

Figure 13. Deteriorated steel and concrete.

staff are used, they may be from the Structures Division in the main office or from the regional office in which the project is located. The preferred pattern is to use staff headquartered close to the bridge in order to minimize the travel time needed for the frequent trips required to the bridge. If consulting engineers do the work, they are managed by the Structures Division with strong support from the regional office in which the bridge is located. Those managing consulting engineers at the regional level do it as a part of a variety of bridge design and construction activities. In the Structures Division, a specific unit is responsible

for consultant management, including consulting engineers who design new bridges as well as rehabilitation projects. Staff managing consultants are either professional engineers or work under the direct supervision of professional engineers. Each staff member is responsible for 15-20 projects.

CONCLUSION

In conclusion, the Department considers the bridge inspection and rehabilitation design program to be an effective way to assist with the rehabilitate/replace decision and to provide the material needed to produce reliable contract documents for construction.

Of the 150 New York State projects that have followed this procedure, only 8 bridges were reprogrammed from rehabilitation to replacement, which attests to care given the selection of bridges for the program and the prominent place of external constraints in dictating what will happen to the bridge. Some might argue that the small number of changes would indicate that the rehabilitate/replace decision point is unnecessary. It is the Department's view that the possibility of a change should always be a consideration in order to ensure that the best solution is developed for each project.

The number of deteriorated bridges in New York State and across the country make it obvious that total replacement of all these bridges is not possible. Instead, an inspection and rehabilitation design program, if properly managed, can be used to make cost-effective restorations of many of these bridges.

REFERENCES

1. Specification for In-Depth Bridge Inspection. Structures Division, New York State Department of Transportation, Albany, Oct. 1976.
2. Manual for Maintenance Inspection of Bridges. AASHTO, Washington, DC, 1978.
3. Bridge Inspector Training Manual. FHWA, 1970.

Publication of this paper sponsored by Committee on Structures Maintenance.

Pennsylvania's Structure Inventory Record System: SIRS

HEINZ P. KORETZKY, K. R. PATEL, AND GEORGE WASS

Pennsylvania's newly implemented computerized structure inventory record system, which incorporates data in excess of federal inventory and inspection requirements, is described. These data codify and describe the actual condition of more than 16 000 bridges on the state system and more than 5000 bridges on the local system. This paper also describes the system's management, identification codes, update requirements, and security. Also provided is a general understanding of the system and its error correction, updates, and enhancement. This system produces a series of reports for use in the verification of data and the technical content of the system. The data are converted internally from Pennsylvania data to Federal Highway Administration data to satisfy frequent reporting requirements.

This paper gives an overview of the recently implemented on-line structure inventory record system (SIRS) in Pennsylvania. The Bureau for Strategic Planning, Pennsylvania Department of Transportation (PennDOT), exercises a quality-control function over several planning information systems. This paper

covers one of the information systems.

Because the Bureau of Highway Design is responsible to carry out the bridge inventory and inspection program, they are the primary users of SIRS. The primary data are gathered by the district bridge units, which are also users of the system. The Bridge Division in the central office in Harrisburg, Pennsylvania, monitors district activities that concern technical and bridge engineering data.

SIRS represents an on-line computerized bridge inventory system that provides direct data entry and retrieval. Information on bridges is collected, quantified, and entered into the on-line system through remote terminals within one day to two weeks after field collection of the raw data. Priority was given to enter bridges 20 ft and longer because such structures are defined by the Federal Highway Administration (FHWA) as bridges. This system was

implemented statewide on March 15, 1982.

Federal reporting criteria require that some 88 data items be collected and reported for each structure. These data are subsequently entered into the system and a report is made (by magnetic tape) twice a year to FHWA.

Each bridge is identified in the system with a 20-digit structure number. The structure number is necessary for both the updating and inquiry modes. Most importantly, SIRS contains existing information on bridge conditions as they are at the time of inspection, disregarding planned improvements or repairs in progress.

The PennDOT coding forms list 175 items. Only 83 items are currently collected to meet federal requirements.

Because the system is the only comprehensive source of bridge data, it has a variety of uses in addition to meeting federal reporting requirements. In connection with the identification of a priority commercial network, SIRS data are now being used as a key planning and programming tool. SIRS contains technical data on the more than 16 500 bridges longer than 20 ft on the state system and the more than 9500 bridges from 8 to 20 ft.

