gives them minimum travel time. A 
number of methods are now used to redistribute 
assigned traffic more realistically in a corridor 
following a traffic assignment for the urban area. 
Many of these methods, however, require substantial 
effort and time to use and are not amenable to quick 
and simple analysis to evaluate several alternatives 
for TSM strategies in the corridor. 

The algorithm presented in this paper explicitly 
treats the perceptions of path choice of the indi­
vidual traveler and is sensitive to TSM actions that 
may be applied in the corridor. 

TRAVEL TIME FUNCTIONS 

In modeling the path choices of individual drivers, 
it is first necessary to model the variation of 
travel time on a path with increasing traffic on 
that path. 

For a typical urban freeway corridor in Texas, as 
depicted in Figure 1, path 1 is the freeway main 
lanes, path 2 is the frontage road, and path 3 is a 
parallel arterial street. In order to compare 
travel times along each of these paths to satisfy 
the equal travel time condition (user optimization), 
travel times along each path must be determined as a 
function of the volume and capacity on that path. 
For freeways, speed has been related to v/c ratio by 
the relation shown in Figure 2 (12). The quantity 
Uf is the free speed for the facility. . 

Creighton, Hamburg, Inc., in work for the Federal 
Highway Administration (FHWA), propose modification 
of the relation shown in Figure 2 to that shown in 
Figure 3 to model reduction in speed due to conges­
tion for the FHWA micro assignment model (13), For 
v/c values in the range (0, 0.8), this cur;;; is the 
same as the Highway Capacity Manual curves shown in 
Figure 2 (.!..?.). For values of v/c greater than 0.8, 
the curve drops linearly to a value of 0 when v/c = 
1.0, as shown in Figure 3. 

The monotonically decreasing form of the function 
in Figure 3 agrees with the observed condition that 
average speed decreases as the v/c ratio increases. 
One logical difficulty, however, is that the speed 
in Figure 3 decreases to zero at a volume equal to 
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Figure 3, FHWA freeway speed versus vie for freeway arterial vehicle mile !Jer 
hour splitter. 
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Figure 4. TTI urban freeway speed versus v/c. 
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Figure 5. TTI urban freeway travel time versus v /c. 
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Figure 6. Free flow versus posted speed wand signal density n. 
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capacity, especially since Figure 2 shows a speed of 
uf/2 when volume is equal to capacity. 

For the freeway speed model used in this algo­
rithm, speed at capacity was set at Uf/4 to ap­
proximate average actual speed. In addition, be­
cause volumes greater than estimated capacity are 
sometimes observed (e.g., when level of service C 
volumes and capacities are used), the freeway speed 
curve was extended in this research to a speed value 
of 10 mph when v/c = 1.5. The freeway speed curve 
developed by TT! is shown in Figure 4. 

The relation shown in Figure 4 is piecewise 
linear for v/c > O.B, so that mathematically the 
relation can be expressed as follows: 

0.5 S0 +(Si - 2v)~ v/c.; 0.8 

S1 + [(S2 - Si)/0.2)(v/c) - 0.8 0.8 < v/c < 1.0 

Sfwy = S2 + [(IO - S2 )/0.5)(v/c) - 1.0 1.0 < v/c < 1.5 

where 

10 v/c > 1.5 

Sz 

speed on freeway at volume v per lane 
(mph), 
freeway volume per lane (vehicles/h), 
capacity per lane (vehicles/h) , 
free flow speed on freeway (mph) , 
speed on freeway when v/c 0.8 (mph), 
and 
speed on freeway when v/c 1.0 (mph). 

(1) 

This model provides a determinable relation between 
speed and volume for the freeway situation. 

From the speed versus v/c relation shown in 
Figure 4, a travel time relation may be constructed 
by using 

T(v/c) =Travel time= Distance/Speed (2) 

for each continuous interval. The resulting travel 
time relation is shown in Figure 5. This relation 
shows that, as the volume (or v/c) on the freeway 
increases, the travel time increases. This devel­
oped relation agrees with expected results. The 
piecewise linear nature of the travel time curves 
makes possible the evaluation of successive critical 
points on the curves for parallel facilities rather 
than the solution of a set of mathematical equa­
tions. Although modification of the FHWA's free­
way-surface arterial VMT splitter speed versus v/c 
curves were used here to derive travel time curves, 
other curves, such as those of Davidson ( 14) , or 
FHWA (15), may be used as long as they are modified 
to a piecewise linear form. 

For signalized roadways, the relation between 
speed and capacity is complicated by the presence of 
the signals along the roadway, which provide a 
further component of delay. The effect of this 
delay can be correlated to the signal density and 
signal timings. The relation developed is a modi­
fied version of that in FHWA's micro assignment 
model (13). This relation provides for travel time 
to be dependent on voluine and signal density. For 
signalized roadways the equations are 

l 
S0 (n,w) + (v/c)f(n) v/c < 0.8 

S1 + [(S2 - S1 )/0.2] (v/c) - 0.8 
S= 

S2 + [(5 - S2 )/0.5] (v/c) - 1.0 

5 v/c > 1.5 
where 

0.8 < v/c ..;; 1.0 

1.0 < v/c.; 1.5 
(3) 

S speed on signalized roadway at volume v 
per lane (mph) , 

v = roadway volume per lane (vehicles/h) , 
c = capacity per lane (vehicles/h), 
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n c signal density (signals/mile), 
w 

f (n) 
posted speed (mph) , 
speed reduction with unit increase in 
v/c, 

s 0 (n,w) = free-flow speed for signalized roadway 
with signal density n and posted speed 
w, 
speed when v/c = 0.8, 
speed when v/c = 1.0, and 

"' 3600/(3600/w) + 12.Sn. 

f(n) = -0.0672n3 + 0.78!n2 - 3.2232n n < 5.5 

f(n) = 0.!38n - 6.028 n;;;. 5.5 

(4a) 

(4b) 

A family of curves that relate free-flow speed to 
posted speed and signal density is shown in Figure 
6. A family of curves that show average speed for 
varying values of signal density (n), posted speed, 
and values of v/c is illustrated in Figure 7. 

Travel time curves may be constructed by using 
the speed curves shown in Figure 7 and Equation 2. 
The travel time curves developed are illustrated in 
Figure 8. 

Figure 8 shows that, although the effect of 
signal density is somewhat masked, the travel time 
relation behaves as would be expected. 

ALGORITHM 

Once the travel time functions have been defined for 
each of the three paths in Figure 1, the problem 
remains to determine how the travel demand from A to 
B will be distributed among paths 1, 2, and 3. 
Obviously, if all that is considered is the free­
flow travel time, all of the drivers will choose 
path 1 (the freeway path) as in an all-or-nothing 
assignment. But, the actual travel time increases 

Figure 7. FHWA signalized roadway speed versus v/c. 
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Figure 8. TTI signalized roadway travel time versus v/c. 
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as each motorist enters the facility, so that even­
tually the path 1 travel time for an additional 
motorist is increased such that, if that motorist 
enters path 1, then path 2 or path 3 will have lower 
free-flow travel times than the travel time on path 
1 under the existing conditions. Since this is 
contrary to Wardrop' s first principle, the motorist 
selects the minimum travel time path. 

The travel time curve for each path, due to its 
piecewise linear nature, contains a series of in­
flection points (discontinuities). The successive 
evaluation of these critical points is the basis for 
this algorithm. The free-flow travel time of each 
path (the intercept with the travel time axis) is 
considered to be a critical point. The remaining 
critical points (discontinuities) on the curves 
project onto the travel time axis to define the 
intervals of travel time for which the slopes of all 
of the travel time curves are simultaneously con­
stant. The total assigned volume is computed at the 
upper limit of each of these travel time intervals. 
When this assigned value exceeds the total demand, 
the volumes on each path are backed off simulta­
neously, proportional to the slopes of the piecewise 
linear travel time curves on that interval. 

CALCULATOR ROUTINE FEATURES AND CAPABILITY 

The routine has undergone several revisions in its 
development. The addition of enhancements and 
modifications to the original routine is an evolu­
tionary process. Improvements in run time, program 
structure, and number of steps and memories have 
been accomplished to increase the efficiency and 
applicability of the procedure. 

Original Procedure 

The original procedure was developed for the algo­
rithm just described to consider a typical urban 
freeway corridor in Texas. The three parallel paths 
available were established as the freeway main 
lanes, frontage roads, and a parallel arterial 
street. The input data are given in the table below. 

Input Data Freeway Frontage Road Arterial 
No. of lane x x x 
Distance x x x 
Speed x x x 
Capacity x x x 
Signal density x x 
Total demand 

The input data along with embedded data in the 
routine provide the characteristics of the facility 
and demand volume. The piecewise linear segment of 
each travel time curve is established at v/c of 0, 
0.8, 1.0, and 1.5. A representative series of 
travel time curves are illustrated in Figure 9. The 
free-flow speed is the only variable (and number of 
signals for nonfreeway paths) that the user can 
input to describe the curve. The corresponding 
speeds for v/c of 0.8, 1.0, and 1.5 are fixed inter­
nally. The output for the original routine are 
system travel time (at equilibrium), traffic volumes 
on each path, and v/c for each path. 

The original routine satisfied the objectives of 
the study. During its development, certain struc­
tural and design limitations were recognized. Also, 
several enhancements, modifications, and variables 
input were recognized as desirable for incorporation 
in the procedure. 

Procedure Extensions 

The original procedure was revised. The revised 
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procedure still retained the basic three alternate 
path algorithms. It used fewer program steps, less 
input cards, and fewer memory locations. The use of 
indirect addressing and skip on zero routines im­
proved computational efficiency. 

One improvement in the program structure is that 
any number of freeways, frontage roads, or arterial 
streets may be used to a maximum of three total 
paths. Input of these path data may be in any order. 

To provide greater flexibility and utility of the 
procedure, three variables were added--quality of 
progression factor, variable overcapacity limit, and 
variable overcapacity speed. The quality of pro­
gression factor (range of 0-1) provides a means to 
model the progressive quality along an arterial 
street or the frontage road to match existing or 
future operational characteristics more closely. The 
default value is one. 

The overcapacity limit and the overcapacity speed 
are related. The overcapacity limit is the v/c for 
the final reference point on the travel time curve. 
The default value is 1. 5. The input is 0 for the 
default value or a value greater than 1.0. The 
overcapacity speed is the corresponding speed at the 
overcapacity limit used. The default value is 10 
mph for freeways and 5 mph for signalized facili­
ties. These three new variable inputs provide great 
flexibility for the user to model the problem to be 
analyzed. This flexibility provides increased 
ability to model real-world conditions in a corri­
dor. However, this flexibility requires that addi­
tional user instructions be provided to aid in 
proper selection of the variable values. 

To increase the capability of the procedure to 
better model greater complexity and provide addi­
tional path alternative analysis, two fea~ures were 
added to the program. The first addition is the 

ability to handle more than one speed along a path. 
This corresponds to be the ability to analyze dif­
ferent travel times on segments of a path. An 
example would be different posted speed limits along 
an arterial street. The second feature is the 
capability to analyze more than three alternate 
paths or a combination of parallel streets. This 
feature is directed toward providing the capability 
of analyzing freeway main lanes, frontage roads, and 
three parallel arterial streets as alternate paths. 
The multiple alternate paths for the facility type 
are preprocessed to provide a composite representa­
tion of the facilities before input to the main 
algorithm. The algorithm output for those facili­
ties is then fed into a postprocessor to provide the 
estimated traffic assignment to those paths. Exten­
sions to multiple paths or three representations of 
corridor facilities could be analyzed similarly by 
the procedure. 

SUMMARY 

The application of programmable calculator routines 
and simplified methodologies to analyze TSM alterna­
tive improvements in a freeway corridor is shown. 
The ability of the calculator routine to analyze 
more than the basic three-path situation is indi­
cated for corridor traffic assignment. 

The routine is part of a continuing HPR research 
study. The procedure is undergoing continuing 
revision and evolution to increase the efficiency 
and widen the applicability of the procedure to 
corridor evaluations. 
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Consideration of Alternative Access, Egress, and Line-Haul 
Travel Choices Within UTPS Framework 

ASHOK KUMAR AND YEHUDA GUR 

In many large metropolitan areas more than one line-haul transit service is often 
available in some travel corridors. Examples include express bus and rail rapid 
transit, commuter rail and rail rapid transit, private suburban bus lines and com­
peting service provided by regional transit operator. This is especially true as 
one moves away from the core area and corridors become wider. Coupled with 
the choice of line-haul modes are several choices of accessing these modes such 
as walk, feeder bus, park-and-ride, and kiss-and-ride. This paper addresses these 
issues and describes a systematic procedure for analyzing such mode choices. It 
is argued that straightforward use of urban transportation planning system 
(UTPSI programs prevents meaningful analysis of important policy issues due to 
their all-or-nothing assignment principle, when real access-egress and line-haul 
choices have to be considered. 

Much progress has been made in the last two decades 
in quantitative aspects of long-range planning of 
highway and mass transportation facilities. The 
forecasting of travel demand along highway links and 
transit lines that comprise the transportation net­
work of a metropolitan area has been greatly facili­
tated by the availability of two software packages, 
PLANPAC (_~J and Urban Transportation Planning System 
(UTPS) (~), developed by the U.S. Department of 
Transportation. Several publications (l,!l describe 

the sequence of trip generation, trip distribution, 
mode choice, and route-assignment models used to 
simulate the traffic flow by using these packages. 
This paper addresses the problems associated with 
application of computer programs UNET, UPATH, UPSUM, 
UMODEL, and ULOAD (2) if alternative access, egress, 
and line-haul choic~s are available between an ori­
gin-destination (0-D) pair. Briefly, UNET is used to 
prepare the computerized description of a transit 
system that serves the study area. UPATH finds the 
minimum impedance (travel time, travel cost, or 
both) path between any 0-D pair in the system and 
zone-to-zone fare matrix. UPSUM computes the travel 
time along minimum impedance path and can store the 
time spent walking, waiting, transferring, and in­
motion along various travel modes (walk, automobile, 
bus, or rail) used between an 0-D pair. UMODEL com­
putes the share of transit trips (mode split) given 
the transit level-of-service data prepared by UPATH 
and UPSUM, highway level-of-service data prepared by 
either PLANPAC programs BUILDHR (!) and BUILDVN (!), 
or UTPS progra~s HR (~) and UROAD (~). It computes 
total person trips between an 0-D pair by using a 
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user-specified mode split model. Finally, ULOAD 
loads the resulting transit trips along the minimum 
impedance path to produce a transit assignment. 

PROBLEM DEFINITION 

The process described above is satisfactory for syn­
thesizing transit travel patterns if only one tran­
s it path is overwhelmingly used by an 0-D pair. How­
ever, in large metropolitan areas, as one moves away 
from the core of the region, several options for 
commuting exist. For example, rail rapid transit 
with walk, feeder bus, park-and-ride and kiss-and­
ride access; express bus with walk, feeder bus, 
park-and-ride, and kiss-and-ride access. Even if a 
very fine zone system and detailed network descrip­
tion are used in demand analysis, the problem of 
all-or-nothing assignment cannot be easily overcome. 
Assessment of travel demand along competing line­
haul and access-egress service is essential in proj­
ect-level planning and design of transit facili­
ties. The following sections describe the com­
puterized network analysis and mode choice estima­
tion process developed for the Northeast Ohio Area­
wide Coordinating Agency (NOACA) as part of its 
alternatives analysis work program. It is described 
in detail elsewhere (1l· The procedure follows, in 
its general structure, the mode split procedures of 
the Chicago Area Transportation Study (CATS) (6) and 
the North Central Texas Council of Governments lll . 

Modeling Procedures 

The procedure provides 

1. Explicit estimation of use of one or more 
available line-haul transit modes; 

2. Explicit representation and estimation of ac­
cess-egress modes and their impact on use of main 
line-haul mode; 

3. Method to represent parking fee-walking dis­
tance trade-off faced by automobile users in high­
density areas, such as the central business district 
(CBD) I and 

4. Method to represent and analyze impacts of 
alternative transportation system management strate­
gies (such as parking costs, toll pricing, fare 
changes, and fuel price changes) on transit use. 

Modeling Structure 

The heart of the procedure is a disaggregate logit 
mode-choice model that estimates modal use for in­
dividual trips. The procedure provides a modeling 
structure, including sampling and aggregation pro­
cedures based on the principles of Monte Carlo sim­
ulation <1> , that links the mode-choice model to 
available aggregate descriptors of level-of-service 
and socioeconomic attributes of the travelers. 

The mode choice model is a modl.fied nested binary 
choice logit model. The derivation of logit choice 
models and the justification of their use for the 
analysis of mode choice are thoroughly discussed in 
the literature [for example, see Lisco and Stopher 
(8,9), and McFadden and Domencich (10)]. The analy­
sis-of transit starts with an estimation of the dis­
utility of each access and egress mode of each valid 
transit path. The submode that has the least dis­
utility is assumed to represent the resultant dis­
utility of the access and egress portions of the 
path. Given the access and egress resultant dis­
utilities and the line-haul service attributes, the 
composite disutility of each valid transit path is 
determined. 

The transit path that has the least disutilitv is 
assumed to represent the resultant disutility of 
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transit for analysis of the automobile versus tran­
sit mode choice. A binary logit mode choice formu­
lation is used in computing the probability of 
choosing transit [Pr(t)] and automobile !Pr(a)]. 
The automobile option reflects both drive alone and 
passenger modes. In order to develop the vehicle 
trip table for highway assignment, the expected 
automobile occupancy is estimated as a function of 
(a) trip purpose, (b) trip length, (c) trip orienta­
tion, and (d) zonal income of the tripmaker' s place 
of residence. The development of the automobile-oc­
cupancy model and associated look-up curves are de­
scribed elsewhere ( 5, 11) • The expected automobile 
occupancy is also used in computing the disutility 
for automobile travel. Automobile operating cost 
and parking fee are divided by expected automobile 
occupancy to reflect shared cost of automobile 
travel among the occupants. 

After the probability of transit use has been 
computed, the probability of using alternative tran­
sit line-haul modes is computed by using a binary 
choice logit model. The results are then weighted 
by the probability of using transit. In its present 
form, the modeling process assumes that the individ­
ual tripmaker will use the best access and egress 
mode associated with each line-haul mode with the 
probability one. Therefore, absolute probability of 
the best access and egress mode is taken to be equal 
to the probability of line-haul mode computed above. 

Note that simulated trips that originate from the 
same zone will have different access-egress modes 
that have the least disutility depending on the dis­
tance from the line-haul facility. Therefore, at 
the zonal level, distribution over various access­
egress modes is achieved. This contrasts sharply 
with the conventional use of UNET and UPATH programs 
where all trips get assigned to the centroid connec­
tor by providing access to the transit network. De­
tails of disutility calculations and estimation of 
mode-choice probability follow. Details of the model 
structure can be found elsewhere <1> . 

DISUTILITY CALCULATIONS 

The variables in disutility calculations are defined 
in Table 1. 

For transit access, the disutility of walk access 
to line-haul facility i is computed as 

Uwa(i) = VWALK x WKTL(i,a) 

Ub 8 (i) = VWALK x WKTB(i,a) + VWAIT x WTIB(i, a) 

+ VJVT x BIVT(I,a) + VCOST x BAFAR(i, a) 

+ VTFER x I + VBIASA(B) 

where i is the transit path and a is access. 

(!) 

(2) 

Disutility of park-and-ride access is computed as 

Upa(i) = VW ALK x PRWK(i) + VJVT x PRIVT(i) 

+ VCOST x (PROPC(i) + 0.5 x PRPCST(i)] + VBIASA(P) (3) 

Disutility of kiss-and-ride access is computed as 

Up 3 (i) = VJVT x 2 x PRIVT(i) + 2 x VCOST x PROPC(i) + VBIASA(k) (4) 

Resultant access disutility is computed as 

(5) 

For transit egress, the disutility of walk egress 
from transit line-haul is computed as 

Uw0 (i) = VWALK x WKTL(i, e) (6) 
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where e is egress. 
Disutility of feeder bus egress is computed as 

Ube(i) = VWALKx WKTB(i,e)+ VWAIT x WTTB(i, e) 

+ VIVT x BIVT(i, e) + VCOST x BAFAR(i, e) 

+ VTFER x I + VBIASA(B) (7) 

Resultant egress disutility is computed as 

U0 (i) = Min [Uwe(i), Ub0 (i)] (8) 

For transit line-haul, the disutility of transit 
line-haul path is calculated as follows: 

U1m(i) = VWAIT x TOVT(i) + VIVT x TIVT(i) 

+ VTFER x NTFER(i) + VBIASTM(i) + u.(i) + u.(i) (9) 

where i is 1 for a path that contains feeder bus and 
express bus only and i is 2 for a path that contains 
feeder bus and rail only. 

Resultant transit utility is calculated as 

U1 = Min[U1mCl), U1m(2)] + VBIAST (IO) 

For automobile, the disutility of automobile 
travel is calculated as 

u. = VIVT x AIVT + VW ALK x AWTIME(D) 

+ {vcoST[0.5 x APCOST(D) + AOPC] /OCC} + VAA x AA (I I) 
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The probability of choosing transit is computed as 

P,(t) = 1/[1 + exp(U8 - U1)) (1 2) 

The probability of choosing automobile is com­
puted as 

P,(a) = 1 - P,(t) (13) 

The probability of choosing specific transit path 
is calculated as 

P,[tm(l)] =(1/{l +exp(U1m(2)-U1m(l)] xP,(t)}) 

P,[tm(2)] = 1 -P,[tm(l)] 

(14) 

(I 5) 

The values of calibration parameters used in dis­
utility calculations are given in Tables 2 and 3 for 
trips destined to the CBD and to the non-CBD, re­
spectively. These values were obtained by research­
ing the disaggregate mode choice literature and 
fine-tuning them to replicate observed ridership 
patterns in the Cleveland metropolitan area. The 
details of the model calibration and validation pro­
cedures can be found elsewhere (~). 

SYNTHESIS OF A PSEUDOOBSERVATION 

As mentioned earlier, the modeling process described 
in this paper uses pseudosample enumeration tech­
nique to provide zonal level aggregate mode-split 

Table 1. Variables used in modal disutility calculations for trips to CBD and non-CBD destinations. 

Notation 

WKTL 
WKTB 
WTTB 
BIVT 
BAFRA 
PRWK 
PRIVT 

PROPC 
PR PC ST 
TOVT 

TIVT 

NT FER 
AWTIME(D) 

APCOST(D) 

Description 

Walk time to or from line-haul facility 
Walk time to or from feeder bus that serves line-haul facility 
Wait time to board feeder bus 
In-vehicle time spent riding feeder bus 
Fare for feeder bus 
Walk time from park-and-ride lot to line-haul facility 
In-vehicle time spent driving automobile to park-and-ride 

lot 
Operating cost of driving automobile to park-and-ride lot 
Parking fee for leaving car at park-and-ride lot 
Total wait time to board first line-haul and subsequent line­

haul facilities 
Total in-vehicle time spent riding first line-haul and sub­
sequent line-haul facilities 

No. of line-haul transfers 
Walk time between parking lot and final destination if auto­
mobile is line-haul mode 

Parking fee paid if automobile is line-haul mode 

Notation 

AIVT 

AOPC 
AA 

Table 2. Calibrated values of parameters used in modal disutility calculations for trips to CBD. 

Home-Based 

Description Notation Work Trips Nonwork Trips 

Value of in-vehicle time (min) VIVT -0.025 -0.012 
Value of out-of-pocket cost(¢) VCOST -0.012 -0.01 
Value of out-0f-vehicle walk time (min) VWALK -0.058 -0.04 
Value of out-of-vehicle wait time (min) VWAIT -0.09 -0.03 
Value of no. of transit transfers VTFER 0 0 
Value of automobile availability VAA 0 +4.12 
Value of bias coefficient for feeder bus VBIASA(B) 0.25 0 

mode of access-egress 
Value of bias coefficient for park-and- VBIASA(P} -0.36 -0.22 
ride mode of access 

Value of bias coefficient for kiss-and- VBIASA(K) -0.40 -0.26 
ride mode of access 

Value of bias coefficient for express bus VBIASTM(E) +0.31 -0.52 
in line-haul operation 

Value of bias coefficient for rail transit VBIASTM(R) +0.31 -0.45 
in line-haul operation 

Value of transit bias VBIAST +0.14 +2.48 

Description 

In-vehicle time spent driving automobile if automobile is line-haul 
mode 

Operating cost of driving automobile if automobile is line-haul mode 
Automobile availability estimated as AA= 0, if no . of automobiles 
owned by household is 0, AA= 0.8 + 0.2/(no. of persons in the 
household), if no. of automobiles owned by household is I, and 
AA= I, if no. of automobiles owned by household is 2 or more 

Disutility of walk access 
Disutility of feeder bus access 
Disutility of park-and-ride access 
Disutility of kiss-and-ride access 
Resultant access disutility 
Disutility of walk egress 
Disutility of feeder bus egress 
Resultant egress 
Disutility of transit line-haul path 
Resultant transit disutility 
Disutility of automobile line-haul travel 

Non-Home-Based 
School Trips Trips 

-0.025 -0.016 
-0.012 -0.008 
-0.058 -0.024 
-0.09 -0.048 

0 0 
0 NA 

+0.25 +0.35 

-0.36 -0.125 

-0.40 - 0. l 

+0.31 -0.67 

+0.31 -0.43 

+o.14 +0.06 
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Table 3. Calibrated values of parameters used in modal disutility calculations for trips to non-CBD. 

Home-Based 

Description Notation Work Trips 

Value of in-vehicle time (min) VIVT -0.01 
Value of out-of-pocket cost(¢) VCOST -0.0l 
Value of out-of-vehicle walk time (min) VWALK -0.03 
Value of out-of vehicle wait time (min) VWAIT -0.06 
Value of no . of transit transfers VTFER -0.23 
Value of automobile availability VAA +3 .3 
Value of bias coefficient for feeder bus VBI ASA(B) +0.42 
Value of bias coefficient for park-and- VBIASA(P) -0.55 
ride mode of access 

Value of bias coefficient for kiss-and- VBIASA(K) -0.25 
ride mode of access 

Value of bias coefficient for express bus VBIASTM(E) -0.65 
in line-haul operation 

Value of bias coefficient for rail transit VBIASTM (R) -0.70 
in line-haul operation 

Value of transit bias VBIAST 1.67 

forecasts for planning purposes. This is one of the 
most satisfactory procedures to develop aggregate 
mode-split rates by using disaggregate mode choice 
models when computer resources are available. De­
tails and discussion of aggregate forecasting from 
disaggregate choice models can be found elsewhere 
<2,12) . A computer program, MSPLIT (13), was 
written that performs the necessary Monte Carlo 
simulation by sampling frequency distributions of 
zonal socioeconomic attributes and level-of-service 
data. The process i s described briefly here and de­
tails can be found elsewhere <2l • 

Assigning of Automobile-Related Level-of-Service 
and Socioeconomic Attributes 

The components of disutility associated with automo­
bile travel are shown in Equation 11. Automobile in­
vehicle time and operating costs on the line-haul 
portion of the journey are taken from input zone-to­
zone highway travel time and distance skim ma­
trices. The intrazonal variability of these compo­
nents is assumed to be small and so can be ignored. 
For non-CBD destinations, walk time at destination 
and parking fee are also assumed to have minimal 
intrazonal variability and are estimated by using 
input zonal level data. For high-density areas such 
as the CBD, where considerable variation in parking 
fee choice and associated walking distance to reach 
the final destination eKists, a simulation approach 
is used to assign these attributes to the sampled 
observation. Cumulative probabilities of walking 
certain distances between the parking lot and final 
destination in the Cleveland CBD are shown elsewhere 
<2>· These values were derived from a special park­
ing lot survey conducted in the downtown area. In 
addition, for each traffic analysis zone within the 
CBD area, a curve was derived to show the minimum 
parking fee that must be paid if one wishes to park 
within 0.1, 0.2, 0.3, ••• ,1.0 mile from the zone cen­
troid. MSPLIT generates a walking distance randomly 
by using the aforementioned probability distribution 
and computes a parking fee for the associated dis­
tance by using input parking fee-walking distance 
curve. Methodology for constructing these curves is 
also described elsewhere (2). 