Raw data are collected by approximately 33 inspection teams. As these data generally are updated daily, the information is changed daily. A great number of reports can be generated by the system. Twenty-five different reports are generated monthly, while more comprehensive quarterly statistics are furnished periodically to the Secretary of Transportation by the Bridge Division.

When reported to FHWA, the SIRS data are translated by the computer into a lesser volume of information through the use of a conversion program that gives data compliant with the federal requirements. SIRS replaces the previous FHWA bridge inventory file maintained on computer cards.

SYSTEMS MANAGEMENT

This system is controlled and managed by the Bureau for Strategic Planning, which coordinates system enhancement, ensures the interfacing capability of this system with other planning information systems, and maintains system quality. The system, however, is operated jointly by three bureaus: Bureau for Strategic Planning, Bureau of Highway Design--Bridge Division, and Systems Center.

The Bridge Division provides bridge engineering support and technical and bridge engineering control; it monitors the districts' bridge safety inspection program and bridge inspection data collected by districts; and it also enters data and coordinates bridge safety inspection activities of independent government jurisdictions, such as the Turnpike Commission, the Delaware River Joint Toll Bridge Commission, and others.

Maintenance of the computer program, program testing, and program enhancement is handled by the System Center in collaboration with the Bridge Division and the Bureau for Strategic Planning.

Structure Numbers

Inquiry into the system without a complete and correct structure number is impossible. There is a structure number for each bridge that consists of 20 digits, while the structure is identified for FHWA purposes by using a 15-digit number.

Systems Update

The implementation of SIRS started March 15, 1982, following a halt on all activities on the FHWA (old)

system in October 1981. Data collected by the 11 engineering districts after October was held until the SIRS programs were corrected and found to be functioning to the satisfaction of all parties.

The bridge data in the FHWA file were transferred internally by computer to SIRS, and districts were requested to enter all data collected in the hold period by remote terminal into SIRS, with priority given to bridges longer than 20 ft, with data entered for the federal system first, then state, then local. Two persons from each district received training in data entry by remote terminal in Harrisburg, with follow-up training visits by the instructors.

System Security

Strict system security has been introduced since the inception of SIRS, primarily as a good practice and to prevent or discourage sabotage of the system, i.e., the possibility of loading the system with false data, purposeful deletion of structures and "phantom" bridges, and to introduce an audit trail.

Passwords are issued to qualified individuals through the Bureau for Strategic Planning, which controls the issue of such passwords. Shared passwords are not considered acceptable. Some passwords carry the authority to update bridge data and some passwords only carry the authority to inquire into the SIRS file.

INTRODUCTION TO SIRS

PennDOT started collecting 88 structure inventory and appraisal items in 1972 to satisfy federal requirements. The federal coding form suitable for keypunching was used to enter data into the computer file that then, in the form of a computer tape, was submitted to FHWA.

Initially, data collection was directed by the Bridge Division and was for bridges on the federal-aid system. In 1978, the Surface Transportation Assistance Act expanded the collection of data to all bridges on public roads. That involved local governments that had bridges 20 ft and longer. This work involved filling out coding sheets, submission of those sheets to the central office, keypunching of data contained on those sheets, review operations, etc.

From the time data were collected in the field and coded on the forms, the full processing (that is, district office review, mail transit, keypunching, review of keypunched data, and error correction) required about six weeks or more. Regardless of those efforts, errors in coding and in keypunching were likely to occur. These errors, once stored, were not easily detectable.

Because of those reasons, in spring 1980 PennDOT implemented its desire to develop an on-line system--SIRS. An outside consultant was engaged to work with Department staff to develop the system. The system was completed by the staff of the Systems Management Center with extensive acceptance testing by the Bridge Division, District 8-0 Bridge Unit, and Strategic Planning.

The system's main purpose is to provide an on-line operation to the districts and the central office bureaus for storing, updating, and retrieving structure inventory data. The structure inventory data in SIRS contains all of the items required to satisfy FHWA and additional items for Department needs.

FHWA requires 88 items (see Figures 1-6). Those items are identified by an asterisk in the printout and on the form. SIRS has condensed those 88 items into 83, but it has provisions for additional items, which now total 175.

Figure 1. Coding form D-491A.

P-481A (7-81)

COMMONWEALTH OF PENNSYLVANIA
DEPARTMENT OF TRANSPORTATION
STRUCTURE INVENTORY RECORD SYSTEM
GENERAL DATA

Figure 2. Coding form D-491B.

D491B (7-81)

COMMONWEALTH OF PENNSYLVANIA
DEPARTMENT OF TRANSPORTATION
STRUCTURE INVENTORY RECORD SYSTEM
FEATURES INTERSECTED

FEATURES INTERSECTED												
ID:	1	2	3	4	5	6	7					
	DIST	CNTY	CL	APPL	RT	SPUR	EOU	STAT				
*	*	*	*	*	*	*	*					
REF	46	47	48	49	50	51	52	53	54	55	56	57
	FEATURE DESCRIPTION	ON OR UNDER	TRAFFIC ROUTE	DIR	KIND HWY	HWY DESC	CLASS	APPL	ROUTE NUMBER	SPUR	EQUATOR COUNT	
05	████████	████████	████████	████████	████████	████████	████████	████████	████████	████████	████████	████████
	████████	████████	████████	████████	████████	████████	████████	████████	████████	████████	████████	████████
*	*	*	*	*	*	*	*	*	*	*	*	
06	58	59	60	61	62	63	64	65	66	67	68	
	STATION	NO LANE	SKEW ANGLE	MEDIAN	NAME STAT	AAR NUMBER	RAILROAD MILEPOST	MIN LAT CL LEFT	CL RIGHT	TTL HORZ CL LEFT	CL RIGHT	
████████	████████	████████	████████	████████	████████	████████	████████	████████	████████	████████	████████	
████████	████████	████████	████████	████████	████████	████████	████████	████████	████████	████████	████████	
*	*	*	*	*	*	*	*	*	*	*	*	
07	69	70	71	72	73	74	75	76	77	78	79	
	MIN VERT CL LEFT FT IN	VRT CL LEFT FT IN	>10' RIGHT FT IN	ROAD SECT NUM	DEFENSE MPOINT	SECT LGTH	ADM JUR	HWY SYS	FUNC CLAS	ADT	ADT YEAR	VT SG
████████	████████	████████	████████	████████	████████	████████	████████	████████	████████	████████	████████	
████████	████████	████████	████████	████████	████████	████████	████████	████████	████████	████████	████████	
*	*	*	*	*	*	*	*	*	*	*	*	
08	47A	47B	59A									
	FHWA FEATURES INTERSECTED	FHWA FACILITY CARRIED BY STRUCTURE	NO LANES									
████████	████████	████████										

Figure 3. Coding form D-491C.

Figure 4. Coding form D-491D.

Figure 5. Coding form D-491E.

D-491E (7-81)

COMMONWEALTH OF PENNSYLVANIA
DEPARTMENT OF TRANSPORTATION
STRUCTURE INVENTORY RECORD SYSTEM
INSPECTION REPORT AND PROPOSED IMPROVEMENTS

STRUCTURE IDENTIFICATION

ID:	1 DIST	2 CNTY	3 CL	4 APPL	5 RT	6 SPUR	7 EQU	8 STAT
-----	--------	--------	------	--------	------	--------	-------	--------

INSPECTION

DATA TYPE 16	150	151	152	153	154	155	156	157
	DATE INSP	NEXT INSP	INSP TP	INSP BY	INSP ENG	MAN-HOUR RIG	OFF CRAN HR	INSPECTION COST ENG RIG OFFICE

DATA TYPE 17	158	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174
	HIREDBY	APPR SLAB	APPR RDWY	DECK	SUP STR	PAINT	SUB STR	CHAN	CUL RET	REM LIFE	STRG COND	DK GM	UND CLR	WATER WAY	APPR ALIGN	SAFE LOAD

DATA TYPE 18	175 INV RATING LOADS					176 OPR RATING LOADS					177	178	179			
	1	2	3	4	5	1	2	3	4	5	RATE METH	TYPE MEM	CAT	LOAD TYPE	STRESS RANGE	AASHTO SPEC

PROPOSED IMPROVEMENT

DATA TYPE 19	181	182	183	184	185	186	187	188
	YEAR NEEDED	TYPE WORK	PRIORITY	TYPE OF SERVICE	IMPROVEMENT LENGTH	DESIGN LOAD	ROADWAY WIDTH	NUMBER LANES

DATA TYPE 20	189	190	191	192
	DESIGN ADT	YEAR ADT	ADJ ROADWAY IMPROV YEAR	TYPE

Figure 6. Coding form D-491F.