Automobile availability (AA) for the pseudoobser­
vation is estimated by random sampling from the 
joint distribution of automobile ownership and 
household size available for the zone of trip pro­
duction. The methodology for developing joint auto­
mobile ownership and household size distributions as 
a function of zonal mean automobile ownership and 
zonal mean household size is described elsewhere 

Non-Home-Based 
Nonwork Trips School Trips Trips 

-0.001 -0.001 -0.008 
-0.01 -0.010 -0.009 
-0.03 -0.021 -0.05 
-0.04 -0.05 -0.05 
-0. l -0.10 0 
+5.0 +3 .5 NA 
+0.23 +o.34 +0.5 5 
-0.10 -0.73 -0.60 

-0.10 -0.40 -0.40 

-l.75 -0.87 -1.50 

-1.35 +o .13 -1.45 

+l.32 +2.6 5 - l.56 

(.!.!). These distributions have been hardcoded in­
side the MSPLIT computer program. Automobile avail­
ability is defined by using the sampled number of 
automobiles and number of persons in the household, 
by using the relation given in Table 1. Since 
households that have a greater number of automobiles 
make more trips than households that have no car or 
fewer cars, the joint probability distribution of 
automobile ownership and household size is weighted 
prior to sampling by the relat i ve tripmaking fre­
quencies of households of varying size and automo­
bile ownership characteristics. These tripmaking 
frequencies are input to MSPLIT as control cardsi 
their derivation is described elsewhere (,!2). 

Determining Choice Set of Public Transportation 

The number of transit paths that are assumed to be 
available to a pseudoobservation and their char­
acteristics depend on the transit network. The 
available access-egress submodes vary for each path, 
depending on the priority mode of the path and auto­
mobile ownership levels. The following paragraphs 
explain the process of determining the choice set 
and its attributes. 

Four distinct types of transit service are avail­
able in the Cleveland metropolitan area. In the 
densely developed central city area, frequent radial 
and crosstown bus service is provided. These routes 
are designated as local bus routes and are coded as 
mode 4 in the UNET (~) transit network description. 
The service to inner and outer suburbs within 
Cuyahoga County and adjacent developed communities 
is provided by using radial bus routes that operate 
more frequently during rush hours. These routes are 
designated as express bus routes and are coded as 
mode 6 in the UNET transit network description. In 
addition to the local and express bus service, a 
heavy rail line service is available within Cleve­
land and two light rail lines operate between Shaker 
Heights and the Cleveland CBD. Heavy rail service is 
coded as mode 7 and light rail service is coded as 
mode 8 in the UNET network description. Local 
cros stown buses interface with the express bus and 
rail service and, therefore, provide feeder service 
as well. Modes 4, 6, 7, and 8 are operated by the 
regional transit authority. Limited intercity bus 
service between the Cleveland CBD and some of the 
outlying communities in Lorain and Lake Counties is 
also provided by private operators. This service is 
designated as mode 5 in the network description. 

Nontransit modes 1, 2, and 3 are used to desig­
nate CBD sidewalK linKs, centroi d automobil e connec­
tors, and centroid walk connectors, respectively. 
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The automobile connectors are used only if express 
bus and rail service cannot be accessed by using 
local bus from any given zone. As will be shown 
later, level-of-service provided by alternate access 
modes is estimated by using a zonal transit service 
.(ZTS) description file (13) prepared exogenously. 

The modeling process developed for the Cleveland 
area is capable of analyzing mode split between com­
peting rail and express bus service (if available) 
between any 0-D pair. In order to accomplish this 
split, it is necessary to develop three sets of 
transit paths by using computer program UPATH (~). 

These paths are developed as follows: 

1. Set l includes paths developed by using com­
plete transit network description. 

2. Set 2 includes paths developed by using tran­
sit modes 4, 5, and 6 only: that is, rail service is 
excluded from the network description by using no 
transfer allowed (NOX) option of UPATH (~). 

3. Set 3 includes paths developed by using tran­
sit modes 4, 5, 7, and 8 only: that is, express bus 
service is excluded from the network description by 
using the NOX option. 

Each set is then analyzed to determine for each 
0-D pair: 

1. Priority mode, that is, the highest numbered 
mode used in the path: 

2. First line-haul mode used; 
3. Last line-haul mode used: 
4. Wait for first line-haul and subsequent line-

haul modes used in the path; 
5. Total line-haul in-vehicle time: 
6. Number of line-haul transfers: 
7. Automobile in-vehicle time, if access to the 

transit system is using mode 2 (automobile connec­
tor) : and 

8. Wait time for the feeder bus at the origin 
end, if feeder bus is not part of the line-haul. 

A computer program TPATH (5,13) has been written 
to facilitate the transit pati;--analysis mentioned 
above. This program is similar in concept to the 
UTPS program UPSUM (~). Both programs read the path 
description produced by UPATH and prepare zone-to­
zone transit skim trees. TPATH, however, distin­
guishes between the line-haul and access-egress por­
tions of the paths. It trims the access-egress por­
tions of the path and summarizes in the skim trees 
only the line-haul attributes. 

Legs that have mode 3 are never considered part 
of the line-haul. The only exception is in the 
high-density area, such as the CBD, where the de­
tailed sidewalk network (mode 1) and fine zone sys­
tem are used. If program (TPATH) encounters a 3-1 
or 1-3 mode sequence, then those legs are also con­
sidered part of the line-haul. This preserves the 
user-coded travel impedance, which is considered 
sufficiently accurate. Intrazonal variability in 
such areas is assumed to be small and can be ignored. 

Legs that have modes 6, 7, or 8 (express bus and 
rail) are always considered part of the line-haul 
and are never removed from the network. If the 
highest numbered mode used in the path is 5 or less 
(local or suburban bus as the priority mode), legs 
that have modes 4 or 5 are considered part of the 
line-haul. 

If mode 6, 7, or 8 is the priority mode in the 
path, legs that have mode 4 at the beginning or end 
of the line-haul portion are considered either ap­
proach (access-egress) or line-haul legs, depending 
on the user-specified criteria for either end. The 
decision to remove modes 4 and 5 from the line-haul 
portion depends on input values of two parameters: 
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1. CRTIME--If the in-vehicle time on modes 4 or 
5 is greater than the criterion CRITIME, then they 
are considered part of the line-haul or 

2. CRATIO-'-If the ratio of the in-vehicle time 
on modes 4 or 5 to the total path's in-vehicle time 
is greater than criterion CRATIO, then they are con­
sidered part of the line-haul. 

By using these two parameters it is possible to pre­
serve transit legs of certain length at either end 
as part of the line-haul. 

If a leg that has mode 2 (automobile connector) 
is the first leg in the path, then it is considered 
part of the line-haul. Recall! that automobile con­
nectors are coded only if access at the origin end 
is not possible by using walk and feeder bus modes. 
Automobile egress is never permitted in the path 
building. 

Determination of Choice of Access Modes 

The choice set generated for a pseudoobservation 
depends on the use of the first line-haul mode as 
determined by TPATH. If the first line-haul mode is 
4 or 5, then only walk access is considered. If the 
first line-haul mode is 6, 7, or 8, then walk, 
feeder bus, kiss-and-ride, and park-and-ride options 
are considered for automobile-owning households and 
walk and feeder bus for non-automobile-owning house­
holds. 

Determination of Choice of Egress Modes 

The choice set for pseudoobservation for egress is 
based on the use of the last line-haul mode. If the 
last line-haul mode is 4 or 5, then only walk egress 
is considered. If the last line-haul mode is 6, 7, 
or 8, then walk ·and feeder bus, if available, are 
considered for egress. 

Determination of Choice of Transit Line-Haul Paths 

The determination of choice for line-haul travel de­
pends on the priority mode along three sets of paths 
(full network, network excluding rail service, and 
network excluding express bus service) as analyzed 
by using TPATH. The identification of choice set is 
done as follows. If the priority mode is 5 or less 
on full network (network 1), then the only alterna­
tive to automobile is the local or suburban bus. 
Estimated transit trips are assigned to network 1. 
If the priority mode is 6 on network l and the path 
in network l is identical to the path in network 2 
(no rail present), two cases are possible, namely: 

1. No connection in network 3 (no express bus 
present) is found: therefore, no rail alternative to 
express bus exists between the 0-D pair in question. 
No line-haul choice is analyzed and trips are as­
signed to network 2. 

2. Connection in network 3 is present. If the 
connection in network 3 has a priority mode of 7 or 
8, then the transit split is estimated and trips are 
further split between network 2 and 3. If the pri­
ority mode in network 3 has a priority mode of 5 or 
less, no line-haul split is estimated and all trips 
are assigned to the express bus path. 

If the priority mode is 7 or 8 on network 1, three 
cases are possible, namely: 

1. No priority mode 6 connection in network 2; 
in this case no competing express bus service is 
identified and no line-haul split is performed. All 
transit trips are assigned to network 3. 

2. Paths on network l and network 3 are not 
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identical; in this case, the network l path includes 
both rail anq express bus legs, and thus is better 
than the rail-only path on network 3. No line-haul 
split is performed. All transit trips are assigned 
to network l. 

3. Paths on network l and network 3 are identi­
cal and priority mode on network 2 path is mode 6; 
in this case there is a choice between express bus 
and rail. The transit trips are split between two 
line-haul choices and are assigned to networks 2 and 
3. 

The determination of number of line-haul paths to 
be analyzed is done by MSPLIT by using zone-to-zone 
skim tree matrices produced by computer program 
TPATH. 

Simulation of Access-Egress Impedance 

TPATH trims those legs from the transit path that 
are considered approach links (access-egress). For 
pseudoobservations generated between an 0-D pair, it 
is assumed that line-haul disutility components are 
identical for observations and the variation exists 
mainly in access-egress components. It is further 
assumed that the bulk of the intrazonal variability 
can be described by the variability of distance be­
tween trip ends and transit stops or stations. Thus, 
the input to MSPLIT (13) includes a description of 
the frequency distributions of distance to transit. 
Separate distributions can be specified for each 
zone, transit mode, and residential and nonresiden­
tial trip end. The distributions are specified in 
terms of the type of the distribution function and 
its parameters. Any of the five distributions can 
be used--linear, bilinear, step, bounded normal, or 
bounded exponential. 

In the process of generating a pseudoobservation 
the program samples the distribution that corres­
ponds to the first line-haul mode and the origin 
zone. The resulting distance is converted into ac­
cess submodes service measures such as walk time, 
in-vehicle feeder bus time, and automobile-in-ve­
hicle time by using user-specified zonal speeds. The 
total access impedance by each of the modes is 
determined by considering all the other standard 
components, such as feeder bus waiting time and 
automobile parking costs, as listed in Table 1. 
These elements are specified at the zonal level. A 
similar procedure is used to determine the egress 
impedance at the destination. 

Determining the Frequency Distributions of 
Distance to Transit 

The Northeast Ohio Areawide Coordinating Agency mode 
split procedure provides a default method to esti­
mate the distributions based on available or easily 
obtainable data. The default procedures are suffi­
ciently accurate for most standard cases. They were 
formulated based on a simulation analysis and vali­
dated by comparison to manually derived distribu­
tions (16,17). The default procedure is driven by a 
separate computer program, DFREQ (13). In standard 
applications the default distributions are used in 
the majority of cases, with user-determined distri­
butions for areas that have odd-shaped service or 
are of a special interest. 

Two types of transit service are considered--con­
tinuous and discrete. Continuous service is char­
acteristic of local buses and express buses that 
operate in the collector-distributor phase, when 
they stop frequently to serve passengers. Discrete 
service is characteristic of rail lines and express 
buses that operate in the line-haul phase, when they 
stop only at a few designated locations. Gur showed 
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(5) that frequency distribution of distance to con­
tinuous service can best be described as a linear 
function. The distribution to discrete service can 
best be described by a bounded normal distribution. 
DFREQ determines the distributions' parameters. 

Parameters of the Linear Distribution Function 
and Their Estimation 

The parameters of the linear function are as follows: 

XMIN--minimum distance to the continuous bus ser­
vice, 

XMAX--maximum distance to the continuous bus ser­
vice, and 

Slope R--ratio of probability to walk distance 
XMAX to XMIN. 

The parameters are estimated as a function of den­
sity of service (route miles of service operating 
per square mile of the zonal area) and activity con­
centration (that is, the extent to which trip ends 
are concentrated near the transit service) • 

The activity concentration factor can either be 
specified by the user or determined inside the pro­
gram as a function of the percentage of the develop­
ed area in the zone. Another option is to specify 
different concentration factors for residential and 
nonresidential trip ends in order to account for the 
higher propensity of commercial areas to locate in 
accessible locations. 

Parameters for Bounded Normal Distribution 
and Their Estimation 

The parameters of the bounded normal distribution 
are as follows: 

DMIN--minimum distance to discrete service, 
DMAX--maximum distance to discrete service, and 
SIGMA--standard deviation of parent complete 

normal distribution. 

The discrete transit service (express bus, rail­
rapid transit, or both) available for each traffic­
analysis zone is described by specifying up to three 
nodes for each mode on the transit network that 
serves the zone in question. A separate station 
data (SDATA) file is coded, which gives x and Y co­
ordinates of each transit node and zone centroid. 
The program DFREQ estimates the parameters of the 
distribution by assuming a square zone and calculat­
ing the distribution of distance from the zone's 
area to the closest transit station. For further de­
tails see elsewhere (5). 

Depending on the nature of analysis, MSPLIT can 
be used to estimate either zonal transit trip ends 
or zone-to-zone transit trips (transit trip table) 
for assignment purposes. The sampling logic used to 
generate pseudoobservations is fully described else­
where (5). 

MSPLIT also saves the attributes of automobile 
and transit modes simulated for a pseudoobservation 
in a sample file. By manipulating attributes such 
as travel time or travel cost in the sample file, 
MSPLIT can be rerun rather inexpensively to assess 
the impact on mode split. 

TRANSIT TRIP ASSIGNMENT 

Since the modeling procedure described uses three 
sets of paths (full network, network with no rail, 
and network with no express bus service) and pro­
duces three path-specific transit trip tables, a 
special trip-loading sequence is necessary by using 
computer program ULOAD (_£). The loading job con-
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sists of three steps. In the first step the trip 
table created by using full network is loaded to the 
paths created by using full network. The resulting 
partly loaded legs are saved and serve as an input 
to the next step. In the second step the trip table 
created by using network without rail is assigned to 
the partly loaded network from step l on the paths 
described by network with no rail service included. 
The resulting leg file is used as an input to the 
last stage of the process, where the trip table 
created by using network without express bus is as­
signed, by using paths described by network with no 
express bus service included. This multiple loading 
option is facilitated by the LEGS2 option of the 
UTPS program ULOAD. 

CONCLUSIONS 

The modeling process described provi<'les a flexible 
framework for analyzing multiple options of access­
egress modes available to a tripmaker. When pres­
ent, the process provides a mechanism to split tran­
sit travel between two line-haul modes that serve an 
0-D pair. The disutility expressions used in the 
nested log it model use explanatory variables that 
are commonly used in network and trip generation 
analysis for a metropolitan area and are suited for 
long-range policy planning as well. 

There are a number of obvious advantages to using 
this modeling process. First, it permits the analy­
sis of policy issues that relate to selecting the 
service attributes of different transit modes that 
serve the same areas. Second, the inputs to the 
program describe easily measurable attributes of the 
transit system. The procedure relieves much of the 
weight of the approach link coding, which in stan­
dard models is a major determinant of the transit 
network loading. 

ACKNOWLEDGMENT 

We would like to thank Frank Koppelman of North­
western University, who contributed to the model's 
formulation in the early steps of the project, and 
Jende Augustine Hsu of NOACA staff, who assisted in 
the model calibration. 

REFERENCES 

1. Program Documentation, Urban Transportation 
Planning. March 1972. 

2. UTPS Users Guide. Urban Mass Transportation 
Administration1 Federal Highway Administration, 
Feb. 1977. 

3. Urban Transportation Planning, General Informa­
tion and Introduction to System 360. Federal 
Highway Administration, March 1972. 

4. Cambridge Systematics, Inc. Introduction to 

17 

Urban Travel Demand Forecasting: Vol. 1, De­
mand Modeling, Software Systems Development 
Program. Urban Mass Transportation Administra­
tion, March 1974. NTIS: PB-236848. 

5. John Hamburg and Associates1 Urban Systems, 
Inc. NOACA Mode Split Modeling Study--Final 
Draft Report. Northeast Ohio Areawide Co­
ordinating Agency, Cleveland, July 1981. 

6. Y. Gur, E. Ryan, A. Vyas, and E. Lowe. Estima­
tion of Demand for Public Transportation. TRB, 
Transportation Research Record 728, 1979, pp. 
76-79. 

7. Y. Gur; Urban Systems, Inc. The NCTCOG Modal 
Split Model. North Central Texas Council of 
Governments, Arlington, June 1980. 

8. T.E. Lisco. The Value of Conunuters' Travel 
Time--A Study in Urban Transportation. Univ. 
of Chicago, Ph.D. dissertation, 1967. 

9. P. Stopher and T. Lisco. Modeling Travel De­
mand: A Disaggregate Behavioral Approach-Is­
sues and Applications. Proc., 11th Annual 
Meeting of Transportation Research Forum, 1970, 
pp. 195-214. 

10. T.A. Domencich and D. McFadden. Urban Travel 
Demand. North-Holland-Elsevier, New York, 1975. 

11. F. Speilberg. Auto Occupancy Projections Using 
a Modal Split Model. Seven County Transporta­
tion Study, Cleveland, 1968. 

12. F.S. Koppelman and M.E. Ben-Akiva. Aggreqate 
Forecasting with Disaggregate Travel Demand 
Models using Normally Available Data. Paper 
presented at the World Conference on Transport 
Research, Rotterdam, Netherlands, April 26-28, 
1977. 

13. Urban Systems, Inc. Program Writeups for Com­
puter Programs MSPLIT, TPATH, and DFREQ. North­
east Ohio Areawide Coordinating Agency, Cleve­
land, May 1981. 

14. Trip Generation Analysis--Volume 2, Methodology 
for Estimating Joint Distribution of Household 
Size and Auto Ownership. Northeast Ohio Area­
wide Coordinating Agency, Cleveland, Oct; 1980. 

15. Trip Generation Analysis--Volume 1, Home Based 
Person Trip Production Models, Northeast Ohio 
Areawide Coordinating Agency, Cleveland, May 
1981. 

16. Y. Gur1 Creighton, Hamburg, and Associates, 
Inc. The Distribution of Distance to a Linear 
Service from a Square Zone. Chicago Area 
Transportation Study, 1975. 

17. S. Howe. Dallas North Central Subarea Trans­
portation Study--Travel Model Development Re­
port. North Central Texas Council of Govern­
ments, Arlington, (forthcoming). 

l'Ub/ication of this paper sponsored by Committee on Passenger Travel Demand 
Forecasting. 



18 Transportation Research Record 895 

Transferability Analysis of Disaggregate Choice l\1odels 

FRANKS. KOPPELMAN AND CHESTER G. WILMOT 

The transferability of disaggregate choice models is widely assumed in travel 
demand analysis and forecasting. However, research results are mixed in their 
assessment of transferability. This paper considers transferability from the per­
spective of the usefulness of information provided by a model that predicts in 
a context different from that in which it is estimated. Issues that influence 
transferability are discussed and methods are formulated to evaluate transfer­
ability. These methods are demonstrated by application to spatial transfer be­
tween pairs of geographic sectors within a single urban area by using identically 
specified models. This application provides useful insights into the transferabil­
ity of choice models. We observe an inconsistency between general measures of 
error that indicate that transferability in this context is appropriate and statisti­
cal analyses that reject hypotheses that support transferability. Model transfer­
ability is a property of the estimation and application contexts as well as the 
specification of the model. Transferability is substantially improved by adjust­
ment of alternative-specific constants. These results indicate the need for addi­
tional research to identify the conditions of model specification and context 
characteristics for which model transfer is effective. Directi·ons for such re­
search are identified. 

The transfer of a model is the application of a 
model formulated and estimated in one context to 
another context. Transferability implies that the 
model transferred can provide useful information 
about the behavior or phenomenon of interest in the 
application context. The transferability property 
is commonly in•mkeC! implicitly when models are esti­
mated on historic data and used to predict into the 
future. The transferability property is invoked 
explicitly when models are estimated in one area and 
used to predict in another area. 

The purpose of this study is to develop an ap­
proach to examine the transferability of disaggre­
gate travel choice models. We describe this ap­
proach and demonstrate it by application to the 
intraregional transfer of a disaggregate model of 
mode choice to work. This application demonstrates 
the usefulness of the proposed approach when study­
ing the transfer of a specific model specification 
between different spatial contexts. 

ISSUES IN MODEL TRANSFERABILITY 

Model transferability has been discussed extens i vely 
in the travel demand analysis and prediction liter­
ature. Yet, there is little agreement on the defi­
nition of transferability or on the circumstances in 
which it is appropriate. A set of issues that need 
to be addressed includes the following. 

First, we define transfer as the application of a 
model, information, or theory about behavior de­
veloped in one context to describe the corresponding 
behavior in another context. We further define 
transferability as the usefulness of the transferred 
model, information, or theory in the new context. 

Second, we identify two general conditions, one 
theoretical and one practical, for effective model 
transferability. The. theoretical condition for 
model transferability is that the underlying behav­
ioral process described by the model is the same in 
the application context as in the context in which 
the model was estimated. If this condition does not 
hold (if, for example, people in one context are 
utility maximizers and people in another context are 
satisficers), models will not be transferable be­
tween the contexts. However, if this condition does 
hold, a further practical condition for model trans­
ferability is that the model be well-specified and 
that the data used to estimate it are such that the 
model describes the underlying behavioral process. 

Third, transferability is not satisfactorily de-

scribed as a dichotomous property. Rather, it is 
appropriate to consider the degree of transferabil­
ity of a model, theory, or information from one con­
text to another (1). Thus, we must develop measures 
that describe transferability in continuous terms. 

Fourth, different portions of a model, theory, or 
data may be more or less transferable than other 
portions. Thus, it is appropriate to consider the 
notion of partial transferability (_~). That is, it 
is appropriate to evaluate separable components or 
portions oi a model for transferability to a new 
context. 

Fifth, we distinguish between prior and posterior 
analysis of transferability. Posterior analysis of 
transferability is the determination that a model, 
theory, or data would have been transferable to an 
application context after observing the formulation 
and estimation of an analogous model, theory, or 
data in the application context. Prior analysis of 
transferability is the determination that a model, 
theory, or information is transferable before under­
taking a similar development effort in the applica­
tion context. Posterior analysis of transferability 
may be used as a basis to make prior inference of 
transferability in some new context. All empirical 
studies undertaken to date have been posterior stud­
ies. The study reported in this paper is also a 
posterior studyi however, it is undertaken as a part 
of an overall effort to develop a capability to make 
prior inferences about transferability. 

Sixth, we consider two distinct classes of tests 
for model transferability--both applied to posterior 
studies of transferability. Tests of model parame­
ters are designed to evaluate, either subjectively 
or statistically, the degree to which the trans­
ferred model describes the behavioral process in the 
application context. Tests of model predictions are 
designed to evaluate, either subjectively or statis­
tically, the accuracy with which predictions of a 
transferred model describe travel behavior in an 
application context. 

The work reported here addresses each of the 
issues. We develop and apply methods to evaluate 
the transferability of disaggregate travel choice 
models. We assume the existence of behavior equiva­
lence (i.e., equivalent behavioral processes in each 
cpntext) and evaluate the transferability of a model 
that has demonstrated its ability to reproduce 
travel behavior in other studies. We consider 
transferability of portions of the model parame­
ters. We examine posterior transferability based on 
tests of parameter equivalence and prediction use­
fulness. 

METHODS FOR EVALUATING MODEL TRANSFERABILITY 

A set of measures that may be used to evaluate model 
transferability includes the following classes: 

1 . Tests of model parameter equality, 
2. Tests of disaggregate prediction, and 
3. Tests of aggregate--zonal level--prediction. 

The first set of measures is based on conventional 
tests of equality between model parameters. These 
tests are symmetric between contexts. The second 
and third sets of measures describe the predictive 
accuracy of the transferred model and can be formu­
lated as absolute tests or relative tests. The 
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Figure 1. Sample log-likelihood for 
alternative local and transferred 
models. 
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absolute measures are based on some comparison be­
tween transfer model prediction and observed be­
havior. The relative measures adjust these compar­
isons by the accuracy of prediction that would be 
obtained by a similarly specified model calibrated 
in the application context. Aggregate transfer mea­
sures differ from disaggregate measures because they 
are influenced by the distribution of exogenous var­
iables in the aggregate group. 

Model Parameter Equality 

we hypothesize that the underlying choice process in 
two or more contexts can be described by a common 
model, the model equality test statistic (METS). 
This is defined by 

(!) 

where LLi (a j) is the log likelihood that the 
behavior observed in context i was generated by the 
model estimated in context j and ivj describes the 
union of contexts i and j. 

This test is analogous to the commonly used test 
of equality of models between market segments <1). 
In this case the market segments of interest are the 
pair of contexts between which transferability is 
being considered. The resultant statistic is chi­
square distributed with degrees of freedom equal to 
the number of model parameters. 

The METS statistic can be used to test the equal­
ity of the entire set of model parameters or a sub­
set of model parameters. In particular, we may con­
sider the case where some of the parameters of the 
model are assumed to be context dependent and others 
are assumed to be equal across contexts. Atherton 
and Ben-Akiva (~), McFadden (_!), and Ben-Akiva (~) 

discuss the case of context-specific alternative­
specific constants. In this case the hypothesis to 
be tested is that the underlying model is equal 
across contexts with respect to a selected subset of 
parameters. The resultant test is chi-square dis­
tributed with degrees of freedom equal to the number 
of parameters tested for transfer. 