D-491F (7-81)

COMMONWEALTH OF PENNSYLVANIA
DEPARTMENT OF TRANSPORTATION
STRUCTURE INVENTORY RECORD SYSTEM
REPAIR AND PAINTING RECORD

STRUCTURE IDENTIFICATION

ID:	1 DIST	2 CNTY	3 CL	4 APPL	5 RT	6 SPUR	7 EQU	8 STAT
-----	--------	--------	------	--------	------	--------	-------	--------

REPAIR DATA

DATA TYPE 21	196	197	198	199	200	201
	REF	YEAR	DRAWING NUMBER	TYPE WORK	REPAIR COST	PGM

PAINTING DATA

DATA TYPE 22	203	204	205	206	207	208	209	210
	REF	YEAR	TONS STEEL	EST AREA SURFACE	NUMBER COATS	GALLONS PAINT	COLOR NUMBER	TYPE CLEANING

These additional items are comprised of bridge-engineering-related items such as rating, maintenance, painting, utilities, inspection costs, etc. These are mainly to satisfy the needs of bridge engineers for record data, maintenance activities, and bridge history. The forms for collecting and entering data to SIRS are now identified as D-491, and they are broken down as follows:

1. D-491A--general data;
2. D-491B--features data;
3. D-491C--structure data;
4. D-491D--utility, hydrology, and posting data;
5. D-491E--inspection and proposed improvement; and
6. D-491F--repair and painting.

The above forms were designed to produce a mirror image of the data shown on the screens, which helps reduce transfer errors.

Data can be updated during workdays by cathode-ray tube (CRT) terminals located in each district office bridge unit, the Bridge Division, and the Bureau for Strategic Planning.

This system is designed to store data on every bridge in Pennsylvania. The fact that the system was designed to accept a broad spectrum of bridges has caused the amount of data to be collected and stored to seem rather large. As the user becomes more familiar with the system, they realize that there will always be items that are not applicable to a given bridge. This, in effect, reduces the amount of data stored for each bridge.

Off-line reports are created by SIRS for many different uses. For example, 26 different bridge statistics reports are printed on demand (Figures 7 and 8) and are used by the Bridge Division in its reporting activities. Some reports are produced nightly for quality control and historical purposes. Other reports are created less frequently and are used as references for field work or specialized informational purposes. Still others are given to PennDOT bureaus, FHWA, and other agencies that rely on SIRS for statistical studies. Also, special reports can be generated through Mark IV programming with the Bureau for Strategic Planning and the Bridge Division, which have the capability to generate such programming.

The system has several self-checks, such as the following:

1. Errors in coding are highlighted on screens, and the system does not accept these items unless

coding is corrected to conform to coding given in the coding manual, and

2. If two or more items are not compatible, cross-check errors are printed out and a message to this effect appears on screen; this alerts the person entering or updating the data and makes the correction of those types of errors easy.

Once these errors are corrected, the data in SIRS are practically error free. Errors that may be in the system and that cannot be corrected by the error-update messages could be of a technical or engineering nature. These are difficult to detect and can only be discovered through constant vigilance by district bridge units and with spotchecks, systems review, and/or on-site monitoring by the central office's Bridge Division engineers.

The system has another check that prevents the user from entering (i.e., adding) a structure if the minimum mandatory items are not entered. Those key items are as follows:

1. Agency responsible for preparing the inventory and type of service (i.e., highway over highway, highway over stream, railroad over highway, etc.), and
2. Ownership (maintenance responsibility of highway system, classification, structure length, etc.).