These tests have been used in earlier studies of 
tr.ansferability (_§.-2_). Unfortunately, these tests 
have an important deficiency in transferability 
analysis. This deficiency is the inherent symmetry 
of the tests, whereas transferability is a direc­
tional property. To observe this point, consider 
two contexts; one is a large urban region with a 
wide range of population groups and the other is a 
suburban area of an urban area that has relatively 
little diversity. Although it might be appropriate 
to use a model estimated in the first context for 
prediction in the second, it is unlikely that the 
reverse transfer will be useful. 

negative «'(----ol- >-.,.positive 

Disaggregate Measures of Transferability 

We formulate a set of transferability measures based 
on the ability of a transferred model to describe 
individual observed choices in the application con­
text. These measures are based on the generally 
used log-likelihood measure. Specifically, we de­
fine the log of the likelihood that the observed 
data in application context i were generated by the 
transferred model estimated in context j [LLi(aj)]. 
We examine this log likelihood of the transferred 
model relative to the log likelihood for a null 
(equal shares) model [LLi(O)]: the log likelihood 
for a market share model [LLi(MSi)l: the log 
likelihood for a model estimated in the application 
context [LLi<aill: and the log likelihood of a 
perfect model [LLiJ, which is equal to zero. 
The relation between these measures is shown in 
Figure 1. 

A natural measure of the transferability of the 
model estimated in context j for application in con­
text i is the difference in likelihood between this 
model and a corresponding model estimated in context 
i, -[LLi<ajl - LLi<ai)J. we use this 
measure to formulate three specific indices of 
transferability. 

First, we define the transferability test sta­
tistic (TTS) as twice the difference in log likeli­
hoods identified above: 

This statistic is chi-square distributed with de­
grees of freedom equal to the number of model param­
eters under the assumption that the parameter vector 
of the transferred model is fixed. This test is 
used by McFadden and others (10) in their condi­
tional choice set test of the IIA property and by 
Atherton and Ben-Akiva (2) in their tests of trans­
ferability between Washfngton, D.C., and New Bed­
ford, Massachusetts. 

This statistic tests the hypothesis that the 
underlying parameter values in context i are equal 
to the estimated values in context j. It is equiva­
lent to the model equality test statistic when there 
is no error in the transferred parameter estimates. 
Otherwise, it will have larger values than the model 
equality test statistic and thus will be more likely 
to reject the equality hypothesis. The transfera­
bility test statistic for model j applied to context 
i is, in general, not equivalent to the correspond­
ing statistic for model i applied to context j. 
Thus, it is possible and reasonable to accept trans­
ferability in one direction between a pair of con­
texts but reject it in the other. 

Second, the transfer index (TI) describes the 
degree to which the log likelihood of the trans­
ferred model exceeds some base or reference model 
(we use the market shares model) relative to the 
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improvement provided 
application context. 

by a model developed 
we define TI by 

in the 

(3) 

This index measures the predictive accuracy of the 
transferred model relative to a locally estimated 
model. TI has an upper bound of one, which it ob­
tains when the transferred model is as accurate as a 
locally estimated model. This index does not have 
any lower bound. Negative values imply that the 
transferred model is worse than the local base 
(market shares) model. 

2 
Third, the transfer rho-square (pT) de­

scribes the degree to which the log likelihood of 
the transferred model exceeds that of the base model 
relative to the degree of improvement in log likeli­
hood achieved with a perfect (predicts all choice 
correctly) local model. This measure is analogous 
to the commonly used rho-square measure <ll . We 
define the transfer rho-square measure by 

p~(f3i) = [LI; (f3i) - LI; (MSi)] / [l.;0 
- LI; (MSi)] 

= 1 - [Ll;(flj)/Ll; (MSi)] (4) 

This measure is related to TI by 

(5) 

Accordingly, it is upper bounded by the local rho­
square measure, has no lower bound, and negative 
values are interpreled as for the transfer index. 

The three measures defined above are interrelated 
by their dependence on the difference in log likeli­
hood between the transferred and local models. How­
ever, they provide different perspectives on model 
transferability. The transfer rho-square provides 
an absolute measure of disaggregate transferability, 
the transfer index provides a relative measure, and 
the transfer test statistic provides a statistical 
test measure. 

Each of these measures may be applied to tests of 
partial model transferability by substitution of the 
log likelihood for the partly transferred model (a 
model with some transferred parameters and some lo­
cally estimated parameters) in place of the log 
likelihood for the transferred model in Equations 2, 
3, and 4. The partial transfer log likelihood will 
always lie between the transfer model log likelihood 
and the local model log likelihood in Figure 1. 

Aggregate Measu r es of Transferability 

The planning process is primarily concerned with the 
prediction of aggregate rather than disaggregate 
travel flows. Thus, it is appropriate to consider 
transferability in terms of the accuracy of aggre­
gate predictions. We define the error in aggregate 
prediction and examine ways in which these errors 
can be summarized across alternatives and aggregate 
groups. 

We choose to examine the following relative error 
measure for prediction of alternative choice fre­
quency in some aggregate group: 

where 

REMing 

(6) 

relative error measure in prediction of 
alternative m for group g, 
number of persons predicted to choose al­
ternative m from group g, and 
number of persons observed to choose al­
ternative m from group g. 
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In order to evaluate the aggregate predictive ac­
curacy of a choice model we summarize this measure 
over alternatives and groups by means of the 
weighted root mean square error (RMSE) measure, 
defined by 

-( " 2 " )1/2 RMSE - ~ NmgREMmg/ ~ Nmg 
m,g m,g 

(7) 

This measure is an index of the average relative 
error in prediction weighted by the size of the pre­
diction element and structured to place emphasis on 
large relative errors. RMSE can be disaggregated 
into alternative-specific error measures and into 
average and variational components to aid error 
analysis. These properties and their use in trans­
portation error analysis are described by Koppelman 
(11-.!l). 

An alternative measure of the accuracy of aggre­
gate prediction tests the hypothesis that the ob­
served frequencies of choice in each group are, col­
lectively, generated by the prediction model. We 
formulate the aggregate prediction statistic (APS) as 

(8) 

This statistic, which is equivalent to the chi­
square one sample test (14) , ~s chi-square distrib-
uted unde r the assumption the Nmg is predicted with­
out sampling e r ror. This is equivalent to the as­
sumption adopted in formulating the transferability 
test statistic. 

APS is more likely to reject the hypothesis that 
all frequencies come from the candidate model than 
would a statistic that takes account of sampling 
variation. The degrees of freedom for the APS for 
full model transfer are (number of alternatives -
1) x (number of groups) • However, when applied for 
local prediction or with locally adjusted alterna­
tive-specific constants, the degrees of freedom need 
to be reduced by the number of alternatives less one 
to (number of alternatives - 1) x (number of 
groups - 1). 

A relative measure of aggregate prediction ac­
curacy is useful. We define the relative aggregate 
transfer error (RATE) measure as the ratio between 
the transfer RMSE and local RMSE measures, 

(9) 

These measures are interrelated by their depen­
dence on the relative error measure defined in Equa­
tion 6. However, they offer different perspectives 
on model transferability at the aggregate level. 
RMSE provides an absolute measure of aggregate 
transferability, RATE provides a relative measure, 
and APS provides a statistical test measure. 

APPLICATION OF METHODOLOGY 

We demonstrate the use of the transferability mea­
sures by their application to the transfer of mode 
choice to work models for the Washington, o.c., 
area. These models describe the choice among drive 
alone, shared ride, and transit alternatives for 
breadwinners who work in the central business dis­
trict (CBD). There are a total of 2654 such bread­
winners, 2088 of whom have all three alternatives 
available and 566 of whom do not have drive alone 
available due to lack of a driver's license or lack 
of available cars in the household. We divide the 
population into three 
shown in Figure 2. 
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Table 1. Estimation results for sectors and the region. 

Sector 1 (n = 944) Sector 2 (n = 964) 

Item Parameter !-Value Parameter !-Value 

DAD -3.39 -9.2 -1.84 -5.3 
SRD -2.46 -8.8 -2.10 -8.5 
CPD DA 4.13 11.1 3.07 8.8 
CPD SR 2.05 7.3 1.77 8.2 
OPTCINC -0.0069 -0.5 -0.0242 -2.1 
TVTT -0.0418 -6.9 -0.0151 -3.2 
OVTTD -0.0258 -0.4 -0.105 -1.8 
GWSR 0.746 4.8 0.526 3.6 
NWORKSR 0.096 0.9 0.264 2.7 
Log likelihood 

At zero -962.5 -933.8 
At market shares -904.4 -898.5 
At convergence -754.4 -803.4 

Llkelihood ratio 416.2 260.7 
statistic 

Llkelihood ratio index 
p2 (0) 0.216 0.140 
p2 (market share) 0.166 0.106 

Figure 2. Estimation sectors in Washington, D.C., region. 

:~WHH Sector 1 

~Sector2 

: : : : : : Sector '.J 

The demographics of these CBD-based breadwinners 
in sectors one and three are similar. Those in sec­
tor two are generally younger and come from house­
holds that have more persons, more workers, lower 
household income, fewer cars, and fewer licensed 
drivers. Average travel service characteristics are 
similar across sectors for drive alone and shared 
ride. Transit service is most expensive in sectors 
one and three and most time consuming in sector 
three. 

Method of Analysis, Model Specification, and 
Parameter Estimates 

We study the various transferability measures and 
tests in application to the transferability of work­
mode-choice-to-CBD models between pairs of sectors 
depicted in Figure 2. We estimate models by using 
the specification employed by Koppelman (7,12,13) in 
his analysis of aggregation error in predictio!1"with 
disaggregate choice models. 

Variable 
Name 
DAD, SRD 

Description 
Dummy variable specific to drive-alone 

and shared-ride alternative: mea­
sures average bias between pairs of 
alternatives other than that repre­
sented by the included variables 
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Sector 3 (n = 746) Region (n = 2654) 

Parameter t-Value Parameter !-Value 

-2.73 -6.8 -2.59 -12.4 
-2.52 -7.3 -2.35 -14.8 
3.58 9.0 3.59 17.0 
1.59 5.0 1.83 12.4 

-0.0280 -1.7 -0.0232 -3.2 
-0.0223 4.6 -0.0243 -8.3 
-0.0421 -0.5 -0.0667 -1.85 
0.680 4.2 0.653 7.4 
0.502 4.1 0.268 4.4 

-790.0 -2686 
-771.6 -2587 
-688.3 -2266 

203.4 840.8 

0.129 0.157 
0.108 

CPDDA, CPDSR 

OPTCINC 

TVTT 

OVTTD 

GWSR 

NWORKSR 

0.124 

Cars per driver included separately as 
alternative-specific variables for 
the drive-alone and shared-ride 
modes: measures change in 
among modes due to changes in 
mobile availability within 
household 

bias 
au to­

the 

Round-trip out-of-pocket travel cost 
divided by income [cents/($1000/ 
year) J: measures effect of travel 
cost on mode utility with cost ef­
fect modified by household income 
level 

Round-trip total travel time (min): 
measures linear effect of combined 
in- and out-of-vehicle travel time 
in mode utility 

Round-trip out-of-vehicle travel time 
divided by trip distance (min/ 
mile): measures additional effect 
of out-of-vehicle travel time in 
utility in addition to the effect 
represented in TVTT: this added ef­
fect is structured to decline with 
increasing trip distance 

Dummy variable that indicates if the 
breadwinner is a government worker 
specific to the shared-ride alter­
native: measures effect on shared­
ride utility of shared-ride incen­
tives for government workers 

Number of workers in the household 
specific to the shared-ride alter­
native: measures change in utility 
of shared ride when there is an op­
portunity to share ride with a 
household member 

The estimated models for each sector and for the 
region are reported in Table 1. All models are 
highly significant overall and the parameters for 
all models are significant at the 0.01 level, except 
for OPTCINC and OVTTD for all sectors and NWORKSR 
for sector one. 

The overall goodness of fit as measured by the 
rho-square evaluated at zero or market share is low 
for disaggregate choice models. However, studies by 
various researchers have found this general specifi­
cation to be satisfactory for analysis of this data 
set and similar specifications have been employed 
for many of the disaggregate work mode choice stud­
ies reported in recent years (~,~,11). 
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Model Parameter Equality 

The model equality test statistics for the complete 
model and for the partial model (all parameters ex­
cept alternative-specific constants) between pairs 
of sectors and for all sectors jointly reject the 
equality hypothesis at the 0.05 level for two of 
three sector pairs (except sectors 2 and 3) and for 
the set of three sectors jointly. Based on this 
result we would reject the hypothesis of model 
equality. By implication, this would suggest the 
rejection of model transferability. 

Disaggregate Me~sures of Tr~nsferability 

The transferability test statistics (Equation 3) for 
full and partial model transfer are reported in 

Table 2. Transferability test statistic. 

Prediction Based on 

Sector 1 Sector 2 

&timate Full Partial Full Partial 
Based on Model Model Model Model 

Sector 1 51.23 45.43 

Sector 2 34.88 34.43 

Sector 3 54.83 31.2' 34.03 15.2 

8Significant at the 0.01 level. 

Table 3. Transfer index. 

Prediction Based on 

Sector 1 Sector 2 

&timate Full Partial Full Partial 
Based on Model Model Model Model 

Sector 1 1.0 1.0 0.73 0.76 
Sector 2 0.89 0.89 1.0 1.0 
Sector 3 · 0.82 0.90 0.82 0.92 

Table 4. RMSE. 

Prediction Based on 

Sector 1 Sector 2 

&timate Full Partial Full Partial 
Based on Model Model Model Model 

Sector 1 0.201 0.201 0.244 0.238 
Sector 2 0.251 0.250 0.236 0.236 
Sector 3 0.280 0.243 0.270 0.242 

Table 5. APS for estimation-prediction sector pairs. 

Prediction Based on 

Sector 1 Sector 2 

&timated Full Partial Full Partial 
Based on Model Model Model Model 

Sector I 38.l 38.l 57.3 54.7 
Sector 2 59.4' 59.08 53.7 53.7 
Sector 3 74.08 55.78 70.48 u < 

.JVo.J 

8 Significant at 0.01 level. 

Sector 3 

Full 
Model 

65.03 

27.83 

Sector 3 

Full 
Model 

0.61 
0.83 
1.0 

Sector 3 

Full 
Model 

0.308 
0.299 
0.257 

Sector 3 

Full 
Model 

10.8" 
66.98 

An' 
"T7 • .l 

Partial 
Model 

31.68 

11.4 

Partial 
Model 

0.82 
0.94 
1.0 

Partial 
Model 

0.245 
0.264 
0.257 

Partial 
Model 

44.8 
s2.o• 
An' 
"T.70.l 
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Table 2. The reported values for the transfer of 
the full and partial models are all significant at 
the 0.01 level except for the partial model transfer 
from sector 2 to sector 3. These results reject 
strongly the hypothesis of intraurban transferabil­
ity for the model used in this application. 

There are other interesting observations to be 
made from the results in Table 2. First, as ex­
pected, the transferability test results are not 
symmetric. In fact, the transfer directionality is 
quite large. Second, improvements in the TTS value 
when moving from transfer of the total to partial 
model transfer are large in almost every case. 

TI (Equation 5) for full and partial transfer is 
reported in Table 3. The TI varies from 0. 61 to 
0. 89 for full model transfer and from 0. 76 to 0. 94 
for partial model transfer. The index values in­
crease dramatically when moving from transfer of the 
total model to transfer of the partial model for all 
transfers except sector two to sector one, which 
already had a high value. These results indicate 
that, when alternative-specific constants are ad­
justed to match application choice shares, the 
transfer model can provide a high proportion of the 
information that would be obtained by estimation of 
a model in the application context. 

The transfer rho-square measures are not reported 
here. They can be obtained from the model rho­
square market share measure and TI (Table 3) by 
Equation 5. 

Aggregate Measures of Transferability 

We now examine the aggregate prediction capability 
of transferred models. The sectors described in 
Figure 1 are subdivided into residence zones (16 in 
sector 1, 19 in sector 2, and 16 in sector 3). Ag­
gregate predictions for mode choice in each resi­
dence zone are obtained by summing individual pre­
diction probabilities for each alternative (13). 
These predictions are compared with the observed 
travel mode choices to compute the relative error 
measure (REM) defined in Equation 6 for each mode 
and zone. These error measures are combined over 
modes and zones to obtain the aggregate error mea­
sures. 

The aggregate error in applying each sector model 
(with and without alternative-specific constants) to 
each sector by using RMSE is reported in Table 4. 
Based on RMSE, all of the predictions give reason­
ably accurate estimates of aggregate mode share. 
The errors for transfer models are not dramatically 
greater than those for local models, especially when 
alternative-specific constants are adjusted to match 
local data. 

Next, we use APS, defined in Equation 8, to test 
the hypothesis that the aggregate choice frequencies 
by mode for the zones in each sector are generated 
by the models estimated in each sector (Table 5) • 
The hypothesis that the observed choice frequencies 
are generated by the models tested is rejected at 
the 0.01 level for model transfer in five of six 
cases for the full model and three of six cases for 
the partial model. Thus, the APS analysis rejects 
the hypothesis of model transferability. 

We do not report RATE. These measures can be 
obtained from RMSE for transfer prediction and local 
model prediction by Equation 9. 

SUMMARY AND CONCLUSIONS 

This paper develops a methodology and related mea­
sures to be used in the analysis of transferability 
effecti,_reness. The measures developed include both 
indices and statistical tests applicable at either 
the disaggregate or aggregate level. The measures 
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developed are applied to the analysis of intrare­
gional transferability of disaggregate CBD-work mode 
choice models estimated on geographic portions of a 
common data set by using identical specifications. 
The application illustrates the differences in sub­
stantive interpretations and conclusions that can be 
obtained by use of different measures. It also 
identifies the variability in transfer effectiveness 
that exists even within this relatively narrow range 
of estimation and application contexts. 

Conclusions from Relative Transfer Measures 

The relative transfer measures indicate that trans­
ferred models have relatively small error compared 
with that incurred by use of local models. TI indi­
cates that transfer red models provide at least 80 
percent of the information provided by local models 
in four of six full model transfers and five of six 
partial model transfers. RATE (ratio of transfer 
and local RMSE) indicates that the use of trans­
ferred models increases aggregate error by 20 per­
cent or less for four of six full model transfers 
and 10 percent or less for four of six partial model 
transfers. These results suggest that it is reason­
able to conclude that models are transferable be­
tween these geographic sectors. 

Conclusions from Statistical Tests 

The statistical tests generally reject hypotheses 
that are consistent with transferability. The METS 
test rejects model equality at the 0. 05 level for 
two of three sector pairs. The TTS test rejects 
model transfer at the 0.01 level for all full model 
transfers and five of six partial model transfers. 
The APS test rejects model transfer at the 0.01 
level for five of six full model transfers and three 
of six partial model transfers. These results sug­
gest that transferability between these geographic 
sectors should be rejected. 

Transfer Error Importance Versus Significance 

The results of magnitude of transfer error tests and 
those of transfer significance tests lead to dif­
ferent conclusions about transfer effectiveness. 
That is, the transfer errors are deemed to be unim­
portant in magnitude: however, hypotheses that sup­
port transferability are significantly rejected. 
This apparent inconsistency results from confusion 
in the literature between the observed magnitude of 
differences between transfer and local models and 
the statistical significance of such differences 
that reflect both the magnitude and the precision of 
the estimates and predictions obtained. Although 
statistical tests can be used to alert the planner 
or analyst to differences between models, they must 
be considered with reference to the magnitude of 
errors that are acceptable in each application con­
text. Although the magnitude of prediction error 
attributable to either a local or transfened model 
depends on the distribution of explanatory variables 
in the application context, our experience suggests 
that the apparent inconsistency between statistical 
rejection and practically small differences is com­
monly observed. 

Transfer Measures Sensitivity 

The transfer measures formulated are highly sensi­
tive to differences in sector pair transfer effec­
tiveness. For example, the TI that measures trans­
ferability relative to the local model ranges from 
0. 61 to 0. 89 for full model transfer and from 0. 76 
to 0.92 for partial model transfer. Thus, these 
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measures appear to be able to discriminate among 
levels of transferability. 

Asymmetry of Transferability Measures 

The measures of transferability developed are con­
sistently different, in some cases dramatically dif­
ferent, between the same pairs of sectors, depending 
on the direction of transfer. This indicates that 
transferability is not determined solely by differ­
ences between sectors but also by the identity of 
the estimation and application contexts. 

Adjustment of Alternative-Specific Constants 

The transfer effectiveness measures improve substan­
tially when alternative-specific constants are up­
dated to match choice shares in the application con­
text. These results emphasize the importance of 
updating alternative-specific constants to take 
account of differences in the average effect of 
excluded variables between estimation and applica­
tion contexts. 

Model Goodness-of-Fit and Transfer Effectiveness 

The order of models with respect to goodness-of-fit 
is sector one, sector two, and sector three. How­
ever, the sector-one model is not consistently the 
most-effective model for transfer. Specifically, 
the sector-two model transfers to sector three bet­
ter than does the sector-one model by most of the 
measures employed. 

Although it is generally recognized that models 
that have high goodness-of-fit are not necessarily 
well-specified and thus are not necessarily effec­
tive in transfer, goodness-of-fit measures are com­
monly used to guide the selection of model specifi­
cation and the selection of models for application. 
In this case, all the models have identical specifi­
cation. Our results indicate that selection of the 
context from which to draw an identically speci=ied 
model for transfer application cannot be based on 
estimation context goodness-of-fit. This result 
motivates the need to identify characteristics of 
estimation and application contexts between which 
models may be effectively transferred. 

Contextual Determinants of Transfer Effectiveness 

Characteristics of the estimation and application 
contexts have an important influence on transfer­
ability. Research is needed to identify the degree 
to which contextual characteristics determine trans­
fer effectiveness and the specific contextual char­
acteristics that are important. 

Specification and Transfer Effectiveness 

It is argued in the literature that transferability 
improves with improved model specification <1•2• 
l2l. Although this view is reasonable, it has not 
been validated empirically. The understanding of 
transfer effectiveness will be enhanced by research 
into the relation between model specification and 
transfer effectiveness. Additional research is 
being undertaken to explore this relation. 

Prior Prediction of Transfer Effectiveness 

The transfer analysis reported here and in all pre­
vious research on the transferability of travel 
models is based on posterior analysis. That is, 
these studies examine the question, "Would it have 
been appropriate to transfer a specific model from a 
specific context to another specific context?", by 
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comparison of transfer results to results obtained 
by application of a local model. The objectie,,•e for 
the future is to use an understanding of the rela­
tion between model specification and characteristics 
of both estimation and application contexts to pro­
vide prior guidance about the probable transferabil­
ity of different models estimated in different con­
texts for use in the application context of 
interest. This will be the focus of future research. 

ACKNOWLEDGMENT 

The wor k reported in this paper was supported by the 
Office of University Research, U.S. Department of 
Transportation. James Ryan of the Urban Mass Trans­
portation Administration, who is contract technical 
monitor, provided technical advice in the develop­
ment of this work . We also acknowledge the contri­
butions of Eric I. Pas to the refinement of ideas in 
this paper. Comments by Joel Horowitz and Moshe 
Ben-Akiva contributed to refinements of certain sta­
tistical tests. 

REFERENCES 

1 . S.R. Lerman. Interspatial, Intraspatial, and 
Temporal Transferability. In New Horizons in 
Travel Behavior Research (P.R. Stopher, A.J. 
Meyburg, and w. Brog, eds.), Lexington Books, 
D.C. Heath and Co., Lexington, MA, 1981. 

2. T.J. Atherton and M.E. Ben-Akiva. Transfer­
ability and Updating of Disaggregate Tr a ve l De­
mand Models. TRB, Transportation Research Rec­
ord 610, 1976, pp. 12-lB. 

3. D. McFadden. Conditional Logit Analysis of 
Qualitative Choice Behavior. In Frontiers in 
Econometrics (P. Zarembka, ed.), Academic 
Press, New York, 1973, Chapter 4. 

4. D. McFadden . Properties of the Multinomial 
Logit (MNL) Model. Urban Travel Demand Fore­
casting Project, Institute for Transportation 
Studies, Univ. of California, Berkeley, Working 
Paper 7617, Sept. 1976. 

5, M.E. Ben-Akiva. Issues in Transferring and Up­
dating Travel Behavior Models. In New Horizons 
in Travel Behavior Research ( P.R. Stopher, 
A.H. Meyburg, and w. Brog, eds.), Lexington 
Books, D.C. Heath and Co., Lexington, MA, 1981. 

Transportation Research Record 895 

6. R.A. Galbraith and D.A. Hensher. Intra-Metro-
politan TLansferability of Mode Choice Models . . 
R. Travers Morgan; Macquarie Univ., Australia, 
1980. 

7. F.S . Koppelman. Intra-Urban Transferability of 
Disaggregate Choice Models. Transportation 
Center, Northwestern Univ., Evanston, IL, Aug. 
1977. 

8. P. s. McCarthy. Further Evidence on the Tempo­
ral Stability of Disaggregate Travel Demand 
Models. Department of Economics, Purdue Univ., 
Lafayette, IN, March 1981. 

9. A. Talvitie and D. Kirshner. Specification, 
Transferability, and the Effect of Data Out­
liers in Modelling the Choice of Mode in Urban 
Travel. Transportation, Vol. 7, 1978, pp. 311-
331. 

10. D. McFadden , K, Train, a nd W. B. Tye . An Appli­
cation of Diagnostic Tests for the Independence 
from Irrelevant Alternatives Property of the 
Multinomial Logit Model. TRB, Transportation 
Research Record 637, 1977, pp. 39-46. 

11. F.S. Koppelman. Travel Prediction with Models 
of Individual Choice Behavior. Department of 
Civil Engineering, Massachusetts Institute of 
Technology, Cambridge, Ph.D. dissertation, 1975. 

12. F.S. Koppelman. Methodology for Analyzing Er­
rors in Prediction with Disaggregate Choice 
Models. TRB, Transportation Research Record 
592, 1976, pp. 17-23. 

13. F.S. Koppelman. Guidelines for Aggregate 
Travel Predic tion Using Disaggregate Choice 
Models. TRB, Transportation Research Record 
610, 1976, pp. 19-24. 

14. S. Siegel. Non~Parametric Statistics . McGraw­
Hill, New York, 1956, p. 42. 

15. J.J. Louviere. Some Comments on Premature Ex­
pectations Regarding Spatial, Temporal, and 
Cultural Transferability of Travel Choice 
Models. .!£. New Horizons in Travel Behavior Re­
search (P.R. Stopher, A.H. Meyburg, and w. 
Brog, eds.), Lexington Books, D.C. Heath and 
Co., Lexington, MA, 1981. 

Publication of this paper sponsored by Committee on Passenger Travel Demand 
Forecasting. 

Wisconsin Work Mode-Choice Models Based on Functional 

Measurement and Disaggregate Behavioral Data 

GEORGE KOCUR, WILLIAM HYMAN, AND BRUCE AUNET 

This paper describes a series of mode-choice models developed by the Wiscon­
sin Department of Transportation to assess transportation policy issues con­
sistently across four sets of urban areas in the state. The models were devel­
oped by using a combination of functional measurement (or by asking respond­
ents their likely mode choice in a series of situations) and disaggregate demand 
modeling (to calibrate the models and provide a test of the correspondence be­
tween stated and actual behavior). Bus, walk, bicycle, ridesharing, and drive­
alone modes are included. Key variables include gasoline availability, gasoline 
price, queuing time to purchase gasoline, bicycle lanes, ridesharing programs, 
a."id tiaiiiit itffvicc iff1pi·uver11&iiti. The moUttis cutt btting used in statewide poi icy 
analysis, for local planning, and for quick-response analysis. They represent an 

approach to demand analysis and may be an efficient and effective tool for 
examining other demand issues. 

In a single statewide modeling study, the Wisconsin 
Department of Transportation (WisDOT) has developed 
work trip mode-choice models for four sets of urban 
areas of different character: one la~ge city, one 
medium city, and two sets of small cities. These 
models permit Wi sOOT tc address key policy i :;~tle~ by 
incorporating the effects of gasoline availability, 
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gasoline price, queues for gasoline purchases, ride­
sharing programs, transit service improvements, bi­
cycle lanes, and other factors. The models are 
estimated by a combination of functional measurement 
(also called conjoint analysis) and disaggregate 
demand modeling. Functional measurement models 
(.!_,±_) are based on asking respondents their likely 
mode choice in a series of situations constructed 
from an experimental design. One or more situations 
closely resemble current conditions. We use a logit 
model to compare stated behavior under current con­
ditions with actual behavior and adjust the models 
derived from the functional measurement task if 
there is a difference. The models are further re­
fined by using sensitivity analysis. 

The department undertook this statewide effort to 
enhance its ability to plan in a multimodal con­
text. By administering similar surveys in all the 
urban areas of the state, it gained the ability to 
examine a broad range of urban transportation poli­
cies in a consistent manner. The department can now 
determine the absolute and comparative impacts of 
many policy proposals on driving alone, sharing a 
ride, walking, bicycling, and riding a bus. 

Not only are the models useful for statewide 
policy analysis, they also enhance WisDOT' s ability 
to provide technical assistance to urban areas in 
preparing transportation plans. Also, the pivot 
point and elasticity formulations of these models 
are being used for quick policy analysis. Finally, 
these urban work trip models complement a set of 
intercity mode and trip-frequency models developed 
earlier by using functional measurement (3,4). Ul­
timately, the department will have a comprehensive 
set of models for statewide policy analysis and sys­
tem planning. 

The functional measurement and disaggregate mod­
eling methodology was devised to address WisDOT' s 
forecasting requirements within a moderate budget 
level and relatively short time frame. Functional 
measurement was chosen because most key policy is­
sues that face WisDOT cannot be captured readily in 
disaggregate models. Top administrators were spe­
cifically interested in learning the effects of gas­
oline rationing, long lines at gasoline stations, 
large increases in gasoline price and parking costs, 
improved bicycle facilities, and other issues not 
customarily addressed by de!lland models. Fuel pr ice 
and availability exhibit no variability in the usual 
cross-sectional data sets because all individuals 
face the same conditions at a given point in time. 
In small cities bus fares are constant and virtually 
no parking fees are charged for work trips. Several 
modes of interest, such as bicycle facilities and 
commuter rail, are nonexistent in most areas. Fi­
nally, the data-collection effort for a statewide 
disaggregate model would be extensive. 

Model validity was a strong concern, so we per­
formed a second stage of analysis by using a logit 
model to further calibrate the original models. In 
this stage the forecasts derived from the functional 
measurement model for the status quo are compared 
with actual behavior, and the stated behavioral 
model is adjusted if there is a discrepancy. The 
calibration procedure can require fewer data than a 
traditional disaggregate model. 

Two staff members completed the analysis in six 
months. An additional six months was needed to pre­
pare reports and documentation, and some program­
ming, keypunching, and consultant assistance were 
required. 

FOCUS GROUPS 

To begin the 
were held. 

analysis four focus group interviews 
The discussions of the focus group 
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either verified the factors believed to be important 
a priori or suggested others to be treated in the 
qualitative analysis of mode split. The focus group 
consisted of 8-12 individuals who were convened for 
1.5 h in a structured session. We obtained several 
interesting qualitative results. For example, indi­
viduals said their travel behavior was more sensi­
tive to the change in the pump price of gasoline 
than to gasoline price per mile, which suggests that 
fuel efficiency was a consideration only when buying 
a vehicle. Also, participants of the focus group 
regarding bicycle travel said condition of the rid­
ing surface was a major concern, which was an unan­
ticipated factor. In addition, many women said that 
under no circumstances would they stop driving alone 
to work because they had to carry groceries or 
children on the way to or from work. This suggested 
that sex and the number of children should be in­
cluded in the final models to explain travel choice 
(~). 

DESIGN OF EXPERIMENTS AND SURVEY 

Six experiments were prepared to meet the objectives 
of the study. The four that pertain to ridesharing, 
walking, bicycling, and local bus service are re­
ported in this paper. Two other experiments for 
express bus and commuter rail were also adminis­
tered, but these modes are available to few travel­
ers in Wisconsin. The experiment for ridesharing is 
illustrated in Figure 1, and other experiments are 
very similar. All surveys used drive-alone as the 
base mode. 

A typical multivariable experimental model in­
volves a series of independent variables that affect 
some dependent variable, such as mode choice. Each 
independent variable is considered at two or more 
values or levels, as designated by the experimental 
plan. In the ridesharing experiment gasoline price 
has four levels ($1.30, $1. 70, $2.00, and $2.60), 
and the four other factors have two levels. The 
experiment is thus a 4 1 x 2• design. 

The experimental results are analyzed to evaluate 
the statistical significance of the independent var­
iables, estimate their effects, and establish func­
tional relations. In conducting such analyses, one 
is interested in the main effect of each variable, 
that is, the effect on experimental response of 
going from one level of the variable to the next, 
all other variables being at their average values. 
In many situations the effect of two independent 
variables is not additive, and the variables are 
said to interact (i.e., the effect of one variable 
on the response depends on the value of some other 
variable). 

A common multivariable experimental plan is the 
full factorial experiment, which consists of all 
possibie combinations of levels for each of the var­
iables. In our case, this would require 4 1 x 2•, or 
64 situations. A full factorial experiment permits 
one to obtain estimates of the effects of all pos..., 
sible interactions. 

Many higher-order interactions can be assumed to 
be negligible, which leads, however, to a substan­
tial reduction in the number of situations re­
quired. Such designs are called fractional facto­
rial plans. In Figure 1 we use a one-eighth 
fraction, or only eight situations; this assumes 
that all interactions are negligible. This plan 
allows approximate estimates of the effects of a 
large set of policy variables in a relatively simple 
mailout survey, although it is at the expense of 
assuming a linear, additive model without interac­
tions. This trade-off between survey complexity and 
model richness was made to ensure as high a response 
rate to the survey as possible, and to allow high 
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Figure 1. Ridesharing experiment. 

Under wh• titu11ion1 would you drive alone or share a ride (carpool or vanpool) to work? 

Consider that you ilre going to work and that driving alone or sharing a ride in a car pool or van pool are your only choices. 

Below are a number of factors describing •ight different situations where you are faced with cho osing whelhe r to drive alone or sh a re a ride to 

work. ,---------------, 

Look at each situation across the entire line and please answer in the last column to the righ t how likely you are to drive alone or share a rid e 
to work. 

PLEASE-
ANSWER IN THIS COLUMN 

I 
AUTO FACTORS I 

I 
Parking Cost to I 

Gas Ava ilabi lit y Gas Price Drive Alone I 
Ample Supply $1 .. 30/qallon Free I SITUATION I 

I 
Ration of 10 

$2 60/ qallon Free I SI T UATI ON 2 gallons/week• I 
Ration of 10 

$2.00/gallon $30/month I SITUATION 3 gallons/week* l 

SITUATION 4 Ample Supply $2 60/gallon $30/month I 
I 

Ration of 10 
$1 .70/gallon Free I 

SITUATION 5 gallons/week* I 
SITUATION 6 Ample Supply $2.00/gallon Free 

I 
I 

SITUATION 7 Ample Supply $1-70/gallon $30/month 
I 

I 
Ration of 10 I 

SITUATION I gallons/week* $1.30/gallon $30/month I 

*If your car gets 15 miles per gallon, you can travel 150 miles per week. 

confidence in the responses received--both crucial 
c onsiderations for sta tew i de po licy planninq. 

Catalogs of experimental designs are available in 
the literature (~,ll · We developed our own simple 
designs. In addition to the experiment, each survey 
instrument contained background questions of two 
types. Some were questions concerning socioeconomic 
characteristics of respondents and thus were suit­
able for checking representativeness of the samples 
and measuring the sensitivity of mode choice to 
socioeconomic variables. The remainder gathered 
data on actual travel choices of individuals and the 
attributes of competing modes. 

SURVEY ADMINISTRATION 

The sizes of the survey sample were determined based 
on desired levels of sampling error and expected 
response rates. The sampling error was set at ±5 
percent, with 95 percent confidence for categorical 
variables, particularly the 1-5 response scale in 
the experiments. A conservative 20 percent usable 
response rate was assumed. These considerations, 
applied to the number of cities and separate modes 
for which models were desired, resulted in the mail­
ing of about 17 000 questionnaires. 

WisDOT mailed the surveys to residents who re­
newed their drivers' licenses in August and Sep­
tember 1980. The gross response . rate was 57 percent 
(9208 surveys), but some surveys had incomplete in­
formation. The usable response rate was 46 per­
cent. Because we received more than double the 
expected response rate, we were able to exclude 
respondents who did not travel to work, so we could 
compare each person's stated responses with actual 
travel choices. Respondents sorted out at this 
stage were retired people, other individuals who do 
not work, individuals who work at home, and stu­
dents. Also, some respondents who filled out the 
walk or bicycle experiments were dropped because 
they lived too far from work to consider walking 
(more than 3 miles) or bicycling (more than 7 miles) 
as practical choices. We retained 3185 surveys for 
model development i 1791 of them pertain to the four 
muu., ... :o <eported in t:n1s paper. Between 273 and 679 
surveys were used in the four sets of urban areas. 

CAR POOL/VAN POOL FACTORS 

People You Sh are Employee Work 

A Ride With Schedu le 

Co-Worker/ Fle1d-time 
Neighbor {hours can ""Y d.atly) 

General Public Flex1-t1me 
(Carpool Matching) {hours can vary daily) 

Co-Worker/ Fle>ei-t ime 
Neighbor (hours can vary dai ly ) 

Co-Worker/ 
Fixed 8 hour day 

Neighbor 

Co-Work~ r/ 
Fixed 8 hour day 

Neigh bor 

General Public 
Fixed 8 hour day 

(Carpool Matching) 

General Public Flexi-time 
(Carpool Matching) (hours can vary daily) 

General Public 
(Carpoo l Matching) 

Fixed 8 hour day 

HOW LIKELY ARE YOU TO DRIVE ALONE 
OR SHARE A RIDE? 

(CIRCLE A NUMBER) 

Alw eo'.t ............. Prq1>11>ly 

Oii ... ""~ Shit• Sh11• 
11<,,.,.. Aa.- A Rid• A Rldl 

We checked the samples for representativeness by 
comparing the frequency di stribution of selected 
socioeconomic characteristics of respondents with 
1970 census data. The proportions of individuals in 
any one-way tabulation by sex, age, household size, 
and income (adjusted for inflation) were within 
±10 percent of the census. The only exceptions 
were that, in some cities, the 15-24 age category, 
one-person households, and incomes under $5000 an­
nually were underrepresented. Exclusion of stu­
dents, retired, and other unemployed respondents 
explains the difference. 

As a further check of representativeness, we 
compared the actual mode choices reported by respon­
dents with the results of a strict probability 
sample conducted a year earlier by the Wisconsin 
Survey Research Laboratory (~). The comparison was 
satisfactory. 

ANALYSIS OF SURVEY RESPONSES 

The first stage in building the actual models was to 
fit linear additive models on the experimental re­
sponses obtained in the survey. The functional form 
and variables were already set in the design step so 
that model estimation is a simple task at this 
stage. The only flexibility in model estimation is 
in the socioeconomic variables and their functional 
form because they are not part of the experimental 
design. Multiple linear regression is used to esti­
mate the models. The dependent variable is the 
response on the 1-5 scale, assuming that the stated 
likelihood of choosing a nonautomobile mode is pro­
portional to utility. This is equivalent to using a 
linear approximation to a logit function. The inde­
pendent variables are the experimental variables 
(level of service) and the background responses 
(socioeconomic characteristics). 

The automobile-related variables appear in each 
survey form because automobile was the base mode 
against which each competing mode is set. Restric­
tions that the coefficients of the automobile vari­
ables be equal across all experiments are required 
for consistency in the multimodal model developed in 
t:ne next stepi t:ne easiest way to apply these re­
strictions is to estimate a multiple linear regres-
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sion across all the surveys jointly. The results of 
this are given in Table 1. 

Formally, the equations in the table are as 
follows: 

Uai = -tcakXak + fcs1X.1 + ~CwmXwm + ~CbnXbn + tCtpXtp 

= -U. + U, + Uw + Ub + U1 

where 

(!) 

Uai utility of mode relative to driving alone 
(i.e. , the response to a situation on the 
1-5 scale from any experiment i); i = s 
(shared ride) , w (walk) , b (bicycle) , or t 
(transit); 

c = vector of coefficients; 
x vector of variables in experiment s, w, b, 

or: t; variables for mode a appear in all 
experiments; 

k a index that corresponds to drive-alone and 
socioeconomic variables; 
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1 index that corresponds to shared-ride vari­
ables; 

m index that corresponds to walk variables; 
n = index that corresponds to bicycle vari­

ables; and 
p index that corresponds to local bus transit 

variables. 

The utilities Ua, Us, Uw, Ub, and Ut are 
the absolute utilities of each mode (not relative to 
drive alone), which are used in the calibration 
step. The Xs are dummy variables; for example, all 
Xis = 0 except when i = s. Thus, Equation 1 en­
compasses each binary experiment but allows a multi­
modal treatment by incorporating the restriction 
that the automobile utility coefficients are the 
same in all binary comparisons. 

Table 1 gives the results of analyzing the exper­
imental responses for each city. Most of the coef­
ficients show relatively little variation across 
cities, which suggests that transferability of these 
coefficients among urban areas is a possibility. 

Table 1. Variables, coefficients, and goodness-of-fit statistics for regressions on experimental responses. 

Milwaukee County Fox River Valley 
Madison (n = 305) (n = 273) Cities (n = 534) Other Cities (n = 679) 

Variable 
Name Definition Coefficient t-Value Coefficient t-Value Coefficient t-Value Coefficient t-Value 

Automobile Utility (U8 ) 

CA Automobile constant -5.271 -4.697 -4.448 -5.051 
GA Gasoline availability, 0 if ample -0.320 -6.30 -0.377 -6.57 -0.318 -7.93 -0.315 -8.99 

supply, 1 if rationing 
GP Gasoline price ($/gal) -0.234 -5.48 -0.320 -6.62 -0.284 -8.41 -0.284 -9.59 
PK Parking costs ($/month) -0.016 -6.93 -0.017 -6.9 1 -0.017 -8.77 -0.016 -9.82 
WT Wait time to buy gasoline (min) -0.008 -0.89 -0.004 -0.38 -0.013 -2.30 -0.007 -1.29 
IN Annual household income ($000s +0.012 6.02 +0.010 3.73 +0.001 0 .5 9 +0 .008 5.09 

in 1980) 
VP Vehicles per person 16 years old +0.178 3.12 +0.078 1.19 +0.096 2.48 +0.004 0.13 

and over in household 
TI Travel time (min) -0.030 -2.77 -0.025 -2.27 -0.019 -1.89 -0.33 -3.70 

Shared-Ride Utility (U,) 

CR Shared-ride constant 0.216 3.08 -0.090 -1.21 0.360 5.91 0.085 1.61 
RD Rides haring partner, 0 if general +0.222 2.58 +0.216 2.21 +0.138 2.00 +0.081 1.41 

public matching , 1 if coworker or 
neighbor 

ws Work schedule, 0 if flexitime, 1 if +0.401 4.66 +0.384 3.94 +o.581 8.46 +0.399 6.93 
fixed 8-h day 

TI Travel time (min) -0.030 -2.77 -0.025 -2.27 -0.019 -1.89 -0.033 -3.70 

Walk Utility (Uw) 

cw Walk constant 0.386 4.46 0.268 2.820 0.151 2.30 0.119 2.01 
WD Walk distance to work (miles) -0.897 -3 .36 -0.936 -3.08 -0.925 -5.48 -0.784 -5.03 
SW Sidewalks, 0 if all the way, 1 if part 0 a 0 -· 0 -· --0.053 -0.68 

of the way 
SN Season, 0 if summer, 1 if winter -0.756 -5.66 -0.750 -4.93 -0.868 -10.29 -0.848 -10.83 

Bicycle Utility (Ub) 

CB Bicycle constant -0.275 -3 .8 1 -0.130 -1.610 -0.225 -3.56 -0.418 -7.49 
BD Bicycle distance to work (miles) -0.245 -5.24 -0.213 -3.67 -0.254 -6.69 -0.276 -8 .19 
BL Bicycle lane, 0 if marked lane in -0.356 -3.81 -0.216 -1.87 -0.330 -4.27 -0.296 -4.40 

street, 1 if no lane 
SS Street surface, 0 if smooth, 1 if -0.383 -4.11 -0.470 -4.05 -0.431 -5.57 -0.400 -5.93 

rough 
TR Traffic, 0 if quiet, 1 if busy -0.517 -5.53 -0.500 -4.31 -0.417 -5.39 -0.378 -5.61 

Bus Utility (U1) 

BT Bus transfer time (min) -0.044 -2.00 -0.035 -1.58 -0.019 -0.96 0 -· BF Bus fare($) -0.221 -0.81 -0.443 -1.58 -0.240 -0.96 -0.195 -0.88 
HW Bus headway (min) 0 -a 0 a -0.006 -0.84 -0.007 -1.14 
TI Travel time (min) -0.030 -2.77 -0.025 -2.27 -0.019 -1.89 -0.033 -3.70 

R2 0.151 0.116 0.139 0.131 
F 21.44 14.24 32.56 38.73 
Data points 2440 2184 4272 5432 

aCoefficient was set to zero because the t-value was less than 0.3 and the wrong sign occurred. 
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Gasoline availability, gasoline price, and parking 
cost all have a significant effect on mode choice. 
A wait in line of between 5 and 20 min to purchase 
gasoline is less significant but has a stronger im­
pact in small cities, where currently it may be more 
convenient to purchase gasoline and where there has 
been no previous experience with long queues to buy 
gasoline. Income and vehicles per person are gener­
ally significant al so. This use of socioeconomic 
variables as additive terms in the automobile util­
ity was chosen for simplicity and consistency across 
urban areas. The use of different socioeconomic 
specifications could improve the model goodness-of­
fit somewhat but at the price of added complexity. 

The travel time coefficients for drive alone, 
shared ride, and transit were constrained to be 
equal for consistency. Work schedule and r ideshar­
ing partner were both significant variables in the 
ridesharing utility. 

The walk utility is strongly dependent on dis­
tance and season, but sidewalk availability was not 
perceived as a major factor, except by some respon­
dents in the small cities, which have less extensive 
sidewalk systems. Bicycle utHity also depends 
strongly on distance, but it also depends on the 
presence of a bicycle lane, street surface, and 
traffic levels. (Season was not included in the 
bicycle-automobile experiment, but the season coef­
ficient from the walk model is used in the bicycle 
utility function for policy analyses.) 

The bus utility equation (Equation 7) contains 
surprising results over the ranges of variables 
tested, which show strong sensitivity to overall 
travel time but relatively little to headway (15- to 
30-min range) and fare ( 40- to BO-cent range) • 
Transfer times of 0-5 min had a modest affect. 
Respondents may have had difficulty in assessing 
individual time components for a bus trip and, 
therefore, used the total time variable to determine 
their choice. 

The city-to-city variations in the constants are 
as anticipated. Madison shows the highest propen­
sity to use non-drive-alone modes, and other cities 
have lower constants in those cases. The R 2 of 
the regressions ranges from 0.116 to 0.151, which is 
expected given the lack of market s~gmentation, the 
inclusion of invariant respondents who indicated all 
ls or all 5s on the survey, and the simple socioeco­
nomic descriptions used. The F-statistics are all 
significant. 

Calibration 

In the calibration step of the analysis, the models 
built from stated behavior in the experiment are 
tested against actual, current behavior as a check. 
We substitute levels of independent variables that 
represent current conditions into the experimentally 
~eri~ed util!ty functions to obtain values of Ua, Us, 
Uw, Ub, and Ut for each respondent. These values are 
then substituted into a logit formulation to test 
how well they explain current choice: 

p· = exp(a · +b-U.)/~ exp(aJ·+bJUJ) 
l I I l allj (2) 

where 

probability of a respondent choosing mode 
i (equal to 0 or 1 in actual data); 
a respondent's computed utility value for 
mode i under current conditions, calcu­
lated from regression results; and 
coefficients to be determined in legit 
estimation. 

The equations below represent the regression results 
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for Madison as five separate utility equations, as 
required for the validation. These separate equa­
tions sum to the original equation, with a negative 
sign for drive alone. 

The linear utility equations for Madison from 
regressions on experimental responses are as follows: 
For automobile, 

U0 = -5.271 - 0.320GA- 0.234GP- 0.016PK- 0.008WT 
(-6.30 -5.48 -6.93 -0.089 

+ O.ol 2IN + O.l 78VP - 0.030TT 
6.02 3.12 -2.77) 

For shared ride, 

U, = 0.216 + 0.222RD + 0.401WS- 0.030TT 
(3.08 2.58 4.66 -2 .77) 

For walk, 

Uw = 0.386 - 0.897WD - 0.756SN 
(4.46 -3.36 -5.66) 

For bicycle, 

Ub = -0.275 - 0.245BD- 0.356BL- 0.383SS - 0.517TR 
(-3.81 -5.24 -3.81 -4.11 -5.53) 

For local bus transit, 

U1 = -0.044BT- 0.22 1BF- 0.030TT 
(-2 .00 -0.81 -2.77) 

where 

Ua = 
GA 

GP 
PK 

WT 
IN = 
VP 

TT 

automobile utility, 
gasoline availability, 
gasoline price ($/gal) , 
parking costs ($/month), 
wait time to buy gasoline (min) , 
annual household income ($000s in 1980) , 
vehicles per person ~ 16 years old 
household, 
travel time (min) , 

Us shared-ride utility, 
RD ridesharing partner, 
ws work schedule, 
Uw walk utility, 
WD walk distance to work (miles), 
SN 
ub 
BO 
BL ~ 

SS 

season, 
bicycle utility, 
bicycle distance to work (miles), 
bicycle lane, 
street surface, 
traffic, TR 

Ut 
BT 
BF 

= bus utility, 
bus transfer time (min) , and 
bus fare ($). 

(3) 

(4) 

(5) 

(6) 

(7) 

in 

In order to gain some understanding of the values 
of ai and bi that indicated satisfactory corre­
spondence between the experimental model and actual 
behavior, a simple analysis was performed. We know 
immediately, of course , that we wish all bi > 0 
and all ai to be small in some sense. Figure 2 
shows the hypothesized relation in a binary case 
between linear regression results and the binary 
logit equation. If stated behavior (linear model) 
corresponds to actual behavior (logit model), then 
we expect the linear utility equations to perform 
well in the logit model. A linear approximation 
tangent to the logit function at p = 0.5 (as drawn) 
has a slope of 0. 25 and thus intersects the p = 0 
and p = 1 axis at U = -2 and U = +2, respectively. 
This scale, from -2 to +2, is our 1-5 response scale 
shifted downward three units. We can expect bj to 
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Figure 2. Comparison of linear and logit model form" 
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Table 2. Multinomial logit calibration results. 

Madison (n = 312) Milwaukee County (n = 282) 

Mode 

Drive alone 
Rideshare 
Walk 
Bicycle 
Bus 

Coeffi­
cient 

+13.221 
-1.510 
+0.813 
-0.390 

0.0 

b 

t- Coeffi- t- Coeffi-
Value cient Value cient 

3.13 +2.558 2.57 +5.166 
-1.47 -0.404 -0.58 -17.173 

1.49 +2.39 3.29 +2.812 
-0.60 +0.740 0.90 +1.525 

-· +1.331 0.98 0.0 

b 

t- Coeffi-
Value cient 

1.17 +2.716 
-0.09 +3.419 

3.88 +2.758 
1.10 +2.119 

-· +0.575 
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Log it 
Coefficient ______.. 

~Linear ......... 
Coefficient 

Mean Response lo Experiment 

-1 0 3 

True Utility U 

4 5 

Survey Response Scale 

Fox River Valley Cities (n = 661) Other Cities (n = 873) 

b b 

t- Coeffi- t- Coeffi- t- Coeffi- t- Coeffi- t-
Value cient Value cient Value cient Value cient Value 

1.54 +12.437 1.94 +2.496 1.50 +7.942 2.21 +1.398 0.93 
0.06 -1.332 -1.02 +0.228 1.05 -1.308 -1.49 +1.600 0.62 
2.78 +1.646 1.47 +2.211 4.15 +2.000 2.66 +3.108 6.21 
1.12 +0.347 0.30 +1.602 1.66 +l .403 1.64 +2.090 2.80 
1.06 0.0 a +4.550 1.99 0.0 -· +1.665 1.12 

Note: The b coefficients are tested against the null hypothesis that b = 1, and the a coefficients are tested against the null hypothesis that a= O, except for drive alone, where the null 
hypothesis is a= 3. The -2• log-likelihood ratio was 319.07 for Madison, 507.71 for Milwaukee County, 1032.53 for Fox River Valley cities, and 1246.10 for other cities. 

8Coefficient was set to zero because the t-value was less than 0.3 and the wrong sign occurred. 

approximately equal 1 and aj to equal 0. The use 
of p = 0. 5 as the point at which the approximation 
is made is justified by the experimental design, 
which can create sets of situations in which the 
alternatives are well matched. 

In the multinomial case, the approximation will 
necessarily be centered at p < 0.5 for most modes; 
this i mplies that bj > 1 because the lower slope 
of the legit curve at p 1 0.5 p r oduces a linear scale 
longer than four uni ts between the p = 0 and p = 1 
axes, We still expect all aj to be 0 if there are 
no systematic biases across experiments, with one 
exception. (The aj for automobile is expected to 
be +3 because automobile's position on the survey 
response scale is the reverse of the other modes.) 
One ai must be set arbitrarily, so we set the bus 
a· equal to zero; thus, the bicycle , wa l k, and 
s~aced ride aj are also expected to be zero. 

These arguments a r e intended only to give an 
approximate sense of the values of aj and bj to 
expect from the legit-estimation step. Furthermore, 
this calibration is approximate for the same reasons 
that limit our ability to estimate a revealed pref­
erence model for the study--lack of variability in 
several major variables, unavailability or low use 
of alternatives, multicollinearity, and other prob­
lems. Even so, it is important to attempt to cali­
brate the models to test their accuracy. Because we 
are estimating only two coefficients per mode in the 
validation (aj and bj), we may succeed in estab­
lishing them when trying to estimate all coeffi­
cients would fail. 

Most data required for calibration were self­
reported, although a few items were gathered from 
transportation planning data bases. Self-reported 
data were checked against planning data where pos­
sible, but the comparison was inconclusive because 
of the aggregation errors in the planning data 

(e.g., multiple bus lines in a zone, varying parking 
charges) • 

The calibration results appear in Table 2. We 
describe the calibration results for Madison in 
detail and briefly compare them with those of the 
other areas. (The number of respondents is higher 
than in the regression step because responses with 
incomplete experimental data could be used in this 
step.) The results show a very strong relation be­
tween the experimentally derived utilities and 
actual behavior, so we turn to an examination of the 
adjustment coefficients aj and bj· The coeffi­
cients ai are tested against a null hypothesis of 
zero (+3 foe drive alone), and bj is tested 
against a nul l hypothesis of one. 