The sufficiency rating is calculated overnight by the computer and the revised rating is displayed on the screen the next day with an indicator (letter P for replacement, letter H for rehabilitation, and blank if structure does not qualify for replacement or rehabilitation) that tells the user if the structure qualifies for replacement or rehabilitation in accordance with FHWA criteria. Through the use of Mark IV programs, listings and statistics are generated for planning and programming purposes. These lists show defective bridges, classification of defects and conditions, and they can provide bridge listings in any order of sufficiency rating or listings by using other parameters. The system has the capability to print structure data as displayed on the terminal screen.

Future enhancements are discussed regularly and jointly between the staff of the involved bureaus (Bridge Design and Strategic Planning). Enhancement currently in various stages of implementation are as follows:

1. Historical bridges (a new requirement by FHWA)--completed;

Figure 7. Sample report 1.

01/03/83
PROGRAM ID: PS140410

COMMONWEALTH OF PENNSYLVANIA
DEPARTMENT OF TRANSPORTATION
STRUCTURE INVENTORY RECORD SYSTEM

PAGE 1
REPORT ID: SIR41001

TABLE A1 HIGHWAY BRIDGES (20' AND GREATER)

HIGHWAY BRIDGES CARRYING	NUMBER OF BRIDGES IN SIRS FILE	MAINTENANCE RESPONSIBILITY							TOTAL (COL 2 THRU COL 8)
		DEPT OF TRANS	TURNPIKE COMMISSION	RAILROAD COMPANY	LOCAL GOVERNMENT	COMBINED AGENCIES	UNKNOWN	OTHER PRIVATE	
COL 1	COL 2	COL 3	COL 4	COL 5	COL 6	COL 7	COL 8	COL 9	COL 9
FED AID STATE SYSTEM	10,415	9,621	428	189	39	123	1	14	10,415
FED AID LOCAL SYSTEM	247	1	0	5	230	11	0	0	247
OFF FED AID STATE SYSTEM	5,419	5,237	69	82	12	12	0	7	5,419
OFF FED AID LOCAL SYSTEM	5,119	254	60	21	4,695	70	7	12	5,119
TOTAL	21,200	15,113	557	297	4,976	216	8	33	21,200

2. Security of defense-related items as recommended by FHWA--completed;
3. Introduction of priority commercial network designation--completed; and
4. Two new screens for overload rating and posting.

Enhancement to SIRS is coordinated by Strategic Planning. All modifications are tested before statewide implementation. User manuals and coding manuals are also updated.

Districts are instructed to gather additional data on a two-year cycle. The first instructions that asked for 10 new items and authorized 8 optional items were made effective with the inspection cycle that started January 1, 1983.

In addition to the main menu (Figure 9), which gives the listing of available screens, there are seven screens currently built into the system, with six screens that provide bridge data. The screens show the information that is generated from the

D-491 forms, as follows:

1. Screen 1, form 491A--general data (Figure 10);
2. Screen 2, form 491B--features intersected data (Figure 11);
3. Screen 3, form 491C--structure data (Figure 12);
4. Screen 4, form 491D--utility, hydrology, and posting data (Figure 13);
5. Screen 5, form 491E--inspection data (Figure 14);
6. Screen 6, form 491F--repair and painting data (Figure 15); and
7. Screen 7 (Figure 16), which is used to enter the identification numbers of structures for printing data (this has the potential for printing data on five bridges at a push of a button).

To operate SIRS is a relatively easy task. Also, hands-on training is available through the Bridge Division or the Bureau for Strategic Planning.

Figure 8. Sample report 2.

01/03/83
PROGRAM ID: PS140440

COMMONWEALTH OF PENNSYLVANIA
DEPARTMENT OF TRANSPORTATION
STRUCTURE INVENTORY RECORD SYSTEM

PAGE 1
REPORT ID: SIR44001

TABLE A5 NUMBER AND DECK AREA OF (HIGHWAY) BRIDGES
(20' AND GREATER)

COUNTY	NUMBER	SQ FT DECK AREA	% DECK AREA	COUNTY	NUMBER	SQ FT DECK AREA	% DECK AREA
ADAMS	246	555,252	0.54	LACKAWANNA	355	2,000,222	1.95
ALLEGHENY	1,092	12,486,451	12.20	LANCASTER	687	3,254,468	3.18
ARMSTRONG	254	1,216,722	1.19	LAURENCE	221	1,275,972	1.25
BEAVER	291	2,225,667	2.17	LEBANON	198	709,903	0.69
BEDFORD	429	1,373,250	1.34	LEHIGH	330	2,137,116	2.09
BERKS	588	2,926,211	2.86	LUZERNE	435	2,390,554	2.34
BLAIR	257	953,318	0.93	LYCOMING	446	1,717,699	1.68
BRADFORD	409	1,031,398	1.01	MCKEAN	226	629,142	0.61
BUCKS	576	3,619,742	3.54	MERCER	456	1,622,772	1.59
BUTLER	389	1,285,635	1.26	MIFFLIN	151	530,591	0.52
CAMBRIA	244	1,187,999	1.16	MONTGOMERY	307	1,164,772	1.14
CAMERON	52	127,335	0.12	MONTOUR	109	4,089,216	3.99
CARON	133	780,132	0.76	NORTHAMPTON	322	249,276	0.24
CENTRE	251	812,921	0.79	NORTHUMBERLAND	298	1,415,127	1.38
CHESTER	607	1,706,639	1.67	PERRY	195	1,113,208	1.09
CLARION	192	868,608	0.85	PHILADELPHIA	382	559,800	0.55
CLEARFIELD	302	1,044,086	1.02	PIKE	158	11,144,024	10.09
CLINTON	181	1,224,957	1.20	POTTER	190	579,509	0.57
COLUMBIA	289	1,016,005	0.99	SCHUYLKILL	190	297,900	0.29
CRAWFORD	397	1,403,650	1.37	SHIYDER	362	1,161,051	1.13
CUMBERLAND	266	1,336,164	1.31	SOMERSET	156	372,027	0.36
DAUPHIN	418	3,930,642	3.84	SULLIVAN	427	677,394	1.05
DELAWARE	293	1,683,397	1.64	SUSQUEHANNA	116	2,423,937	2.37
ELK	99	200,533	0.20	TIOGA	202	435,592	0.43
ERIE	375	1,837,709	1.80	UNION	149	639,196	0.62
FAYETTE	333	950,755	0.93	VENAIGO	210	402,348	0.39
FOREST	63	160,030	0.16	WARREN	590	1,847,565	1.00
FRANKLIN	267	672,688	0.66	WASHINGTON	255	1,113,208	1.09
FULTON	149	408,575	0.40	WAYNE	531	579,087	0.57
GREECE	320	666,104	0.65	WESTMORELAND	144	376,630	0.37
HUNTINGDON	218	579,993	0.57	WYOMING	132	402,348	0.39
INDIANA	313	1,050,139	1.03	YORK	21	1,075,394	1.05
JEFFERSON	216	617,828	0.60	TOTAL	21,204	102,360,532	100.01
JUNIATA	183	494,589	0.48				

Figure 9. Sample screen of main menu.

SIRS MAIN MENU	
FUNCTION: (A=ADD, I=INQUIRY, U=UPDATE)	
MAIN MENU	(HIT PF1)
GENERAL DATA	(ENTER ID & FUNCTION, HIT PF3)
FEATURES INTERSECTED DATA	(ENTER ID & FUNCTION, HIT PF4)
STRUCTURE DATA	(ENTER ID & FUNCTION, HIT PF5)
UTIL, HYDRO & POSTING DATA	(ENTER ID & FUNCTION, HIT PF6)
INSPECTION & IMPROVEMENT DATA	(ENTER ID & FUNCTION, HIT PF7)
REPAIR & PAINTING DATA	(ENTER ID & FUNCTION, HIT PF8)
PRINT D491 A THRU F	(HIT PF9)
WALK THRU SCREENS	(HIT PF11)

Thirty-minute training is normally adequate for data inquiry and browsing. Four-hour training, with an additional one week of practice, is normally adequate to provide a person with sufficient confidence to proceed with data entry.

UNDERSTANDING THE DATA

SIRS could not be designed to be a completely "user friendly" system, even though it has many headings that are shown on the screen and are self-explana-

tory. System data are designed to be used by bridge engineers, and the design and enhancement of the system was an add-on to the 88 required federal items, whose values are expressed in coding language.

To fully understand all data, the user must be familiar with

1. The six different coding forms (D-491), which are designed to be a mirror image of the six technical data screens;

Figure 10. Sample screen 1.