The Madison drive-alone utility derived from the 
experiment apparently understates the sensitivity of 
actual behavior to the variable set, because the 
coeffic ient bj is 2.558 and is significantly dif­
ferent from I at the 95 percent level of confi­
dence. The adjustmen t in the constant aj is not 
as large as it appears: The new constant is 
13.221 + 2.558 (-5.271) or -0.262, as compared with 
the original value of -5.271. However, an adjust­
ment of +3 was expected a priori. The adjustment in 
a is also statistically significant at a 95 percent 
level of confidence. 

The ridesharing calibration is inconclusive. The 
only variables in its utility equation are the ride­
sharing partner (invariant in the sample, all being 
coworkers or neighbors), the work schedule (taking 
only two values) , and the time (a fixed difference 
from automobile). Thus, there is little variability 
on which to relate the utility values to actual be­
havior. This mode is an extreme example of the dif­
ficulties in validating models. Neither a· nor 
bj is statistically different from the null hy­
pothesis, which we fa il to reject. 
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The walk mode has a coefficient bj that is sig­
nificantly different from l; the calibrated constant 
is 0.813 + 2.39 (0.386) or 1.735. The bicycle 
mode's coefficients are quite close to their pre­
supposed values, and the adjustments are not signif­
icant. The same holds for the bus mode. 

In general, the coefficients for the other models 
follow the same pattern as the Madison coeffi­
cients. The calibration coefficients are larger 
than we would ideally like to see, but they indicate 
a relatively good correspondence between the experi­
mental models and actual behavior. Coefficients 
that are different from the a priori values may also 
occur for a variety of reasons not related to the 
correspondence between stated and actual behavior-­
errors introduced by the linear approximation, er­
rors in self-reported data, aggregation errors in 
planning data (believed to be significant in this 
case), and the simplicity of the socioeconomic de­
scription. 

An examination of the results for the coefficient 
bj suggests that we should use the calibration 
coefficients to revise all the walk utility func­
tions, the Madison drive-alone utility, and the 
other cities' bicycle utility. 

Table 3. Final models. 

Fox River 
Milwaukee Valley Other 

Variable County Madison Cities Cities 

Automobile utility 
Gasoline availability -0.377 -0.3203 -0.318 -0.315 
Gasoline price -0.320 -0.234 -0.284 -0.284 
Parking cost -0.017 -0.016 -0.017 -0.016 
Wait time to buy gasoline -0.004 -0.008 -0.013 -0.007 
Annual household income 0.010 0.012 0.001 0.008 
Vehicle per person ;;;, 16 years 0.078 0.178 0.096 0.004 

old in household 
Travel time -0.025 -0.030 -0.019 -0.033 

Shared-ride utility 
Ridesharing partner 0.222 0.216 0.138 0.081 
Work schedule 0.401 0.384 0.581 0.399 
Travel time -0.030 -0.025 -0.019 -0.033 

Walk utility 
-2.581 b -2.!44b -2.045b -2.437b Walk distance to work 

Sidewalks 0.0 0.0 0.0 -0.165 
Season -2.069 -1.807 -1.919 -2.636 

Bicycle utility 
-0.577b Bicycle distance to work -0.213 -0.245 -0.259 

Bicycle lane -0.216 -0.356 -0.330 -0.619 
Street surface -0.470 -0.383 -0.431 -0.836 
Traffic -0.500 -0.517 -0.417 -0.790 
Season -2.069 -1.807 -1.919 -2.636 

Bus utility 
Bus transfer time -0.035 -0.044 -0.019 0.0 
Bus fare -0.443 -0.221 -0.240 -0.195 
Bus headway 0.0 0.0 -0.006 -0.007 
Travel time -0.025 -0.030 -0.019 -0.033 

~Indicates bj different from one, but original coefOC'ienls used b~cd OR 5Cnsitivity analysis. 
Indicates group of coefficients multiplied by bj 1£gnlncantly dirrc:um1 fr a m onci. 

Table 4. Selected elasticities and values of time, 
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Sensitivity Analysis 

Before selecting the final model coefficients, we 
used the incremental form of the logit model to per­
form sensitivity analysis: 

where 

revised share of mode ii 
base share of mode i; 

(8) 

validated utility of mode i = ai + biui, 
where ai is significantly different from 
0, and bi is significantly different 
from l; and 
change in the validated utility of mode j 
due to a change in a variable from the 
base case, tiX. 

The sensitivity analysis indicated that most of 
the validated models provided reasonable results. 
However, if predictions are made with the validated 
Madison drive-alone utility function, we find that a 
$0.60 increase in gasoline price from $1.30/gal 
causes the mode share for driving alone to decline 
from 56 to 45 percent, a reduction equal to 9 per­
cent of all work trips. These results are outside 
the range expected on the basis of gasoline price 
elasticities reported in the literature. When we 
used the calibrated automobile utility function to 
predict the effect of changes in fuel availability 
and parking costs, we also obtained changes in 
market shares too large to be believable. Because 
of the possible confounding factors that could have 
produced a coeff icient bj different from one, we 
chose to retain the original experimental utility 
equation for Madison drive alone. 

FINAL MODELS 

The final models appear in Table 3. Only the walk 
models and the other cities bicycle model have been 
adjusted through the calibration step, as described 
above; the other models are in their original form 
based on the experiment. Only the Madison drive­
alone model had a significant bj but was not 
changed due to sensitivity results. All other 
models have also been tested in sensitivity analysis 
and produce reasonable results. Adjusted constants 
are not shown, as they are dependent on the level of 
aggregation used; a simple procedure is used to find 
base values of the constants when the models are 
applied for forecasting. 

Table 4 gives the elasticities and values of time 
that emerge from the final models. The values gen­
erally agree with the previous literature, although 
the range of variation is outside that of past data 
and creates some differences. 

The results of this effort highlight some key 

Direct Elasticities Cross Elasticities• 

Gasoline Parking 
Urban Area Price Cost 

Milwaukee County -0.166 -0.059 
Madison -0.196 -0.106 
Fox River Valley -0.152 -0.071 
Other cities -0.183 -0.082 

Bus Travel 
Bus Fare Time 

-0.247 -0.349 
-0.117 -0.396 
-0.141 -0.279 
-0.189 -0.480 

Gasoline 
Price 

+0.448 
+0.249 
+0.387 
+0.356 

Parking 
Cost 

+0.186 
+0.134 
+0.183 
+0.158 

Marginal Value 
or Timeb 
($/h) 

4.64 
7.69 
4.01 
7.15 

Note: All elasticities are point elasticities and were calculated at the mean value of the independent variables in the experi­
mental data sets: gasoline price= $1.90/gal, parking cost= $15/month, bus fare= $0.60, travel time= 15 min. 

a J .ne:it m1_H"IP.h1 h~ve r"lln!io\timt r.rrnui P.111.r;,itiritiP.!io! (i P. ; fl)r ~ ! [IP.rl'P.nt rh::ane:P. in e:~umline prir.e, for ex::ample; 1111 other morles h11ve 
b the same eh11.nse fn demand). 

Marginal value.s of lime c~lculated by using the travel time and the gasoline price coefficients. 



Transportation Research Record 895 

issues in integrating functional measurement and 
disaggregate models. When using functional measure­
ment to address issues not well captured in data on 
actual behavior, testing of the correspondence be­
tween stated and actual behavior is difficult. The 
standard validation approach of simple prediction of 
mode shares with the functional measurement model 
and comparison to aggregate actual shares is sensi­
tive to the values of the independent variables as­
sumed (and about which there is some latitude) and 
generally does not yield statistical measures of the 
closeness of correspondence (~) • This study at­
tempted to assess whether functional measurement 
models could be used in a logit framework without 
adjustment and whether sufficient variability ex­
isted to check the performance of the model. The 
results are encouraging, although more work is 
clearly needed. 

MODEL APPLICATIONS 

These models are currently in use in several func­
tions at WisDOT. First, they are being used in 
their incremental logit form for statewide policy­
level analysis of key issues that face the depart­
ment. By comparing the impacts of state policies in 
a consistent fashion across Wisconsin urban areas, 
the department can target its programs where their 
effect is largest. A policy report has been pre­
pared based on the models (10) and concludes, for 
instance, that transit assistance should be targeted 
at larger urban areas where its effect is signifi­
cant, that ridesharing should be promoted in all 
areas, with an emphasis on employer and neighborhood 
matching programs versus less-effective general pub­
lic matching programs, and that bicycle lanes may be 
cost-effective investments for diverting travelers 
from driving alone, even though their impact is only 
seasonal. In many cases bicycle lanes have greater 
impacts than transit improvements and lower cost. 
In Madison, for example, if bicycle lanes were 
marked on the streets in a corridor where the per­
centage of people that use each mode to work equaled 
each mode's share for the city as a whole, drive 
alone's share of the work trips would decrease by 
almost 3 percent. In contrast, a 5-min reduction in 
bus transfer time would divert less than 2 percent 
of the total trips from drive alone and a 10-min 
reduction in bus travel time would decrease drive 
alone's share by only 1 percent. The direction for 
transit improvements, when considered alone, will 
involve decreases in travel time and fare increases, 
as service level generally appears more important 
than fare to the public over the ranges examined. 

Some of the more interesting conclusions and 
policy implications of the study include the follow­
ing. Approximately 112 000 of 1. 5 million one-way 
daily home-bound work trips would switch from driv­
ing alone to other modes if gasoline were rationed 
(10 gal/registered vehicle each week). A wait of 30 
min to buy gasoline at a service station would cause 
70 000 of the 1.5 million daily drive-alone trips to 
shift to other modes. 

The models reported here indicate that a general 
public carpool matching program is not as effective 
as an employee or neighborhood-based ridesharing 
programs in Wisconsin cities larger than 50 000 
people. However, a similar set of models for long­
distance commuter travel between Madison and its 
satellite communities indicate that residents of 
villages and small communities in rural areas are 
nearly as willing to share rides with strangers as 
with neighbors or coworkers. Fear of strangers 
seems to be more prevalent in larger cities than in 
small rural communities, as expected. Thus, a gen­
eral public carpool matching program might work well 
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for commuters who live in small communities outside 
Wisconsin's larger cities. Universal flexitime for 
workers in the urban areas studied would cause 
58 000 fewer home-based work trips by ridesharing to 
occur daily than if everyone worked fixed 8-h shifts. 

The addition of marked bicycle lanes to all 
streets throughout each of the cities studied would 
encourage an additional 26 000 bicycle work trips in 
good weather months, a 39 percent increase in total 
summertime bicycle trips. Bicycle lanes would im­
pact strongly on bicycle ridership in the medium and 
smaller cities of Wisconsin but would have little 
effect in the state's largest city, Milwaukee. The 
allowing of pavements throughout 10 cities to dete­
riorate from s~th to rough riding surfaces would 
cause a reduction of 38 000 bicycle work trips. on 
nice days--a 42 percent reduction in total bicycling 
in the summertime. Thus, local street maintenance 
practices should pay particular attention to keep 
pavements on popular bicycle routes in good condi­
tion to avoid loss in bicycle ridership. 

The models are also being made available to urban 
areas for use in their planning process. They can 
be implemented in the urban transportation planning 
system (UTPS) as part of WisDOT' s technical assis­
tance role to local areas. These models will lead 
to more detailed, yet consistent, evaluations of 
policies already assessed at a statewide level by 
incremental legit. 

Finally, the models have a quick-response capa­
bility through the use of incremental legit and are 
available to respond to requests by planning and 
other agencies for quick analyses of proposed ser­
vices and policies. A major staff capability exists 
at WisDOT to use these models in this manner. 
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Elasticity-Based Method for Forecasting Travel on 

Current U rb~n Tr~nsportation ~Altern~tives 
DANIEL BRAND AND JOY L. BENHAM 

This paper presents a quick-response incremental travel demand forecasting 
method that uses travel demand elasticities and readily available ground count 
travel and land use data. Elasticities are defined and criteria for selecting elas­
ticities are identified. The steps for calculating each component of travel af­
fected by a transportation improvement are described. Personnel and com­
putational requirements for this method are greatly reduced relative to those 
necessary for forecasting with the conventional four-step sequential process 
(trip generation, distribution, modal split, an.d trip assignment). The basic 
travel behavior assumptions of the method are similar to those inherent in con­
ventional models although, in contrast to sequential derivation and application 
of these models, internally consistent causal relations are maintained. A range 
of outputs of interest to policymakers is generated, including changes in total 
travel, changes in mode-specific travel, and changes in travel on a given route 
or link. The elasticity-based method has recently been used to forecast patron­
age on the four major transit alternatives included in the Baltimore North Cor­
ridor alternatives analysis. This application is described in the paper and com­
pared with forecasts made in a particular application of the conventional four­
step sequential travel demand forecasting system for the same alternatives under 
the same conditions. This direct comparison of the two forecasting methods 
provides a unique opportunity to assess the effects on forecast patronage of 
many assumptions inherent in typical applications of each method. 

Much of the concern over urban travel demand fore­
casting involves the turnaround time and expense of 
applying existing conventional sequential travel 
demand models. Also, application of these conven­
tional models often involves a series of restrictive 
assumptions that can reduce severely their ability 
to distinguish travel impacts between alternatives 
( 1). These models synthesize travel patterns from 
s-;;-ratch based on a long list of land use, socio­
economic, and level-of-service variables, which 
themselves must be forecast (thus propagating 
errors) (2). One way to cut significantly the large 
costs currently associated with urban travel fore­
casting is to use elasticities with respect to those 
limited numbers of variables related to the policy 
option of interest. Also, since elasticities can be 
behavioral, the spatial extent of the forecasts can 
be limited to those areas of the region affected by 
the system change being tested. The most easily 
available travel data, namely ground count data, can 
be factored incrementally at some useful and infor­
mative level of aggregation. Such an approach saves 
the time, expense, and uncertainty involved in 
forecasting and calculating entire sets of indepen­
dent variables. 

The elasticity-based approach described here has 
recently been used to forecast patronage on four 
major transit alternatives considered in the Balti­
more North Corridor alternatives analysis. In 
addition to the elasticity-based forecasts, patron­
age estimates were developed by the Baltimore Re­
gional Planning Council by using the existing four­
step, sequential forecasting system estimated with 

urban transportation planning system (UTPS) soft­
ware. Hence, the opportunity to compare and evalu­
ate the two methods was provided. 

ELASTICITIES 

A travel demand elasticity 
centage change in ridership 
pending on what is measured) 

is defined as the per­
or traffic volume (de­
that results from a 1 

percent change in a given independent variable 
(e.g., travel time or cost) Cll. Elasticities are 
measures of the partial effect on travel of changes, 
taken singly, in the travel environment that con­
front travelers. They allow shifts in travel pat­
terns to be estimated at the margin in response to 
changes in the travel environment and, therefore, 
existing observed travel unaffected by changes is 
preserved. Existing synthetic (UTPS) procedures can 
only duplicate existing travel with some difficulty. 

Elasticity-Based Forecasting Method 

The elasticity-based forecasting procedure is based 
on the concept that travel on a new or improved 
transit facility is composed of four components, 
each of which results from one mutually exclusive 
cause or behavior and each of which can be calcu­
lated separately and sequentially to include the 
results of the previous change. The four components 
are as follows: 

1. Transit travel that does not exist today due 
to growth in numbers of people and jobs; these are 
changes in travel due to so-called long-run demand, 
or land use changes; 

2. Transit travel that is diverted from (or to) 
the automobile mode due to changes in automobile-op­
e rating costs (e.g., increases in gasoline price) 
and other automobile level-of-service changes (e.g., 
reductions in travel time due to highway construc­
tion); 

3. Transit travel diverted to the improved tran­
sit facility from transit facilities for which the 
new or improved transit facility is a superior 
substitute; this is diverted travel from facilities 
of the same mode; and 

4. Induced transit travel, or travel that is 
induced in the corridor and specifically on the 
transit alternative being evaluated as a result of 
the new or improved transit facility; induced tran­
sit travel includes travel that results from in-------.:I __ .._ __ 
v1.ce1;:icu 1.a""'c~ 

the improved 

_,__.1 __ -.I:! 

..,;;uu.1.1 .. a::: u..1. 

facility and 
destinations l:jt::l. vcu by 
increased transit trip 
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frequency (including automobile trips diverted to 
the transit improvement) • 

To calculate the first travel component due to 
land use changes, the origin-destination (O-D) 
superzone transit trip table is factored to account 
for growths (or declines) in population and employ­
ment. Simple proportional factors on numbers of 
households and jobs are used to account for growths 
and declines in transit travel. This assumes a 
long-run equilibrium between the preferred residence 
and employment and other activity locations of 
people, and the travel choices available to them. To 
account for the fact that the population mix, for 
example, in a residential neighborhood will change 
to reflect the (long-run) behavior of people to 
locate in accordance with their transportation 
preferences, long-run elasticities must, for the 
sake of consistency, be used to calculate the second 
and fourth components of travel. 

Because transit demand is a function of both 
automobile and transit level of servic~, the second 
component of travel includes only the change in 
transit use that results from changes in automobile 
level of service. Transit trips are factored by 
using cross-elasticities of transit demand with 
respect to automobile level-of-service characteris­
tics. No assumptions need to be made that transit 
is directly substituted for all automobile trips 
foregone as a result of gasoline price increases, 
for example, even for work trips. The transit demand 
cross-elasticities, empirically derived, provide the 
proportion of automobile trips foregone that use 
transit in the given situation. In particular, the 
cross-elasticities provide the percentage of change 
in transit use that results from each !-percent 
change in each automobile level-of-service charac­
teristic. 

To calculate the third travel component, diverted 
transit travel, the amount of transit travel between 
each superzonal pair on each affected transit route 
that is diverted to the transit improvement or 
alternative is calculated. This calculation is 
based on level-of-service differences between the 
existing routes that serve the 0-D pair and the 
alternative being tested. The resulting diverted 
transit trip table will already have been factored 
appropriately to account for growth in transit 
travel due to land-use changes and travel from 
automobile due to changes in the automobile system 
(travel components 1 and 2). 

The alternative-specific superzonal transit trip 
table (from component 3) is factored by using direct 
transit elasticities applied to the transit level­
of-service differences between the new alternative 
and the existing bus routes from which travel is 
diverted to calculate induced travel from the tran­
sit improvement. 

Calculation of the first two components of travel 
results in the forecast year transit trip table that 
reflects the future year population and highway 
level of service on the base year transit network. 
Hence, the stage is set for introducing the transit 
alternatives. With the introduction of new or 
improved transit lines, existing transit trips will 
be diverted to the new routes (component 3). This 
diverted travel represents the base transit rider­
ship on the new routes, which is then factored to 
reflect the increase in travel (component 4) induced 
as a result of the improvement in level of service. 

Assumptions 

The approach outlined above is based on certain 
behavioral assumptions that should be made explicit. 
Certain basic assumptions are no different from the 
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assumptions inherent in the conventional sequential 
series of steps in urban travel forecasl;j.ng. How­
ever, calculation of the four components of travel 
uses internally consistent relations that account 
explicitly and appropriately in each step for 
changes in trip frequency (trip generation), desti­
nation choice (trip distribution), modal choice 
(modal split), and trip diversion (assignment). 
Changes are calculated in all of these travel 
choices for every change in the transit and highway 
system. The lack of feedback to these choices in 
the usual UTPS process is avoided. Double counting 
of changes in travel choices is also avoided. That 
is, in the traditional sequential four-step modeling 
process, changes in travel behavior in more than one 
travel choice are contained in the data used to 
model or explain a single travel choice. When 
single travel choices are forecast sequentially by 
using models derived in this manner, the effect is 
to count changes in these choices several times and 
thereby inflate the impact of these changes on 
travel behavior. 

The following mapping of the conventional se­
quence of travel choices on the explicitly and 
uniquely calculated travel components is helpful. 

Long- or Short­
Run Travel Choice 
Population and employment growth, de­

cline, or redistribution 
Transit trip frequency, destination 

choice, and modal choice due to 
changes in automobile level of 
service 

Transit trip frequency, destination 
choice, and modal choice due to 
change in transit level of service 

Transit path choice 

Travel 
Component 
1 

2 

4 

3 

The time of day travel choice is omitted here for 
ease of presentation. It is addressed in the Balti­
more study through the development of alternative­
specific peaking factors that reflect how this 
travel choice varies with the transportation im­
provement. Because it goes back to land use changes 
(component 1), the method assumes a long-run equi­
librium between the preferred residence and employ­
ment (and other) locations of people and the travel 
choices available to them. This generally requires 
that elasticities should be used that have been 
derived from models estimated by using only a cer­
tain kind of data, namely cross-sectional origin­
destination data (_!). This is not a constraint 
because most models are estimated by using such data 
collected at one point in time. The distinction 
between short- and long-run elasticities is 
important because it has been found that elasticity 
estimates based on models calibrated with 
cross-sectional data are consistently larger than 
short-run elasticities based on before and after 
studies C.i>. 

Criteria for Selecting Elasticities 

Although the application of elasticities is a rela­
tively simple procedure, the elasticities selected 
for use in the forecasting approach described above 
must be consistent with the travel demand changes 
being measured. For example, models based on cross­
section data are often estimated for a given trip 
purpose and involve a single travel decision such as 
modal choice. Other models, known as direct-demand 
or simultaneous-choice models, include a range of 
travel decisions--trip frequency, modal choice, and 
destination choice. Note that this set of travel 
decisions is the behavior being modeled in step 4 
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above. Still other models calibrated with before 
and after data typically measure Che Uifference in 
aggregate demand on a facility or system from a 
given improvement in level of service. However, if 
the before and after data are only for a specific 
facility, they include travel diverted to the fa­
cility from competing facilities as well as demand 
induced as a result of the facility improvement. 
Elasticities estimated by using such data do not 
distinguish between diverted and induced travel. The 
elasticity-based forecasting procedure described in 
this paper calls for separate calculation of induced 
and diverted travel components. That is, the 
transit trips factored to reflect induced travel 
consist onl y of trips already diverted to, or con­
fronting, the benefits of the proposed transit 
improvement. Therefore, facility-specific data from 
before and after studies are generally inappropriate 
as sources of elasticities. In addition, elastici­
ties that result from many before and after studies 
fail to fully account for the effects of changes in 
level-of-service that are exogenous to the improve­
ment but that influence demand. In general, elas­
ticities derived from models are preferred to before 
and after studies because they control for more 
factors that affect travel demand. 

Elasticities are transferable contingent on 
certain conditions. Therefore, the elasticities to 
be used in patronage forecasting should be selected 
with several criteria in mind. 

1. Elasticities should be derived from travel 
models that are consistent with travel behavior 
theory so that the elasticities will be behavioral. 

2. Long-run elasticities should be used when 
future year travel forecasts are required. As 
discussed above, long-run elasticities can be esti­
mated from cross-sectional (or some time-series) 
models that include (control for) a large set of 
relevant variables. Direct demand models (}_,2_) are 
preferred, especially for deriving nonwork trip 
elasticities because they measure at one time the 
impact of changes in all travel choices on ridership. 

3. Elasticities should reflect the travel pat­
terns of the study population to the extent possible 
by developing composite elasticities estimated for 
specific trip types or transit users. For example, 
the observed trip purpose distribution can be used 
to combine work and nonwork trip elasticities to 
develop the appropriate peak-period or all-day 
elasticity for the study area. 

4. Socioeconomic characteristics of the popula­
tion and the base level of service can have an 
effect on the value of elasticities. Therefore, 
elasticities appropriate for the study population 
and level of service should be used. 

ELASTICITY-BASED PATRONAGE FORECASTS FOR BALTIMORE 
NORTH CORRIDOR 

The Baltimore North Corridor alternatives analysis 
considered four basic transit alternatives: light 
rail, commuter rail, busway, and express bus. The 
light rail transit alternative consists of a new 
two-track rail transit system that would extend 
about 16.5 miles from the northern point of the 
corridor (Hunt Valley) through MetroCenter. The 
commuter rail alternative involves a shorter align­
ment that begins at Timonium (3.5 miles south of 
Hunt Valley) and ends near the northern border of 
MetroCenter. A timed transfer shuttle bus service 
provides collection and distribution service in 
MetroCenter. The busway consists of an exclusive 
right-of-way for buses used by two types . of routes. 
A spine service is provided that originates at Hunt 
Valley, stops at intermediate on-line stations, and 
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circulates on local streets in MetroCenter. Express 
buses, which provic1e park-and-ride and collection 
and distribution service in the North Corridor and 
circulate in MetroCenter, also use the busway. The 
express bus alternative consists of a network of 
park-and-ride lots and express bus services by using 
the existing roadway system in the North Corridor 
and circulating in MetroCenter. 

Data Preparation 

The elasticity-based method is predicated on the 
ability to identify and work (manually) with a 
relatively small number of existing routes and links 
from which travelers might be diverted to the new 
and improved facility. This is not usually possible 
when analyzing a new, high-speed expressway that 
profoundly affects travel on a large number of links 
in multiple corridors of a region. For the express­
way example, detailed computerized conventional 
network analysis seems inescapable. However, such 
projects, which have such far-reaching facility 
interactions, are no longer the focus of most plan­
ning exercises. The Baltimore North Corridor tran­
sit alternatives are typical of current major trans­
portation improvement proposals in even the largest 
urban areas. These consist of express transit lines 
whose travel impacts affect relatively few (albeit 
large) transportation links in one corridor. 

Data preparation for the Baltimore North Corridor 
alternatives analysis included identification of the 
bus routes and links currently used that might be 
diverted to the new and improved facility. Volumes 
on these links are obtained from observed bus counts 
and represent the relevant travel universe that 
might be affected by the proposed alternatives. For 
purposes of growth factoring (step 1), it is neces­
sary to define the area served by the affected 
transit links and to delineate analysis zones within 
the service area. The maximum service area was 
defined by examining the existing and proposed 
transit alternatives, their access characteristics, 
and relevant existing travel data such as data on 
distance between travelers' origins and transit 
lines and level of transferring. Because elastici­
ties are applied incrementally, only travel affected 
by the alternatives needs to be considered. There­
fore, data requirements are small relative to fore­
casting methods that simulate all travel in a region. 

Trips on the affected transit links are then 
assigned to the origin and destination superzones 
served by those links. This assignment is done on 
the usual basis of shortest path (i.e., which bus 
routes serve which superzones), and information on 
average trip length or from on-board transit surveys 
if available. UTPS-selected link output, if avail­
able from an earlier study, is of course very help­
ful in this regard for obtaining the existing 0-D 
distribution of observed trips on any transit link. 

The actual travel diverted to each alternative is 
calculated in step 3 by using a proportional assign­
ment procedure. The assignment procedure is based 
on the concept that the route choice travel decision 
can be represented as a function of the relative 
utilities or impedances on the alternate routes. The 
utilities are a function of the various service 
attributes, weighted by traveler's preferences for 
these attributes. Hence, the proportion of trips 
between two points attracted to each route is pro­
portional to the relative impedances of the routes 
that connect these points, such that 

(I) 
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where 

proportion of trips attracted to route i, 
impedance of route i, and 
route alternatives. 

The impedance term includes level-of-service 
attributes such as in-vehicle time, walk time, wait 
time, and fare. The weights for attributes are 
derived from travel model coefficients estimated for 
populations comparable with the study corridor. The 
product of this step for each alternative (in the 
Baltimore application) is diverted travel by access 
mode to each station or express bus route segment by 
0-D pair and previous transit path. This allows the 
exact calculation of changes in most level-of-ser­
vice characteristics faced by transit users to 
calculate diverted and induced travel. That is, the 
use of zonal average travel times or waiting times 
for multiple routes is avoided. 

Calculation of the fourth travel component, 
induced travel, involves two steps. First, the 
percentage change in level of service faced by 
existing submodal travel markets is used to calcu­
late increases in transit trips by these markets 
induced as a result of the improvement. Transit 
demand elasticities are applied to the service 
improvement obtained by users who travel between two 
zones for each base (previous) transit path and 
access mode. The separating of submode! travel 
markets avoids the need to aggregate access level­
of-service over submodes (e.g., by taking weighted 
averages) • 

Aggregation introduces paradoxes and illogical 
change measures. For example, the bus paradox 
occurs when improved feeder bus to a trunk transit 
mode is provided in an improved alternative as a 
service improvement over park-and-ride and kiss­
and-ride. Simple computation of a weighted average 
in-vehicle access time actually increases travel 
time with the service improvement since a higher 
percentage of transit users use the slower feeder 
bus relative to automobile access. This lowers 
overall demand for that route, despite the transit 
service improvement. Hence, the paradox, which is 
avoided by analyzing the behavior response of exist­
ing submodal travel markets separately. 

The second step in the calculation of the fourth 
travel component is calculation of induced travel 
for new submodal travel markets. For example, with 
the provision of a park-and-ride station, travel by 
a new submodal market--automobile access--may be 
expected. In this case, if diverted and induced 
trips by walk and feeder bus at the new station are 
estimated to total 200 and the equilibrium submodal 
split at the station is 50 percent walk and feeder 
bus and 50 percent automobile, the station will 
attract 200 additional trips by automobile access 
for a total of 400 trips. Future equilibrium sta­
tion assignment and access mode split depend on 
riders' origin distance from stations, available 
feeder bus, roads that connect origin zones and 
stations, parking availability, household income and 
automobile availability, and characteristics of the 
travelers' destination (e.g., parking availability). 
Access mode split is also heavily affected by the 
fact that transit travel between suburban areas 
where automobile level-of-service is good is domi­
nated by transit captives, although travel to the 
downtown attracts choice riders as well as captives. 
Therefore, the origin-zone-specific access mode 
splits for travel to suburban destinations were 
significantly different from those assumed for 
travel to MetroCenter. The product of this step is 
total peak-period travel on the alternative. Note 
that because induced travel and diverted travel are 
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calculated separately, a direct output of the method 
is the number of new transit trips associated with 
the transportation improvement. 

Elasticities Selected for Baltimore 

For the Baltimore alternatives analysis, elastici­
ties derived from cross-section models Cl.~-.!!_) were 
used to develop constant peak-period transit elas­
ticities. Elasticities with respect to the follow­
ing transit level-of-service variables were devel­
oped: fare, in-vehicle time, out-of-vehicle time, 
and frequency. The frequency elasticity was used to 
measure the impact of changes in trip frequency 
where headways were greater than 10 min. The wait­
ing time (out-of-vehicle time) elasticity alone is 
inadequate to measure the full effect on patronage 
of headways greater than 10 min because the conven­
tional definition of wait time as one-half the 
headway up to a maximum of 5 min was used. Cross­
elasticities with respect to the following automo­
bile level-of-service variables were also developed: 
automobile operating cost and automobile in-vehicle 
time. The selected values for these elasticities 
are given in the table below. 

Elasticity 
Direct 

Selected 
Value of 
Elasticity 

Transit fare 
Transit in-vehicle time 
Transit out-of-vehicle time 
Transit frequency 

Cross 
Automobile operating cost 
Automobile in-vehicle time 

Results 

-0.15 
-0.37 
-0.65 
+0.26 

+0.18 
+0.20 

Total Baltimore North Corridor and MetroCenter 
peak-period (7:00-9:00 a.m.) transit trips are 
summarized for each alternative in Table 1. This 
table gives boardings on each alternative as well as 
all transit destinations in the North Corridor or 
origins in MetroCenter. The comparison of total 
transit trips reveals that the highest level of 
transit tripmaking occurs with the rail transit and 
busway alternatives, followed by express bus and 
commuter rail. The differences in the number of all 
corridor transit trips between alternative and base 
(1978 transit network) trips are new trips induced 
on each alternative. 

COMPARISON OF ELASTICITY-BASED FORECASTS WITH UTPS 
FORECASTS FOR BALTIMORE NORTH CORRIDOR 

Patronage forecasts for the alternatives were devel­
oped by using both the elasticity-based method and 

Table 1. Daily morning peak period Baltimore North Corridor and Metro­
Center transit trips by alternative, 1995. 

Difference in All 
All Corridor Transit: l'rips 

Total and MetroCenter Relative to Baseb 
Mode Boardings Transit Trips3 (%) 

Ba sec 41 575 
Rail transit 14 147 46 560 +11.99 
Commuter rail 4 197 42 332 +1.82 
Bu sway 14 172 46 333 +11.44 
Express bus 6 801 43 369 +4.32 

8 Includes al1 trips that have an origin or destination in the North Corridor or an origin 
b in MetroCc.nter. 

Equl'.11.s the pC! rt entage of new crlps-lnduced on e11ch all e--rnia tive. 
c Rer~,n: to 1995 land use and highway system on 197 S lnrna.it network. 
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the local set of sequential travel demand models 
estimated by using UTPS software. Critical points 
of difference between the methods are described 
below. 

STRUCTURAL AND CALIBRATION DIFFERENCES 

The elasticity-based forecasting system is an incre­
mental method in that changes in observed transit 
ridership are estimated as a function of changes in 
level-of-service. The four-step sequential fore­
casting procedure used to forecast patronage for the 
Baltimore alternatives, in contrast, is a synthetic 
method by which total regionwide transit travel is 
estimated from scratch for each alternative. Tran­
sit level-of-service and assignment are based on the 
minimum single transit path available (determined by 
the simple. unweighted sum of in-vehicle and out­
of-vehicle time) , including the minimum time access 
mode. Similarly, automobile level-of-service is 
measured on the single shortest path. Interzonal 
level-of-service variables included in the mode 
split model are in-vehicle travel time, out-of-vehi­
cle travel time, and user cost. The resulting mode 
split is then applied to a fixed 1995 trip table. 
Transit trips are assigned to the network by using 
an all-or-nothing assignment procedure. 

From the above descriptions, several critical 
differences with respect to the application of the 
two methods in Baltimore can be identified. First, 
the existing sequential models assume a fixed person 
trip table, but the elasticity method relaxes this 
assumption. Relaxation of the fixed trip table 
resulted in approximately 1000 additional trips in 
the case of rail transit. Second, transit level­
of-service measures in the existing Baltimore mode 
split model are based on single minimum path level­
of-service and, therefore, may present an optimistic 
measure of actual transit service used by all mem­
bers of the public. The elasticity method, on the 
other hand, uses actual level-of-service faced by 
travelers on each transit path between a given 0-D 
pair. The existing Baltimore assignment procedure 
involves all-or-nothing choice and is based only on 
travel time. The elasticity-based method diverts 
transit travelers by using a proportional assignment 
procedure based on several level-of-service vari­
ables. Note that the bias imposed by the use of 
minimum path level-of-service measures may be miti­
gated in that the coefficients of the existing mode 
split model were also estimated based on minimum 
path service measures. However, in many cases, the 
new facilities tested in this study provide signifi­
cant service improvements, which leads to a greater 
difference between the minimum path and average 
path. Hence, this procedure results in upwardly 
biased estimates of transit travel. 

The elasticity-based method also identifies 
distinct travel markets based on submodal choice, 
thereby avoiding the need to average level-of-ser­
vice across submodes, which often leads to paradoxi­
cal results. In addition, this approach recognizes 
that automobile access to transit represents a 
distinct mode from walk or (feeder) bus access to 
transit and serves a different travel market seg­
ment. In the existing sequential models used, all 
transit modes are defined as a single mode that 
serves one travel market. 

Finally, the two methods differ with respect to 
the level of calibration detail. Although the 
sequential method is applied at the transportation 
analysis zone level, the elasticity-based method 
employs sketch-planning zones. Therefore, the 
former method has the potential for measuring level­
of-service with greater acc1Jracy~ The elasticity­
based method, however, measures the changes in 
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level-of-service exactly, based on travelers' sub­
mode and path for "~ given interzonal movement. The 
interzonal measures are used only as the large 
denominators in the calculations of percentage 
changes. 

The impact of the structural and calibration 
differences identified above is that the sequential 
method is expected to result in larger diversions of 
automobile trips from the fixed trip table to the 
alternatives relative to the elasticity-based 
method. This is because of several optimistic 
assumptions regarding transit service employed in 
the sequential models, which are compounded in each 
step of the estimation procedure. In the first 
step, the minimum transit path is built. This 
pathbuilding results in an underestimate of actual 
transit travel time in three ways. First, not all 
transit users choose the path that has the minimum 
travel time. For example, automobile access may 
represent minimum access time, but not all users 
have an automobile available. Second, because the 
minimum pathbuilding method does not reflect that 
travelers weigh out-of-vehicle time more heavily 
than in-vehicle time, the model loads up new line­
haul routes that minimize in-vehicle time relative 
to headways (wait time) and coverage (walk time). In 
addition, because the minimum path is both built and 
skimmed by using the unweighted sum of in-vehicle 
and out-of-vehicle time, the impact of a transfer 
between transit vehicles is underestimated, since a 
transfer imposes a higher proportion of out-of-vehi­
cle time relative to total travel time . Similarly, 
cost affects travelers' route choice but is excluded 
in the building of the minimum path. Third, service 
frequency is excluded from the level-of-service 
measures. Because differences in frequency are 
important to travelers, the exclusion of frequency 
biases the patronage forecasts in favor of low 
frequency routes. 

The above represent several of the major differ­
ences associated with the structural assumptions and 
calibration procedures of the two forecasting 
methods. Although the Baltimore application of UTPS 
is a very careful and elaborate procedure, a number 
of the assumptions reflect local practice rather 
than constraints imposed by UTPS software. For 
instance, some UTPS model sets build the minimum 
path based on a weighted sum of in-vehicle and 
out-of-vehicle time and cost. This definition of 
minimum path would reduce the error in the resulting 
patronage forecasts. 

Total North Corridor boardings, inbound board­
ings, and the percentage of new trips estimated for 
each alternative by the two forecasting methods are 
compared in Table 2. (The boardings in Table 2 are 
lower than those in Table l because intra-Metro­
Center trips are excluded for comparability with the 
available UTPS output.) Table 2 shows that the 
sequential models estimated with UTPS forecast a 
larger number of total boardings for all alterna­
tives. The average difference between forecasts of 
total North Corridor boardings shown in Table 2 for 
the two methods is 41. 4 percent. The average dif­
ference between forecasts of inbound boardings, 
however, is only 17. 2 percent, which indicates that 
the greatest difference lies in outbound trips. The 
share of morning peak-period outbound trips forecast 
by the sequential method ranges from 45.l percent 
for rail transit to 51. 7 percent for commuter rail. 
The elasticity-based estimates of outbound trips 
ranges from 25.4 percent for commuter rail to 32.1 
percent for rail transit. 

The 1995 base transit trip table developed by 
using the elasticity-based method revealed about 25 
percent outbound trips and the UTPS trip table 
revealed about 35 percent outbound trips. A higher 
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Table 2. Comparison of elasticity-based and UTPS Baltimore North Corridor 
patronage results by alternative, 1995. 

Elasticity-Based 
Method Boardings UTPS Boardings 

Alternative Total Inbound Total Inbound 

Rail transit 13 638 9262 18 508 10 168 
Commuter rail 4 106 3063 8 828 4 268 
Bus way 11 182 8033 12 998 6 383 
Express bus 5 587 3888 7 502 3 931 

Note: Pacronuge rof<rS lo 1995 d• llY peak-period (7:0().9:00 a.m .) trips,•~· 
eluding intrnMatro°'r:.Her tdps for comparn.blllty with aYaU1.blc UTPS 
output. 

proportion of outbound trips on the new alternatives 
is reasonable since the improvement in level-of-ser­
vice relative to the base transit network is greater 
in the outbound direction; however, the share of 
outbound trips forecast by the sequential method is 
exaggerated. A principal reason for this is that, 
as noted earlier, the four-step sequential procedure 
used in this application underestimates the impact 
of a transfer. In the case of commuter rail, which 
has relatively long headways, this upward bias in 
favor of the new transit alternative is maximized. 

Table 2 also indicates that the sequential method 
estimates fewer inbound busway boardings than does 
the elasticity method. Two major factors account 
for this difference. First, the provision of high­
quality park-and-ride service under the busway 
alternative attracts a significant number of park­
and-ride passengers. As noted previously, the 
elasticity method treats a new access mode as a new 
travel market, and the sequential method simply 
assigns a fixed number of transit riders to the 
minimum path access mode. Second, the elasticity 
method will estimate a greater number of new trips, 
all else being equal, because a fixed total trip 
table is not assumed. 

The results of the two methods are also similar 
in several important ways. First, the light rail 
and busway alternatives attract considerably more 
trips than do the commuter rail and express bus 
alternatives in both methods. Second, a significant 
share of North Corridor boardings occur at the 
stations within Baltimore City where the population 
density is higher and incomes and automobile owner­
ship are lower (relative to stations in Baltimore 
County). Finally, a significant minority of out­
bound trips are destined for the Towson area, an 
employment and population center in Baltimore 
County. These similarities increase our confidence 
in the patronage forecasts. In addition, our 
ability to explain differences in the forecasts 
based on assumptions implicit in the methods in­
creases our confidence in the validity of the elas­
ticity-based approach. [Note: the elasticity-based 
figure s are being used as the final patronage re­
sults for local and Urban Mass Transportation Admin­
istration (UMTA) decisionmaking purposes in this 
UMTA-sponsored alternatives analysis.] 

ADDITIONAL APPLICATIONS OF THE ELASTICITY-BASED 
METHOD 

The Baltimore alternatives analysis patronage fore­
casting work represents one of the most complex 
applications of the elasticity-based method. The 
multitude of modest alternatives currently being 
considered in urban transportation clearly need 
easy-to-use forecasting methods for assessing their 
travel consequences. The forecasting methods should 
be subject to strict reasonableness tests. The 
validity of the results suggests that the method .can 
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be even more easily applied to transportation alter­
natives that have fewer network analysis require­
ments (e.g., requirements that affect travel on 
fewer existing links with fewer submodes.) Other 
applications of the method include estimating the 
ridership response to improvements in existing 
transit routes; determining the travel impacts of 
highway improvements and other automobile level-of­
service changes, including parking strategies and 
gasoline price changes; and determining the optimum 
mix of fare and service changes for maximizing 
transit revenues. 

The elasticity-based method provides a quick­
turnaround, relatively inexpensive alternative to 
conventional large-scale travel models. The method 
saves personnel and computational resources without 
sacrificing accuracy. It relies on easily available 
ground count data and can be applied manually or 
with the use of simple computers. Also, the struc­
ture of the method is easily understood by transpor­
tation planners and its transparency allows the 
analyst to determine the impact of each step of the 
estimation procedure on the resulting forecasts. 
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Analytic Models of Trip Length Distributions 

MOSHE BEN-AKIVA ANO NICOLAOS LITINAS 

This paper develops analytic models of trip length distributions. The models 
are derived from a destination choice model for a range of assumptions about 
the distributions of transportation lev•l·uf·service attributes and opportuni· 
ties over the urban space. These models include all previously reported analytic 
trip length distributions. Their derivation from an explicit model of individual 
choice behavior illuminates their underlying assumptions about the urban space. 
It is shown how the parameters of the derived trip length distributions can be 
interpreted and estimated from available data that include estimated parameters 
of travei demand models and other readily available statistics on average speeds 
and fuel consumption. This makes these models useful for simplified analyses 
of various urban transportation policies, especially areawide pricing and travel 
time changes. 

This paper derives a wide variety of analytic trip 
length distributions from underlying assumptions 
about travel behavior, transport system performance, 
and spatial distribution of travel opportunities. It 
develops the relations between parameters of trip 
length distributions and aggregate measures of 
transport level-of-service, land use, and socioeco­
nomic variables. The resulting trip length distri­
butions have policy-sensitive parameters and there­
fore can be used for simplified analyses of urban 
transportation policies and land use changes. The 
aggregate impacts of changes in the patterns of 
travel speeds and ti::avel costs can be predicted by 
such a model with fewer input data and calculations 
than by a discrete destination choice model that 
distributes traffic among a number of origins and 
destinations. 

A variety of models have been proposed and used 
to describe trip length patterns and urban densities 
(population, employment or joint populations, and 
employment densities). These include the exponen­
tial model [attributed to Clark C!l but first ap­
plied by Bleicher in 1892 (~) to analyze Frankfurt 
data], the square root exponential model (3), the 
gamma model (}.,_!) , the normal model <2l , the -shifted 
normal model (6), the generalized normal model (7), 
the generalized gamma model (~) , the power model (~-
11), the beta-type model (12), and the combined ex­
ponential and gamma model (QJ. The normal model 
has also been used with a directionally dependent 
variance (7,14,15). Joint population and employment 
densities ;ere modeled by the bivariate normal model 
(14) and the quadrivariate normal model (16-18). 
Theoretical justification is provided for severai:-of 
the above models through the framework of spatial 
equilibrium of deterministic utility functions with 
or without a competitive housing market (Q,l'l-~). 

Several models were derived by using the entropy 
max1m1z1ng approach (24-~) and from the gravity 
model (18). A few models have also been derived 
from random utility theory. Ben-Akiva and 
watanatada (l]_) derived a truncated gamma-2 trip 
length distribution based on the continuous legit 
model and Goodwin (28) derived a gamma trip length 
distribution and Mogridge (29,30) a Weibull distri­
bution based on a slightly different approach. Em­
pirical validations and comparisons of alternative 
models exist in a number of sources [for example, 
Casetti (21), Genest (31), Pearce and others (32), 
McDonald and Bowman (33), Clickman and Oguri (34), 
and Horowitz (}_2)]. ~ ~ 

In this paper all the trip length distributions 
found in the published literature are derived as 
special cases of the continuous spatial choice legit 
model. Their derivation from the continuous legit 
model clarifies their underlying assumptions and of­
fers ways for their improvement. It also offers a 

basis for comparison and selection among alternative 
models for specific applications. Furthermore, a 
few new, more general mod~ls are derived. 

ASSUMPTIONS ABOUT URBAN SPACE UNDER CIRCULAR 
SYMMETRY 

The derivation of the trip length distributions in 
this paper is based on the assumption of circular 
symmetry around the decisionmaker's origin. This is 
an approximation of the complex urban patterns that 
can be employed here for analytical convenience be­
cause of the nondirectional nature of the analysis. 
The results demonstrate that even this highly sim­
plifying assumption leads to valid trip length dis­
tributions that are expressed as functions of a 
small number of paramPtPrs. 

Assumptions About Generali7.ed Transport Cost 
Surface 

Assume a circularly symmetric (around the decision­
maker) generalized cost surface, B(l,<1>1rw,9wl, 
in units of generalized cost per unit distance, 
given by (see the coordinate system in Figure 1) 

(I) 

where c, c 0 , b0 , v are parameters that have 
specific values by mode and decisionmaker. Equation 
1 says that the generalized cost surface depends 
only on distance and not on directionality. This 
approximation is most accurate in situations with no 
directional congestion and for trips that start or 
end at the city center. A detailed discussion on 
the derivation of this sur.facl:! from transportation 
system performance and the interpretation of its 
parameters is presented later. For v = 1 this 
surface can be derived from the velocity field used 
by Blumenfeld and Weiss (36) and is also an approxi­
mation of a generalized -;Qst surface based on the 
velocity field tested by Angel and Hyman (~.1) • For 
this case b1 can be interpreted as the generalized 
cost per unit distance at free flow (i.e., 1 = =) 

and c/c0 is the difference between the generalized 
cost at the most congested point (1 = OJ and a 
free flow location. 

From this circularly symmetric generalized 
surface, the value of the utility B for a 
from w to h can be derived as a function of the 
tance 1, as follows (for v>O): 

(j(I) = - J~ B(l", <t>lrw, Ow)dt 

= clnc0 + (b 1 /v)b~ - cln(l + c0 ) - (b1 /v)(I + bo}" 

Let 

and 

a1 = -clnc0 - b b~ 

to obtain, 

cost 
trip 
dis-

(2) 

(3a) 

(3b) 

. (4) 
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Figure 1. Spatial coordinate system. 
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For the case b0 = c 0 
defined as follows: 

0 the e function can be 

~(I)= -a 1 - bl" - clnl (5) 

This form with v = 1 appears in the literature 
under the name Tanner function. Mogridge (~) has 
also suggested the form bl v with O<v<l as a 
suitable approximation for the generalized cost. 

The average utility of a trip from w to h is 
given by the above e function plus an additive 
constant that represents urban area, trip origin, 
mode, and decisionmaker-specific characteristics. 
Let a denote the sum of this constant with the above 
constant of integration a1 to obtain the average 
utility as follows: 

V(l) =-a - b(l + bo}" - cln(l + c0 ) (6) 

Assumptions .Abo ut Spatial Opportunity De nsity 

Under circular symmetry, one of the most general as­
sumptions for the opportunity density function that 
represents travel attractions is the form 

')(I)= -y0 (1 + xyr-2 exp [-<5(1 + X)'J (7) 

where y0 , y, ~. t, and X are parameters 
that depend on the urban area and the decisionmaker. 
This form equals the kernel of the generalized gamma 
density function. We will show later that the gen­
eralized gamma density contains a rich set of den­
sity functions, including normal, hydrograph, Ray­
leigh, Maxwell, Weibull, chi-squared, and gamma 
[see, for example, Johnson and Kotz (38), a special 
case of interest primarily because ~most of the 
existing models can be derived by using some par­
ticular subcase of this form]. It is obtained by 
setting the translation parameter x in Equation 7 
equal to zero, to get 

CONTINUOUS LOGIT DESTINATION CHOICE MODEL WITH 
CIRCULARLY SYMMETRIC URBAN SPACE 

(8) 

The spatial choice logit density function for a cir­
cular attraction area is expressed in polar coordi­
nates, as follows <.32,12.l : 

i 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

x 

f(l, 4>) =exp [V(I, 4>)] -y(l, 4>)/J;' J~" exp[V(I, 4>)] -y(I, 4>)1dld4> (9) 

where r* denotes the radius of the boundary of the 
attraction area. Substitute in this model the as­
sumptions presented in the previous section (i.e., 
Equations 6 and 7) to obtain: 

f(l, \I>)= 'YoO + X)'Y-2 exp[-0(1 + X)' - a - b(l + b0 )" - cln(I + c0 )] 

r• 211' t 
7f0 f

0 
'Yo(l+X)'Y-2 exp[-O(l+X) -a-b(l+b0 )" 

- cln (I+ Co)l 1dtd o:I> (10) 

The trip length distribution is defined as, 

f(l) =Jg" f(l, 4>)1d4> = 2irlf(l, 4>) (11) 

Since under circular symmetry the density at a 
point can be obtained by dividing f(l) by 2'!!1, the 
following analysis considers the derivation of trip 
length distributions only. Substitute Equation 10 
in Equation 11 to obtain the following trip length 
distribution for a circularly symmetric logit model: 

f(l) = (l + X)'Y-2 (l + c0 )-c 1 exp(-b(l + bo)" - ~(I+ X)'J 

Without the translation parameters 
c 0 = 0) Equation 12 simplifies to 

f(l) = fY '-l exp(-bl" - ~It)/ Jf P '- 1 exp(-bl" - 61t )di 

where y* is identical to y - c. 

(12) 

{13) 

Equation 12 is the general form of the circularly 
symmetric continuous logit trip length distribution. 
The integral in the denominator cannot be evaluated 
analytically except for special cases. These ana­
lytic solutions are given in the following section 
for the classification of special cases shown in 
Figure 2. Each special case is defined as a com­
bination of the following: 

1. With or without translation parameters, 
2. Finite or infinite radius r*, and 
3. One of the following ranges of values for v 

and t: (a) v = F;>O or v•F; 0 and v + 
F;>O, (b) v f i:;, v•t >O and v + F;>O, or 
(c) v = F; = 0. 
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Figure 2. Special cases of circularly symmetric distribution. 
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TRIP LENGTH DISTRIBUTIONS Gamma Models (v*= 1) 

The complete list of the analytic trip length den­
sity functions according to the classification of 
Figure 2 is given in Litinas and Ben-Akiva (39). 
This section summarizes the key results and dis­
cusses specific assumptions and the relations among 
special cases. Particular emphasis is placed on the 
special cases that correspond to the models that 
have appeared in the literature. 

Models for Unbounded Urban Area Without 
Translation Parameters 

In this case, the trip length density function is 
given by Equation 13, with r* = ~. Two major 
families of models are derived: the generalized 
gamma and the shifted generalized gamma. For the 
third case the distribution vanishes. 

Generalized Gamma Models (v = ; = v* or 
v; = O and v + ~>0) 

The trip length density is given by 

f(I) =Generalized gamma (v• , 1•, b•) (14) 

where b* is identical to b + 6. Note that for the 
case ; = 0 or 6 = O the model is 

f(I) = Generalized gamma (v, 1*, b) 

and for the case c = 0 
is 

f(l) =Generalized gamma (v, 1, b) 

and 0 

(15) 

(or 0), it 

(16) 

Thus, the models in Equations 14-16, which are based 
o n different assumptions, have the same form. 

The generalized gamma model is equivalent to the 
model used by Blumenfeld and others (_!!) and labeled 
as the generalized Clark and Sherratt model. Depend­
ing on the particular values of v*, four types of 
distributions can be distinguished within the gen­
eralized gamma family: gamma, generalized Gauss, 
generalized Weibull, and other. 

For v* = l or [v = 1 and 6 = 0 (or ~ = 0) J 
or Iv = l and 6 = 0 (or ~ 0) and c OJ the 
generalized gamma density becomes the gamma density: 

f(l) =Gamma (1*, b*) (17) 

This model was studied by Ajo (llr Aynvarg (!lr and 
Blumenfeld <ll and has had numerous applications 
(20-22, 29,33,37,40-42) . 
-Special cases of the gamma model are obtained for 

different values of y*. The model for y* = 1 is 

f(l) = exp(b*) (18) 

In this model, if 6 = O (or ~ = O) the opportun­
ities are assumed to decline with the reciprocal of 
distance. For y* = 2, the model is 

f(I) =Gamma (2, b*) (19) 

This model with 6 = O (or ~ = 0) and c .. O 
represents an assumption of a featureless plane with 
uniformly distributed opportunities (27) and is 
equivalent to an exponential density at a point 
(11). It has had numerous applications <!.·~•l•.!2.• 
21,23,27,32-34,43-48). 

Generalized Gauss Models (v* = 2 ) 

For v* = 2 or 
or [v = 2 and 
model is 

[v = 2 
6 = 0 (or 

f(I) =Generalized Gauss [-y* , 0, (l/2b*)] 

and ~ = 0 (or 
~ = 0) and c = 

6 = 0)] 
OJ, the 

(20) 

It includes as special cases the following distribu­
tions: normal, Rayleigh (which is also called cir­
cular normal) , and Maxwell (which is also sometimes 
called spherical normal) • It is equivalent to the 
generalized Sherratt model used by Blumenfeld (7). 

Special cases of the generalized Gauss mod;i are 
obtained by specific values of y71 • Tne model f or 
y* = l is 
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f(l) = 2 Normal [O, (1 /2b•)] (21) 

For 6 = O (or !'; = 0) and c = O it corresponds to 
declining opportunities with the reciprocal of dis­
tance and increasing travel costs with the square of 
distance. For y* = 2, the model is 

f(l) =Rayleigh [O, (1/2b*)] {22) 

which is the same as the Sherratt model for popula­
tion density at a point. In rectangular coordinates 
the density at a point (x,y) is an independent bi­
variate normal with zero means and variances l/2b*. 
For 6 = 0 (or !'; = O) and c = 0 it represents a 
trip length distribution under a featureless plane 
assumption. The Rayleigh and the normal models have 
been used in numerous applications (5,7,20-22,32,33, 
49). The model for y* = 3 is - - - - - -

f(l) =Maxwell [O, (l/2b*)] (23) 

Generalized Weibull Models (v"' = wy*) 

The generalized Weibull distribution is obtained 
from the generalized gamma by letting v* 2 ny*, 
where n is a positive integer. 

f(l) =Generalized Weibull ('Y•, b•, n) (24) 

For n = 1 it becomes the Weibull density, 

f(I) =Weibull ('Y•, b•) (25) 

This model was also derived by Mogridge (~). The 
model for n = 2 is 

f(l) =Modified Weibull ('Y*, b*) (26) 

Other Models 

Other values of v* result in other types of dis­
tributions. A special case of interest is the model 
for v* = 1/2, 

f(I) =Generalized square root exp('Y*, b•) (27) 

from which more specialized cases can be obtained 
for different values of y*. For example, for 
y* • 1 the model is 

f(l) = Square root exp(b*) (28) 

and for y* = 2, it becomes 

f(I) =Generalized square root exp(2, b*) (29) 

The last model was used by Ajo <.!> , Cassetti <.ill , 
and Papageorgiou (22). 

Shifted Generalized Gamma Models (vf!'; and v!';>O, 
v + F;>O) 

The shifted generalized gamma distribution is de­
fined by Equation 13 with r* 2 m and by restrict­
ing the exponents v,!'; to unequal positive 
values. A closed form solution for the whole family 
of these models does not exist. However, solutions 
may be obtained for certain specific values of v 
and i:;. The shifted generalized Gauss distribution 
is obtained when one exponent equals 2 and the other 
equals 1. 

For v = 2 and !'; = 1 the model is 

f(I) =Shifted generalized Gauss ('Y*, -6/2b, l/2b) (30) 

The following special cases are of interest: 

For 'Y" =I, f(J) =Shifted normal (-6/2b, l/2b) 

For 'Y* = 2, f(l) =Shifted Rayleigh (- o/2b, l/2b) 

For 'Y* = 3, f(l) =Shifted Maxwell (- o/2b, l/2b) 
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(31) 

(32) 

(33) 

For v = 1 and i:; = 2 the models are obtained by 
interchanging o and b in the above distributions. 

The shifted Rayleigh trip length distribution is 
equivalent to the shifted normal for population den­
sity at a point. It has numerous applications (~, 

lQ,21,32-34). 

Models for Bounded Urban Area Without Translation 
Parameters 

For a bounded urban area without translation param­
eters three general families of models are derived 
from Equation 13: 

1. Truncated generalized gamma density, 
2. Truncated shifted generalized gamma density, 

and 
3. Power density. 

Distributions 1 and 2 have identical kernels to the 
distributions of the generalized gamma and the 
shifted generalized gamma. In many previous appli­
cations these models were applied in a form that 
contains the kernel of a distribution multiplied by 
a constant that was not derived explicitly. The 
power density is obtained from Equation 13 for 
v = !'; = o, 

f(I) =Power density ('Y*, r*) (34) 

This distribution was proposed by Harwood (2_) and 
Smeed (10,11), and applied by Pearce and others (32) 
and Pearce (50). 

Models for Unbounded Urban Area with Translation 
Parameters 

Three general families of models are derived from 
Equation 12 with r* = m. 

Combined Generalized Gamma Models (v* = v = !';) 

It was not possible to obtain a closed-form solution 
for the general model except for the special cases 
with equal translation parameters, >. = c 0 = 
b0 = >.*. The model for v• = 1 is independent 
of b0 and in general can be expressed as a sum of 
gamma densities. 

For y* = 2 it reduces to gamma (2,b*). For 
y• = 3 it results in a convex combination of gamma 
(2,b*) and gamma (3,b*), 

f(I) = (b*A # /(2 + b*A#)] gamma (2, b*) + (2/(2 + b*A #)] gamma (3 , b*) (35) 

where >.# = c 0 = >.. 
This model divided by 2111 is equivalent to the 

model of population density at a point proposed by 
Reinhart ( 13) and further analyzed by Casetti ( 21) 
and Papageorgiou ( 22). Other values of y* result 
in different combinations of gamma densities. 

Solutions can also be obtained for special cases 
of >. f c0 • For example, letting c 0 = O re­
sults in a combination of a gamma 2 with an exponen­
tial density. 

The general model for v* = 2 
generalized Gauss density. For 
to the shifted Rayleigh density 
has the same form as Equation 32 

is the combined 
y* = 2 it reduces 
(>.*, l/2b*) which 

but with different 
interpretation of the parameters. The case y* = 3 
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results in a combination of a shifted Mawell with a 
shifted Rayleigh density. 

Combined Shifted Generalized Gamma Models 
(v + t and vt>O, v + t>O) 

In the combined shifted generalized gamma models 
case even the special case for v = 2, t 1 or 
v = 1, t = 2 could not be solved in closed form. 
However, for i\ = c0 = i\* and y* = 2 the 
shifted Rayleigh density is obtained and y* = 3 
results in a combination of a shifted Maxwell with a 
shifted Rayleigh. These models have the same func­
tional forms as those of the models for the combined 
generalized ganuna models with •J* = 2 with differ­
ent interpretations of the parameters. 

Combined Generalized Beta Prime Models 
(v = t = 0) 

The general form of the combined generalized beta 
prime models can be expressed as a combination of 
generalized beta prime densities. The model for 
c0 >i\>0 is a combination of two generalized beta 
primes [ (y,c - Y• i\, c 0 ) with (y - 1, 
c - y + 1, i\, c0 )], which for i\ = 0 reduces 
to 

f(l) =Generalized beta prime (y, c - -y, 0, c0 ) c > 'Y > 0 (36) 

and further simplifies to 

f(l) =Beta prime (-y, c - -y) (37) 

for Co = 1. Similarly, the model for i\>C 0 >0 
is another combination of two generalized beta 
primes [ (2 - c, c - y, c 0 , i\) with (1 - c, 
c - y + 1, c 0 , i\) l. For Co= 0 this model 
reduces to 

f(l) =Generalized beta prime (2 - c, c - -y, 0, i\) 'Y < c < 2 (38) 

and to 

f(l) =Beta prime (2 - c, c - -y) (39) 

for i\ = 1. For the third possibility of i\ = 
c0 = i\*>o, the model is 

f(l) =Generalized beta prime (2, c - -y, 0, i\#) c > 'Y (40) 

which for i\* = 1 becomes 

F(l) =Beta prime (2, c - y) (41) 

The beta prime densities in Equation 37 with 
y = 2, Equation 39 with c = O, and Equation 41 
correspond to the simple potential models proposed 
and used by Stewart and Warntz (2.!_) and Warntz (gl 
for rural population densities. The generalized 
beta prime models in Equation 36 with y = 2, Equa­
tion 38 with c = 0, and Equation 40 correspond to a 
modified simple potential model for population den­
sities investigated by Papageorgiou (~). Casetti 
(21) used the simple potential model with good re­
sults in peripheral areas of a number of cities. 

Models for Bounded Urban Area With Translation 
Parameters 

For models for bounded urban area with translation 
parameters Equation 12 is used to derive the trun­
cated counterparts of the distributions in the 
models for unbounded urban area with translation 
paramet.ers. 

Transportation Research Record 895 

In the combined generalized beta prime models for 
the following opportunity density function 

-r(l) = -r~ (r* -w-2 (42) 

and for c0 = 0, the model is 

f(l) =Generalized beta (2 - c, 'Y - I, 0, r*) (43) 

This model with c = 1 (or c = 0 for the population 
density at a point) corresponds to a model proposed 
by Mills C!.~l and discussed by McDonald and Bowman 
<11). 

ESTIMATION OF PARAMETERS 

The purpose of this section is to relate the param-
eters of the models with the transportation system 
performance and the decisionmaker characteristics. 
For illustrative purposes, take the case of travel 
by automobile (A). 

First consider performance of the transportation 
system. Continuous surfaces are used to describe 
the travel time and travel cost per unit distance at 
each point of the urban space. Consider the follow­
ing circularly symmetric travel time surface cen­
tered at the traveler's origin (see Figure 1 for the 
coordinate system) : 

where IA(l,.lrw,0wl is the 
[i:'in/uni t distance, at the point 

travel 
(1, •> l 

(44) 

time 
and 

cA, CoA• blA•boA•VA are parameters 
that can be estimated from observation and can be 
influenced by policies. 

The first term of Equation 44 decreases with in­
creasing 1, and the behavior of the second term de­
pends on the value of VA· For O<vA<l it 
also decreases with 1 but less rapidly than does the 
first term. For vA = 1 it is constant, and for 
vA>l it increases with 1. It is reasonable to 
assume that v12_1. Then, the effect of the 
first term is more important in locations close to 
the travelers' origin and the weight of the second 
term is greater for distant locations. This func­
tional form has enough flexibility to allow the rep­
resentation of a wide range of travel time fields 
observed in urban areas and used by Blumenfeld and 
Weiss (36) and Angel and Hyman (37). 

Consider the following travel-Cost surface: 

(45) 

where CA(l,.lrw,0wl is travel cost [¢/unit 
distance (l,.)] and AVMMCA is the average mone­
tary cost of travel by automobile (¢/min) . 

Equation 45 implies that the travel cost per unit 
distance increases as the travel speed decreases. 
The average travel cost per minute (AVMMCA) can be 
approximated from an average travel cost per mile 
(AVMCA) as follows: 

(46) 

where VA is average travel speed (miles/h) and 
AVMCA is average monetary cost of travel by auto­
mobile (¢/mile) • 

The average cost per mile can be related to gaso­
line price, fuel efficiency, and other costs such as 
maintenance costs as follows: 

AVMCA = (GPRICE/MPG) +MC (47) 
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where 

GPRICE 
MPG 

MC 

gasoline price (¢/gal) , 
miles per gallon of gasoline, and 
maintenance costs (¢/mile). 

A different travel cost surface can be derived 
from the following relation of gasoline consumption 
to specific automobile characteristics: 

where 

(48) 

gasoline consumption 
[gal/ unit distance at (1,$)], 
gasoline consumed to overcome 
the rolling resistance (gal/unit 
distance) , and 
gasoline consumed to overcome 
mechanical losses (gal/h) • 

The above equation has been investigated by 
several researchers in numerous experiments. This 
equation was found to adequately explain fuel con­
sumption for different drivers who are driv i ng 
normally in urban traffic and for speed <"' 70 km/ h 
[see for example, Evans and others ( 53) , Evans and 
Herman (54,55), Chang and others (56),~nd Chang and 
Herman (57)]:" The use of this equation is associated 
with a simplified fuel-consumption model theoreti­
cally derived by Amann and others !i!!l. The param­
eters K1A and K2A can be inferred from the 
weight of the car and the idle fuel flow rate as 
follows: 

J<iA = k1AWA 
K1A = k1AI A 

where 

weight of the car (lb), 
idle fuel flow rate (gal/ h) , and 
constants. 

(49a) 
(49b) 

Evans and Herman (~) provide values of kJA• 
k2A, WA, a nd IA f or various cars. Based on 
Equation 48 the trave l cost surface is derived as 
follows: 

(50) 

This cost surface allows a more elaborate analysis 
of automobile-related policies (for example, the ef­
fect of smaller-size cars on gasoline consumption) . 

The generalized cost s_urface [BtA ( 1, $I rw, 
Swl], which expresses the disut:il ity per unit 
distance at the point (l,e) perceived by traveler 
t, is derived from the above travel time and travel 
cost surfaces as follows. Assume that the disutility 
of travel is a linear combination of travel times 
and travel costs. Then, BtA!l,$1rw,8wl 
can be wr i tten as, 

S.A(I , <;i lrw, Ow)= MUTT, I A(I, <;i lrw, Ow ) 

+ (MUTT, /VT,)CA (I , l/> l rw, Ow) (51 ) 

where MUTTt is the marginal utility of travel time 
for decisionmaker t, which can be inferred from 
existing estimated discrete logit models, and VTt 
is the value of time for decisionmaker t (¢/min) . 

The value of time (VTtl is often estimated as a 
percentage of the wage rate as follows: 

VTt = (PWRVT, ){INC,)/1200 (52) 
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where 

annual income for decisionmaker t ($) , 
percentage of wage rate for the value 
of time, and 

1200 factor that converts annual income to 
wage rate, assuming 250 working days/ 
year, (¢/min) • 

Substitution of the above travel time and travel 
cost surfaces in equation 51 yields the form of 
Equation 1 as follows: 

(53) 

where 

c CtA• 
bl bltlV 

v "' VA' 
Co CoA• and 
bo boA• 

For the cost surface assumption of Equation 45 
the parameters are evaluated as follows: 

c1A =MUTT, cf.. ( { [(GPRICE/MPG) + MC] 20VA /(PWRVT,) 

x (INCt)} +I) 

buA =MUTT, blA (I [(GPRICE/MPG) +MC] 20VA /(PWRVT1) 

x(INC,)} +I) 

(54a) 

(54b) 

For the cost assumption of Equation 50 and for 
the case of VA = 1 the following expressions for 
the parameters are obtained: 

c1A = MUTT, cf.. { l + [20k 2 A IA GPRJCE/(PWRVT1)(1NC1)]} 

b1A = MUTT, {·blA + [20k2A IA bl A GPRJCE/(PWRVT,)(!NC1)] 

+ [1 200/(PWRVT1)(INC1)J (MC+ k1 wWAG PRICE)} 

Note that in this case btA = bltA• 

(SSa) 

(SSb) 

Thus, all the parameters of the generalized cost 
surf ace of Equation 1 have been related to the 
transportation system performance and the decision­
maker characteristics. The B function derived 
from this surface is given in Equation 2. The aver­
age utility function (V) given in Equation 6 equals 
the sum of this B function with the trip origin, 
mode, and traveler-specific constants. However, the 
additional parameter (a) of Equation 6 (denoted here 
as atAwl does not enter the expressions for the 
automobile trip length distributions and therefore 
it will not be evaluated here in terms of other 
variables. 

The above relations give a behavioral interpreta­
tion and a method of calculation for the parameters 
of all the derived trip length distributions and 
permits the use of these models for simplified pol­
icy analysis. 

Below, two special cases of the above results are 
presented in more detail. For these cases a slight­
ly different interpretation of the parameters is 
also possible, such as the case VA = 1. This 
case covers a broad range of the derived trip length 
models. The travel time surface of Equation 44 for 
VA = 1 is 

(56) 

This surface has been used by Blumenfeld and Weiss 
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Figure 3. Simplified velocity and travel time surface. 
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' 

in m:lu 
mile 

3 

Equation (56) c~ = 6· c0A = 3; blA = 1; 

10 Equation (59) c~ = 58.5; c
0

A= 19.5; r* = 30 

0 

(1§_) and its shape is shown in Figure 3. Note that 
the following relation exists between its parameters: 

where II~ is the 
unit distance (i.e., 
biA and tt~ is 
distance at (rw,ewJl. 

(57) 

free-flow travel time [min/ 
l = m)], which is equal to 

the travel time [min/unit 

Apply the previously 
derive the average utility 

described assumptions 
function as follows: 

to 

(58) 

To get the ~aramet.er values of Equation 58, first 
estimnte CAr CQA• and b~A from travel 
time field observations. Assume the travel cost 
surface of Equation 45 and obtain estimates of 
GPRICE, MPG, MC, VA, PWRVTtr INCtr and 
MUTTt. Substitute these values in Equation 54 to 
compute ctA ' bltA. For this case b1:.11. = bltll · 

For the case of a bounded urban area another 
interpretation of Equation 58 is possible. Assume 
that the travel speed is linearly increasing from 
the traveler's origin to the city boundary. The re­
sulting travel time surface (see Figure 3) is as 
follows: 

(59) 

where 

C0 A = r* V~f(VJ: - V,Z), (60a) 

15 20 25 30 

t in miles 

cf...= 60r*/(VJ:- V,Z), 

VA travel speed (mph at traveler's origin), 
v;,. travel speed (mph at r*), and 

(60b) 

r* the radius of city boundary from traveler's 
origin (miles). 

Assume that the travel cost surface is given by 
Equation SO. Then substitute Equation 60 in Equa­
tion 55 for bj_11 = 0 to obtain the values of 
CtA and btA· 

For the case of c~ 0 it is also required 
that b0 A = 0. The travel time surface is then 

(61) 

Assume that the travel cost surface of Equation 45 
is applicable. Then, these assumptions result in 
the following utility function: 

(62b) 

where btA is given by Equation 54b. Note that 
this utility function covers all the trip length 
distributions of categories A and B (i.e., without 
translation parameters) by substituting y* = y. 

Now consider the following alternative behavioral 
assumption that leads to the same functional form of 
the utility function. The decisionmaker perceives 
the disutility of travel as a generalized cost to 
the Vt power. Then, the following average util­
ity is cJ.::x:lv~u 
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(62a) 

where 

(63a) 

and 

(63b) 

This interpretation allows the use of models that 
have an exponent "tA + 1 under the assumption of 
a constant travel time surface (i.,e., "A= 1). 
For this case, the more elaborate travel cost sur­
face of Equation 50 may also be used. 

REFERENCES 

1. c. Clark. Urban Population Densities. Journal 
of the Royal Statistical Society, Series All4, 
1951, pp. 490-496. 

2. H. Bleicher. Statische Berschreibung Der Stadt 
Frankfurt Am Main Und Ihrer Bevolkerung. Frank­
furt Am Main, Germany, 1892. 

3. R. Ajo. On the structure of Population Density 
in London's Field. Acta Geographica, Vol. 18, 
1965, pp. 1-17. 

4. Y. Aynvarg. Zones of Influence of Middle Sized 
Ci ties, Their Boundaries and Passenger Flows. 
Soviet Geography 10, 1969, pp. 549-558. 

5. G.C. Sherratt. A Model for General Urban 
Growth. In Mathematical Sciences: Models and 
Techniques (O.W. Churchman and M. Verhulst, 
eds.), Proc., 6th International Meeting of the 
Institute of Management Science, Pergamon 
Press, New York, 1960, pp. 147-159. 

6. B.E. Newling. The Spatial Variation of Urban 
Population Densities. Geographical Review, 
Vol. 59, 1969, pp. 242-252. 

7. D.E. Blumenfeld and G.H. Weiss. Some Radical 
and Directional Dependent Models for Densities 
of Homes and Workplaces. Transportation Re­
search, Vol. 8, 1974, pp. 149-155. 

8. D.E. Blumenfeld and others. Spatial Distribu­
tions of Homes for Journeys to Work by Differ­
ent Modes of Transportation. Transportation Re­
search, Vol. 9, 1975, pp. 19-23. 

9. E.M. Horwood. A Three Dimensional Calculus 
Model for Urban Settlement. Highway Research 
Board, Bull. 347, 1962, pp. 143-146. 

10. R.J. Smeed. The Road Space Required for Traf­
fic in Towns. Town Planning Review, Vol. 33, 
1963, pp. 270-292. 

11. R.J. Smeed. Road Development in Urban Areas, 
Journal of the Institute of Highway Engineers, 
Vol. 10, 1963, pp. 5-26. 

12. E.S. Mills. Urban Economics. Scott, Foresman, 
Glenview, IL, 1972. 

13. F.R. Reinhart. A Test of Hypothesis Specifi­
cally Related to the Cross Sectional Distribu­
tion of Population Densities of Cities. Univ. 
of Minnesota, Minneapolis, unpublished MSc the­
sis, 1959. 

14. J.C. Wilkins. Sherratt's Model and Consumer 
Travel. Transportation Science, Vol. 3, No. 2, 
1969, pp. 93-98. 

15. R.J. Vaughan. Decentralization: A Mathemati­
cal Explanation. .!!!. Traffic Flow and Transpor­
tation (G. Newell, ed.). American Elsevier, 
New York, 1971, pp. 405-412. 

16. R.J. Vaughan. Traffic Activity Described in 
Terms of Some Characteristics of an Urbanized 

45 

Area. Transportation Research, Vol. 8, 1974, 
pp. 553-565. 

17. R.J. Vaughan. Some Traffic Characteristics of 
Sydney. Australian Road Research, Vol. 7, No. 
4, 1977. 

18. D.E. Blumenfeld. Modeling the Joint Distribu­
tions of Home and Workplace Location in a 
City. Transportation Science, Vol. 2, No. 4, 
1977. 

19. E.S. Mills. Urban Density Functions. Urban 
Studies, Vol. 7, 1969, pp. 5-20. 

20. J .c. Amson. The Dependence of Population Dis­
tribution on Location Costs. Environment and 
Planning, Vol. 4, 1972, pp. 163-181. 

21 .' E. Casetti. Alternate Urban Population Density 
Models: An Analytical Comparison of Their 
Validity Range. In Studies in Regional 
Science (A.J. Scott, ed), Pion Ltd., London, 
1969, pp. 105-116. 

22. G.T. Papageorgiou. A Theoretical Evaluation of 
the Existing Population Density Gradient Func­
tions. Economic Geography, Vol. 47, 1971, pp. 
21-26. 

23. J. Yellin. A Model of Population Distribution, 
Traffic Congestion and Neighborhood Crowding in 
a Circular City. Journal of Urban Economics, 
Vol. 5, 1978, pp. 305-328. 

24. A.G. Wilson. Entropy in Urban and Regional 
Modeling. Pion, Ltd., London, 1970. 

25. J.S. Pipkin and D.P. Ballou. A Model of Cen­
tral City and Suburban Trip Termination Pat­
terns. Journal of Regional Science, Vol. 19, 
No. 2, 1979, pp. 179-190. 

26. J.L. Batty. urban Density and Entropy Func­
tions. Journal of Cybernetics, Vol. 4, No. 2, 
1974, pp. 41-55. 

27. M. Ben-Akiva and T. Watanatada. Applications 
of a Continuous Spatial Choice Logit Model. In 
Structural Analysis of Discrete Data: With 
Econometric Applications (C.F. Manski and D. 
McFadden, eds.), M.I.T. Press, Cambridge, MA, 
1981. 

28. P.B. Goodwin. Travel Choice and Time Budgets. 
In Determinants of Travel Choices (D.A. Hensher 
and Q.M. Dalvis, eds.), Saxon House, Forn­
borough, England, 1978. 

29. M.J .H. Mogridge. Changing Social Patterns in 
the Journey to Work. · Planning and Transport 
Research and Computation International Company, 
Ltd., Summer Annual Meeting, Univ. of Warwick, 
Coventry, Warwickshire, England, 1978. 

30. M.J.H. Mogridge. Multimodal Trip Length Dis­
tributions. Planning and Transport Research 
and Computation International Company, Ltd., 
Summer Annual Meeting, Univ. of Warwick, Coven­
try, Warwickshire, England, 1978. 

31. B. Genest. Population Distribution Functions 
for Urban Areas. Department of Civil Engineer­
ing, Massachusetts Institute of Technology, 
Cambridge, Res. Rept. R-70-53, 1970. 

32. C.E.M. Pearce and others. Urban Density 
Models. In Traffic Flow and Transportation 
(G.E. Newell, ed.), American Elsevier, New 
York, 1972, pp. 439-453. 

33. J.F. McDonald and H.W. Bowman. Some Tests of 
Alternative Urban Population Density Func­
tions. Journal of Urban Economics, Vol. 3, 
1976, pp. 242-252. 

34. N.J. Clickman and Y. Oguri. Modelling the Ur­
ban Land Market: The Case of Japan. Journal 
of Urban Economics, Vol. 5, 1978, pp. 505-525. 

35. A.J. Horowitz. Developable Area and Trip Dis­
tribution in Residential Location: A Detroit 
Case Study. Journal of Regional Science, Vol. 
18, No. 3, 1978. 

36. D.E. Blumenfeld and G.H. Weiss. Routing in a 



46 

Circular City with Two Ring Roads. Transporta­
tion Research, Vol. 4, 1970, pp. 235-242. 

37. s. Angel and G.M. Hyman. Urban Fields, Pion, 
Ltd., London, 1976. 

38. N.L. Johnson and s. Kotz. Distribution in Sta­
tistics. Wiley, New York, 1970. 

39. N. Litinas and M. Ben-Akiva. Behavioral Model­
ling of Continuous Spatial Distributions of 
Trips, Residential Locations and Workplaces. 
Center for Transportation Studies, Massachu­
setts Institute of Technology, Cambridge, work­
ing paper CTS-RAMP-79-3, 1979. 

40. M.J.H. Mogridge. Some Thoughts on the Econom­
ics of Intra-Urban Spatial Location of Homes, 
Worker Residencies and Workplaces. Urban Eco­
nomics Conference, Univ. of Keele, Keele, 
Staffs, England, Paper No. 8, 1973. 

41. M.J.H. Mogridge. Land Use and Transport Inter­
action: An Analysis of the 1966 Journey to 
Work Data by Mode in London and Its Applica­
tions. Planning and Research Computation 
International Company, Ltd. , Univ. of Warwick, 
Coventry, Warwickshire, England, Paper 8, 1974. 

42. P.B. Giannopolos. An Analysis of Trip Length 
and Land Use Patterns in the Greater Athens 
Area. Transportation, Vol. 6, 1977, pp. 379-
392. 

43. c. Clark. Urban Population Densities. Bull., 
Institute de Statistique, 36, Pt. 4, 1958, pp. 
60-68. 

44. c. Clark. Transport-Maker and Breaker of 
Cities. Town Planning Review, Vol. 20, 1959. 

45. c. Clark. Population Growth and Land Use. 
McMillan, London, 1968. 

46. R.F. Muth. Cities and Housing. University 
Press, Chicago, IL, 1969. 

47. J.L. Barr. Transportation Costs, Rent and 
Intraurban Location. Washington Univ., st. 
Louis, Working Paper, 1970. 

48. E.S. Mills. Studies in the Structure of Urban 
Economy. 
1972. 

Johns Hopkins Press, Baltimore, MD, 

Transportation Research Record 895 

49. J.C. Tanner. Factors Affecting the Amount of 
Travel. Department of Scientific and Indus­
trial Research, Road Research Laboratory, 
London, Tech. Paper 51, 1961. 

50. C.E.M. Pearce. Locating Concentric Ring Roads 
in a City. Transportation Science, Vol. 8, 
1974. 

51. J.Q. Stewart and W. Warntz. Physics of PopuJA-
tion Distribution. Journal of Regional 
Science, Vol. 1, 1958, pp. 93-123. 

52. W. Warntz. Macroscopic Analysis of Some Pat­
terns of the Geographical Distribution of Popu­
lation in the United States, 1790-1950. In 
Qualitative Geography Part 1 (W.L. Garrison and 
D.F. Marble, eds.), Northwestern Univ., Evans­
ton, IL, Studies in Geography, No. 13, 1967, 
pp. 191-218. 

53. L." Evans and others. Multivariate Analysis of 
Traffic Factors Related to Fuel Consumption in 
Urban Driving. Transportation Science, Vol. 
10, No. 2, 1976. 

54. L. Evans and R. Herman. A Simplified Approach 
to Calculations of Fuel Consumption in Urban 
Traffic Systems. Traffic Engineering and Con­
trol, Vol. 17, Nos. 8 and 9, 1976. 

55. L. Evans and R. Herman. Automobile Fuel Econ­
omy on Fixed Urban Driving Schedules. Trans­
poration Science, Vol. 12, No. 2, 1978. 

56. M.-F. Chang and others. Gasoline Consumption 
in Urban Traffic, TRB, Transportation Research 
Record 599, 1976, pp. 25-30. 

57. M.-F. Chang and R. Herman. An Attempt to Char­
acterize Traffic in Metropolitan Areas. Trans­
portation Science, Vol. 12, No. 1, 1978. 

58. C.A. Amann and others. Fuel Consumption in the 
Passenger Car System. General Motors Corpora­
tion, warren, MI, Res. Publication GMR-1632, 
1975. 

l'Ublication of this paper sponsored by Committee on Passenger Travel Demand 
Forecasting. 

Optimal Bus Scheduling on a Single Route 

YOSEF SHEFFI AND MORIHISA SUGIYAMA 

This paper develops a method for scheduling bus runs on a single route so as to 
minimize the total waiting time for patrons. The demand for bus travel is as­
sumed to be time-dependent with a given origin-destination pattern. The prob­
lem is formulated as a mathematical program subject to bus capacity and pos­
sible other (e.g., service standards) constraints. A dynamic programming pro­
cedure is suggested for the solution of this program. Finally, some issues 
associated with optimization of the schedule under stochastic demand are ex­
plored as well. 

The conventional wisdom in setting up a schedule for 
a bus route typically involves supplying enough 
capacity at the maximum load point, subject to some 
service standards. This approach is useful when the 
period for which the schedule (timetable) is set is 
one in which the arrival rate of patrons is con­
stant, and when this period is long in comparison 
with the bus roundtrip time on the route. When 
theee conditions are not m~t (for example: the 
maximum load point may not be stationary or the peak 
period may be shorter than a bus trip), the schedule 

may not be optimal in the sense that unnecessary 
crowding may exist on some buses and slack capacity 
may exist on others. Better scheduling may bring 
about a higher level of service and increased pro­
ductivity. 

The problem referred to in this paper is that of 
preparing a desirable schedule for a given route, 
not of scheduling the actual buses to the runs. In 
other words, bus availability and interlining con­
siderations are not taken into account. The inputs 
to the schedule preparation problem discussed here 
are the route geometry (including stops and speeds 
between stops) , the total number of bus runs to be 
operated, and the desired trip rates (i.e., the 
demand pattern). The output is the route's schedule. 

The objective of the schedule preparation is to 
find the ttmetable that would give passengers the 
maximum level of service for a given level of re­
sources. The level of service is expressed in terms 
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of total waiting time that should be minimized, 
given a fixed number of bus runs. 

The practice in the industry, which is also 
reflected in the literature, is to assume that th e 
demand rate is constant throughout a given design 
period (e.g., the morning peak). The problem is 
then only to find the optimal frequency with which 
to operate the route. Once this frequency is deter­
mined, runs are evenly spaced to minimize waiting 
time. In reality, however, demand rates are not 
constant but vary over time even within design 
periods and, in fact, many bus schedules are not 
evenly spaced for any period. The focus of this 
paper is on the optimal schedule given a time-depen­
dent demand pattern. The first four sections of 
this paper consider the demand rates to be determin­
istic (even though the rates change randomly from 
day to day). This is due to the planning and opti­
mization perspective of the approach, which focuses 
on the mean service rates and run times rather than 
the variability in these measures. The last section 
attempts to consider some stochastic effects. 

A schedule optimization for the simple case of 
one destination and where the stop dwell time is 
independent of the number of boardings is analyzed 
by Newell (_!). Newell's approach is used as a 
starting point to the cases analyzed in this paper. 
Similar cases, with the inclusion of the bus round­
trip constraint, were analyzed by Salzborn (2) and 
Hurdle (3,4). -

The effect of boarding time on the scheduling 
problem was briefly discussed by Friedman (5) and 
extensively by the many researchers who looked at 
the bus bunching phenomenon [e.g., Osuna and Newell 
(_§_), Barnett and Kleitman <ll, Newell (~), Chapman 
and Michel (.2_), and Jordan and Turnquist (10)). 

The final section introduces some stochastic 
considerations and concludes that such modeling 
should actually be attempted in the context of real 
time control rather than in the context of schedul­
ing. 

This paper does not include numerical examples of 
the methods shown for reasons of brevity. The 
interested reader can find complete numerical exam­
ples with detailed solutions to all the problems 
discussed here in Sugiyama (11). 

SIMPLE SCHEDULING PROBLEM 

This section analyzes a bus route with multiple 
boardings and one destination point (the final 
stop). The stops are numbered consecutively i 
0,1,2 ••• ,m, and passengers are assumed to board at 
stops 1 through m-1 and are all destined for m (the 
starting point, O, represents a garage or layover 
point, which does not have to be a part of the 
route). In this problem it is further assumed that 
the bus speed is constant where 6ti,i = 1,2 •. • ,m 
represents the bus travel times between stop (i-1) 
and stop i, and the dwell times are assumed indepen­
dent of the number of boardings. 

The input to this problem includes the demand at 
each stop expressed in terms of the cumulative 
arrivals [Fi(t)J during the design period; the 
number of bus runs available during the design 
period (T); and the interstop travel times 
(6t1). Following Newell (1), we define the 
shifted cumulative demand at point O as 

(1 ) 

Assume n buses are dispatched from 0 at times 
tj,j = 1,2, ••• ,n, as shown in Figure 1. Obviously 
the total waiting time (w) is the shaded area be-
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tween F (t ) and the s tep func tion c reated by F(tj) 
f or t j .;; t ~ tj+l· 

I n o ther words, t he total wait time (w) i s given 
by 

n-1 tj+! 
w = .~ ft · [F(t) - F(tJ· )] dt 

J ~O J 

where F(t0 ) = 0 and F (tnl 
hoardings along the route 
design period) . 

the 
T, 

(2) 

total number of 
the end of the 

Following Newell we observe that in order to 
minimize w, every passenger has to be picked up by 
the first bus that comes along after his or her 
arrival at the stop. This, in fact, can be thought 
of as a necessary condition for a minimum. This 
observation simplifies any solution procedures 
significantly because it reduces the feasible space, 
as shown below. 

Newell presents the analytical solution to the 
minimization of w with no capacity constraints. In 
our case we are interested in minimizing w subject 
to the following constraints: 

F(tJ)- F(tj-t) .;; C for j =I , 2, .. ., n (3a) 

F(t0 ) = 0 (3b) 

and 

(3 c) 

where C is the capaci ty of a bus . The f i xed capac­
ity (C) can be readily replaced with Cj where each 
bus has a diffe rent capacity without affec ting any 
of the solution procedures. 

This problem can be solved by a s imple dynamic 
programming (DP) procedure that uses the abovemen­
tioned necessary condition, linking the load on each 
bus with its dispatch time. 

The DP procedure can be formulated in several 
ways for this program . For example, since the dis­
patch time of the last bus is fixed at tn = T, the 
procedure can work backwards in time by using the 
recursive relation: 

t ·+1 
rj(tj) = M[N { rj+! (tj+1) +ft/ [F(t)- F(tj)] dt} for j = n-1, n-2, . .. I (4) 

J 

where rj(tj) is 
passengers carried 
these buses have 

the total wait time for 
by the last (n-j) buses 

been dispatched optimally. 

Figure 1. Shifted cumulative arrivals. 
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stages of the system thus correspond to the bus 
dispatch decisions and the states to the dispatch 
times. The state dynamics are obvious in this formu­
lation as the solution to each stage is the state 
variable itself. A forward recursion similar to 
Equation 4 can be formulated also since F (to) 0. 
In any event the recursive relations are subject to 
the constraint set in Equation 3. 

In order to execute the DP procedure, the time 
line can be divided into discrete parts, say whole 
minutes. Such a procedure would ignore the integer 
nature of the number of pas·sengers who use each bus 
[this discrete nature of the problem is masked by 
the use of the continuous approximation F (t) to the 
arrival pattern]. In the case where the number of 
patrons is small in comparison with the length of 
the design period and this approximation is inaccu­
rate, the DP procedure can be formulated in terms of 
loads rather than dispatch times, making the load on 
the jth bus the state variable. (Alternatively, the 
time state space, in the original formulation, can 
be searched in a manner that would ensure the in­
teger nature of the load.) Note, however, that the 
load and F(t) correspond to the average conditions 
and therefore the number of passengers who use a 
particular bus does not have to be an integer on the 
average. 

A simpler solution to the optimal dispatch prob­
lem can be obtained if the objective function is to 
equalize the load factors among buses rather than to 
minimize Hie waiting time. In such a case the opti­
mal load on each bus is s* = (l/n) F(T) for all i, 
assuming that s* .;; C. The schedule in this case 
can be found graphically or by the simple recursion: 

(5) 

This procedure will not, however, yield the minimum 
total wait. The minimum wait time schedule, in 
general, will be such that buses dispatched at a 
period where the slope of F(t) is high should pick 
up more passengers than buses dispatched when F(t) 
is relatively flat. Under the even load policy all 
buses will be equally loaded and therefore the 
waiting time will not, in general, be minimized. 

SCHEDULING WITH MULTIPLE ORIGINS AND DESTINATIONS 

The problem discussed in this section is identical 
to the optimal scheduling problem, but we assume 
that patrons can board and alight at any stop along 
the route. Thus, let Pij represent the frac t ion 
of patrons who board at stati on i who alight at 
station j. Pij is assumed to be constant over 
time (during the design period), and 

for i = 1, 2, 3, ... m - 1 (6) 

The problem of finding the schedule that mini­
mizes the total travel time is more complicated now 
because the capacity constraint cannot be formulated 
in a straightforward manner as in Equation 3a. In 
order to formulate this constraint let Gi (t) 
denote the cumulative alightings at stop i by time 
t, in other words: 

(7a) 

(7b) 

G3(t) = F1 (t - l'lt2 - 6t3)P13 + F2(t - l'lt3)P23 (7c) 

~i(t) = i~: FJ t - f; l'ltkJ' ·P1; i = 2, 3, .. . , m 
l=J \ k=J+l 

(7d) 
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where 6ti is the bus travel time between stop 
i i-li and i and Fi (t) is tbe cumulative number of 
arrivals at the ith stop. In many cases Gi (t) can 
be obtained directly from the measurements (it is 
easier to measure than Pij) and Pij need not be 
used [Gi (t) will be used directly as input to the 
analysis]. 

Let Ni(t) represent the cumulative number of 
passengers carried out of the ith station (imagine 
that we look at the system only at bus departure 
times) • The functions Ni ( t) are obtained as 
follows: 

N1(t) 
N2 (t) 
N3(t) 

F1(t) 
N1(t - 6t2) + F2(t) - G2(t) 
N2(t - 6t3) + F3(t) - G3(t) 

Therefore, 

N1(t) = F1(t) 
N2(t) = F1(t - 6t2) + F2(t) - G2(t) 

i 
where t=~+l 6t~ : O for k+l > 1 and Fm(t) = G1 (t) =O. 

Since the objective function in the problem is 
expressed in terms of shifted demands, let us shift 
N1(t) to the or1g1n as well. Let Ni(t) 
denote the shifted cumulative number of passengers 
on link (i, i+l). It can be calculated as (see 
Equation 1) 

'W(t) = N· (t + ~ l'ltk) 
J I k=J (8) 

and, substituting the last expression for Ni(t), 
we get 

N{(t)= ~ [Fk (t+ ~ 6t1 )-~(t+ ~ l'lt1)] k-1 J=l J=l 

for i = 1, 2, 3, ... m - I (9) 

The minimization problem now is 

(10) 

subject to 

N{(tj)-N{(tj_i) .;; C for i= 1, 2, ... m- J;j -1, 2, ... ,n (lla) 

F(to) = 0 (I lb) 

(llc) 

The constraints Equation 11 parallel Equation 3 with 
the capacity constraint (Equation lla) defined by 
Equation 9. 

Up to this point the discussion assumed that the 
origin-destination (O-D) pattern in terms of Pij 
is constant over time. The DP formulation above can 
be easily extended to handle the case where Pij = 
Pij(t) evP.n though it is difficult to estimate 
P ii ( t) • A reasonable approldmation may be differ­
en P ij 's for different periods, assuming a con­
stant pattern within each period. 

The minimum number of bus runs needed to serve 
the route (nminl, can be found by looking at the 
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number of buses needed to carry passengers at the 
maximum load point; i.e., 

nmin =INT )m;ax [Ni(t)/C] I+ I {l2) 

where INT [ •) is the integer value of the argument 
and T is the end of the design period. 

The multiple 0-D scheduling problem can also be 
solved by using a DP procedure. In a fashion simi­
lar to the last section the recursive relations that 
define the DP procedure are given by Equation 4 and 
the only difference in the execution is that the 
constraints (Equation lla) have to be checked at 
every stage to ensure feasibility. 

CASE WITH STOP DWELL TIMES DEPENDENT ON BOARDING 
VOLUMES 

This section discusses the optimal. scheduling pro­
gram under the assumption that all patrons are 
destined to one point only (stop m in our scheme) 
but the dependence of the dwell time on the number 
of boarding passengers is taken into account. Thus 
it is assumed that 

Dwell time = e · (No. of boardings) {13) 

where a is a constant. 
The problem in introducing this relation is that 

the travel time between departures from consecutive 
stops is not constant any more. Thus, one cannot 
construct the shifted demand function F(t), and each 
Fi(t) has to be dealt with individually. 

Assume that buses are dispatched at times tj, j 
= 1,2, ••• n from o. The jth bus arrives at stop lat 
t· + 6t1 to find b1,j passengers waiting, 
wfiere 

and it i~ delayed for e•bl,j min. 
this bus picks up b2,j passengers, where 

At stop 

(14) 

2 

Let ti j denote the time that the jth bus departs 
from the ith station. In the context of our problem 
this time is given by 

i i-1 
t; . = t· + ~ L:itk + e ~ bk,j 

,J J k=l k=l 
(I 6a) 

This time can be computed recursively for the jth 
bus, for stops i=l,2, ..• m by using 

t;+I,j = ti,j + l:it;+J + E>bi,j (16b) 

The number of passengers who board the jth bus at 
the ith station (bi,jl is given by the difference 
between the cumulative boardings between the jth and 
(j-l)th bus at the ith station. In other words, 

(17) 

and the capacity constraints can be now formulated as 

r b~j .;; c for j = 1, 2, ... 'n (18) 

Given the capacity constraint, the objective 
functions can be formulated by using the necessary 
optimality condition mentioned earlier. Since each 
bus should pick up all the waiting passengers, the 
total waiting time for the patrons picked up by bus 
j at stop i (wi,jl is given by 

t· ·+1 
Wi,j = ft~jj [F;(t) - F; (t;,j)] dt {19) 
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In order to facilitate the presentation of the 
objective function, let us assume (without loss of 
generality) that the design perioa is defined such 
that there are no arrivals at its beginning. Accord­
ingly, let ti,o define the time where Fi(ti 0 ) 

= O. By using these notations, the total waitfng 
time 

n-1 
for all buses at the ith stop (w. = E w ) and the 

1 j=O i,j 
total waiting time (W = mElw ). In other words, 

i=l i 

Again, the problem of min1m1z1ng Expression 20 
subject to the capacity constraint (Equation 18) can 
be solved by using dynamic programming. The stages 
in the DP procedure would correspond to the dis­
patched buses and the states to the dispatch times. 
The basic (forward) DP recursion is given by 

m-1 ti,j 
F; (tj) = MJN (ri-1 (tj_i)] + . ~ ft; ._ 1 [F(t) - F(t; j-i)l dt 

tj 1=1 ,J ' 
{21) 

A detailed numerical example of this procedure is 
given by Sugiyama (11), which outlines all the 
computational details. 

Note that the approximate procedure can be very 
beneficial for this problem. The approximation con­
s is ts of scheduling the buses based on the require­
ment that each bus should carry the same load. If 
this guideline is adopted for the problem consid­
ered here, one can follow the procedure outlined 
below. 

Assume that each bus carries s* passengers 

where s = mi
1

F (T)/n. The total boarding time delay 
i=l i 

is thus equal to as* (assuming that each bus ac­
tually stops at each stop). If we let Hi, i= 
1,2, ... m denote that distance between the (i-l)th 
and the ith stop, the average speed of all the buses 
(b) is given by 

v= .E bJ.if(es* + .~ l:it;) 
1=1 1-l 

(22) 

The constant speed enables one now to shift Fi (t) 
to the origin to obtain an approximate shifted 
cumulative demand function F(t); i.e., 

F(t) = .'£ F; (1 + t bJ.kfv) 
t=J k=l 

{23) 

The solution can now be obtained* by using. the 
recursion t · +l = F- 1 [F(tj) + s l for J 
1,2, .•• n-l wilere t 0 is the time for which F(t) = O. 

Note that by measuring interstop bus travel times 
as the times between departures (as done in many 
studies) the ideas in this method may be in use 
implicitly. 

SCHEDULING WITH MULTIPLE 0-D AND BOARDING-DEPENDENT 
DWELL TIMES 

This section analyzes the most general case dis­
cussed thus far--that of the optimal scheduling for 
a bus route with a multiple origin-destination 
demand pattern, assuming that the dwell times are a 
function of the number of boarding passengers. 
Again, we consider a bus route where buses are 
dispatched from 0 to a succession of stops i 
1, 2, .•. m. As before, let 6t i denote the bus 
travel time between the (i-1) th and the ith stop, 
let Fi (t) denote the cumulative arrivals at stop 
i, and let ti j denote the time that the j th bus 
leaves the ith stop. 
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The dwell time may now be a function of the 
number of boarding as well as alighting passengers. 
Let ai j denote t he numbe r of pas s engers that 
alight 'tne jth bus at t he ith stop a nd let di · 
denote the dwell time o f t he jth bus at the itfi 
stop. A common formula for estimating this dwell 
time is 

(24) 

In t h is expres sion 0 1 < 0 2 i f p eople pay 
when boarding a nd 0 1 > 0 2 if they pay when 
aligh ting . E is a c onstant that represen ts h e time 
it takes for the bus to pull into and out of a stop 
(in this paper we assume that each bus stops at all 
stops and thus E is included in the definition of 
6t;. This assumption holds for the problem dis­
cussed in this paper as we focus on average boarding 
volumes. If the average is zero for some bus stops, 
they should, of course, be abolished.) The number of 
alighting patrons can be computed from the 
cumulative alighting [Gi(t)) as 

(25a) 

in parallel with Equation 17, which gives the number 
of boarding passengers. The cumulative alightings 
[Gi (t) J can be input directly to the analysis or 
computed from the origin-destination matrix 
(Pi,jl: i.e., 

(25b) 

In order to formulate the capacity constraints 
for the problem under study, note that 

l;,i = ti-1 ,j + llti + di,j (26) 

The number of passengers on the jth bus a s it de­
parts the ith station (Ni,j) is given by 

(27) 

and the capacity constraint is given by 

(28) 
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the previous section. A numerical example under the 
assumption discussed is given by Sugiyama (11), who 
shows all the details of the DP procedure. 

This deterministic optimization program can be 
extended to include various constraints on the 
minimum headway and on the time that certain buses 
have to visit certain stops. The problem can also 
be formulated in terms of buses and bus ·cycles 
rather than bus runs. This means that considera­
tions of layover times and equipment availability 
can be factored into the programming of the solution. 

It will be more difficult computationally to take 
into account the possibility of express runs, zone 
buses, and shortlining strategies in the optimiza­
tion, even though the formulation may not pose a 
particular problem. The difficulty is that the 
number of diminsions of the state space will grow 
considerably under these conditions, creating a sig­
nificant computational burden on the DP procedure . 

OPTIMAL SCHEDULING WITH STOCHASTIC DEMAND 

This section extends some aspects of the determin­
istic formulation of the optimal scheduling problem 
to include stochastic (yet time dependent) elements. 
The assumption is that the input demand functions 
are random variables that are distributed according 
to a Poisson probability law with time-dependent 
parameter [A(t)]. 

The total waiting time under these conditions (W) 
is a random variable and it is natural to choose the 
expectation of the waiting time, E[W), as the objec­
tive function to be minimized. This expectation can 
be decomposed as follows: 

E[W) = E[WIA) Pr(A) + E[WIA) · Pr[A) (32) 

where A is the event that every passenger boards the 
first bus that he or she sees and A is the comple­
mentary event, that some passengers are left behind 
at some point. The latter event is difficult to 
handle as it includes, for example, the case where 
some passenger cannot board any bus and the wait 
time is infinity. In general, however, the follow­
ing relations hold: 

E[WIA) < E(WIA] (33a) 

The objective function is again formulated in and 
terms of minimization of the total waiting time (w) 
where 

(29) 

where ti,j is defined by the recursion (Equation 
26). Note that the decision variables in this 
problem (the states of the dynamic programming) are 
still the dispatch times (t·). These times are 
expressed i mplicitly in both t&e cons traints and the 
objective function since 

i i-1 
~.j = lj + k~l l\ti + k~I dk,j (30) 

In the last expression dk · can be expressed in 
terms of the inputs [Fial and Pijl as (see 
Equations 24, 25b, and 17) 

(31) dk,j =max l 01 ~1
1 

(F1(t1,j) - F1 (t1 ,j-1)J P1k ; 02 (Fk(tk,j) - Fk(tk,j-i)J! 

Thus ti j can be computed recursively given the 
schedule' of the ( j-1) th bus and the time when the 
jth bus left the (i-l)th stop. 

The dynamic programming formulation for this 
problem is similar to the formulation discussed in 

Pr(A] +Pr [A) = 1 (33b) 

Therefore, in order to minimize E [W] one can maxi­
mize Pr[A): i.e., maximize the probability that 
every passenger boards the firs t bus. This obj ec­
tive function will not be c apac ity constrained as 
the capacity is included in the objective function. 

Let us now analyze the simple scheduling case 
discussed earlier with the added assumption that the 
passengers' arrival rate to the ith stop follows a 
Poisson process with parameter Ai(t). This rate 
can be shifted to the origin stop by transforming 

the time by using A. (t = t 6t) where 6tk is the 
i k=l k . 

(deterministic) bus travel time between stop (k-1) 
and k. Furthermore, since arrivals at each stop are 
independent, the total (shifted) passenger arrivals 
can be described by a Poisson process with parameter 
A(t) where 

m-1 ( I ) A(t) = .1: Ai t + 1: lltk 
1= ! k=I 

If buses are dispatched at times tj, 
the objective function is given by 

(34) 

j = 1,2, ••• n, 
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Pr(A) =Le\ A(tj_,, tj) .. c] (3sa) 

where A( t j -l • tjl is the nUJIJbe r of passenge rs who 
arrive between tj-l and tj , and t 0 is the 
beginning of t he design period. These variables are 
mutually independent and, therefore, 

The distribution of the 
N(tj-1,tjl is Poisson and 
function can be expressed as 

random 
thus the 

variable 
objective 

(3Sc) 

Alternatively, one can maximize the logarithm of 
this objective function, 

n C [ t · ] k [ lj t ] log Pr(A) = i~t log k~o (l/k!) f1i~I A.(t)dt · exp fti - A.(t)dt (36) 

This objective function can be maximized by using a 
DP procedure with the recursive relations: 

rj(ti) = M
1
f' l fJ+t (tj+i) +log J

0 
(l/k!) [11;~ 1 A.(t)dt) k 

xexp[ft:J-tA.(t)dt]I j=n-1,n-2, ... 1 (37) 

where tk T. The possible dispatch instances 
(tj) can be constrained by mi n imum and maximum 
headway policies to narrow the state space. Computa­
tional speed can be enhanced by using an efficient 
approximation for the integral. 

An alternative solution method can be constructed 
by differentiating log Pr (A) in Equation 36 with 
respect to tj, which results in the set equations: 

J
0 

(1 /k!) l [Iit' A.(t)dt r-c -[!1{_1 A.(t)dttc! =O 

j= 1, 2, ... n-1 (38) 

This set of n-1 simultaneous equations in n-1 un­
knowns can be solved by Newton's method or any other 
algorithm for solving a set of simultaneous equa­
tions. 

In parallel with the extension of the simple 
scheduling problem, one can extend the simple stoc­
hastic case discussed here to include a multiple 0-D 
flow pattern and dwell times that depend on the 
number of boarding and alighting patrons. The 
extension to multiple 0-D pairs is straightforward, 
by using the ideas expressed earlier in this paper. 
The other extension is somewhat more complicated 
analytically because some of the independence prop­
erties used in the simple problems are lost. 
Sugiyama (11) formulates some of these problems and 
suggests some solution algorithms. 

Use of a more sophisticated stochastic for.mula­
t ion may not be very interesting because a solution 
to the problem when all inputs are both stochastic 
and time dependent does not seem feasible. The 
deterministic approach, however, may provide some 
good schedules that may actually be applied and 
modified, when necessary, by real time controls that 
are designed to contend with the randomness of 
transit operations. 

CONCLUSION 

This paper dealt with optimal scheduling of bus runs 
on a route. The inputs to the analysis include the 
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passenger arrival rate as a function of time at each 
step, the run times between the stops, bus capacity, 
the 0-D trip pattern (or the alighting rate at each 
stop), and some (estimated) parameters related to 
the relations between the dwell time and the number 
of boarding and alighting patrons. Once the problem 
is formuiated, the optimal schedule can be found by 
using a dynamic programming procedure. 

In its basic formulation, the solution is subject 
• ~ simple c apacity constraints o nly , but many other 
const r.a ints such as service standards and nonuniform 
bus capacities can be incorporated easily within 
this framework. Further extensions were suggested. 

The last section looked at some of the issues 
associated with modeling the arrival process as a 
stochastic phenomenon. Here the formulation takes 
on a somewhat different form as, rather than mini­
mizing the total waiting time, the objective is to 
maximize the probability that each patron boards the 
first bus. The stochastic case is more difficult to 
generalize and it is concluded that deterministic 
methods may be the most suitable for the optimal 
scheduling problem. 

The suggested procedures can be applied re­
peatedly to a given route so that a planner may 
trace a trade-off curve between number of buses and 
total passenger waiting time. Over a reasonable 
range of frequencies the demand for bus transport 
can be assumed to be inelastic to the waiting time 
or crowding. The abovementioned trade-off curve can 
thus be used for policy analysis and the setting of 
service standards. 

In closure, We should add that the collection of 
detailed demand data as required by this method is 
an expensive and time-consuming task. Recent ad­
vances in automatic vehicle monitoring systems, 
however, overcome this problem. Many of these 
systems provide continuous information on loads and 
travel times that can be input to an optimization 
procedure. 
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