MODSIR01 V4300001 SIRS GENERAL DATA 03/17/82 09:22:13
 ID: DIST CNTY CL APPL RT SPUR EQU STAT
 08 22 1 0 00767 0 00 020831
 NEW
 ID:
 AGCY LOCATION LATITUDE LONGITUDE CTY/BOR FAP FED PSU-PUS
 SUBM DEG MIN DEG MIN CODE NUMBER FND NUMBER
 DOB SWATARA TOWNSHIP 40 155 76 490 000
 DESIGN DRAWING ADD SHOP DRAWINGS YEAR LAST RECON SCH PUB
 NUMBER NUMBER DRAW NUMBER NUMBER NUMBER BUILT TYPE YEAR BUS TRAI
 1970 0000
 OWNER/PRINCIPAL LEG ACT MAINTENANCE MAINTENANCE CODE SAFE
 CUSTODIAN AND CODE NUMBER RESPONSIBILITY 1 2 3 4 5 6 FEAT TOLL
 PADOT 1 PADOT 11 1111 3
 APPR BRDG BRDG SIDEWALK
 TYPE BRDG CRIT RDWY RDWY DECK TYPE & WIDTH DETOUR CURVE FIPS
 SERV DESC FAC WDTW WDTW FLRD WDTW LEFT RIGHT LENGTH HORZ VERT CODE
 61 D * 050 0223 1 0265 000 000 02
 ALL DATA HAS BEEN DISPLAYED. NO MORE. REQUEST MORE DATA OR SELECT NEW FUNC.
 DELETE STRUCTURE

Figure 11. Sample screen 2.

SIRS FEATURES INTERSECTED DATA
 ID: FUNCTION: (A=ADD, I=INQUIRY, U=UPDATE)
 FEATURE ON OR TRAF KIND HWY ROUTE EQUAT
 REF DESCRIPTION UNDER ROUTE DIR HWY DESC CLASS APPL NUMBER SPUR COUNT
 NO SKEW NAME AAR RAILROAD MIN LAT CL TTL HORZ CL
 STATION LANE ANGLE MEDIUM STAT NUMBER MILEPOST LEFT RIGHT LEFT RIGHT
 MIN VERT CL VRT CL >10' ROAD
 LEFT RIGHT LEFT RIGHT SECT DEFENSE SECT ADM HWY FUNC ADT VT
 FT IN FT IN FT IN FT IN NUMB MIDPOINT LNGH JUR SYS CLAS ADT YEAR SGN

FHWA FEATURES INTERSECTED FHWA FACILITY CARRIED BY STRUCTURE NO LANES

Figure 12. Sample screen 3.

SIRS STRUCTURE DATA
 ID: FUNCTION: (A=ADD, I=INQUIRY, U=UPDATE)
 STRUCTURE TYPE
 D S MAIN APPROACH *SPAN STRUCT M SP DK G STEEL TYPES PH CUM TK DATE
 L L FHWA DEPT FHWA DEPT MM AP LENGTH LENG TP W.5 M 1 2 3 4 VUL TRAF EST
 SPANS, NUMBER AND LENGTH (MAIN AND APPROACH)
 NO LENG
 REL EXP JT TYPES BEARING TYPE FLD LT PROB STRANDS TENSION
 JT FRM RBR 1 2 3 4 1 2 3 4 SPL SUPER F'C1 F'C 1 2 3 4 1 2 3
 VAC V LOC V TYPE CNT FLD ABT FND PIER TYPE PIER FD SP L PR
 DRAP PROC 1 2 1 2 3 4 UTIL L L SPL N F N F 1 2 3 4 1 2 3 4 CAP TIE SUB

Figure 13. Sample screen 4.

SIRS UTIL, HYDRO & POSTING DATA
FUNCTION: (A=ADD, I=INQUIRY, U=UPDATE)

REF	UTILITY OCCUPANCIES		LICENSE NUMBER	DATE APPROVED	FEE
	NAME OF COMPANY AND ADDRESS				

HYDROLOGY AND NAVIGATION

STREAM NAME	DRAIN AREA	VERT CLEAR	DESIGN MAGNIT	FLOOD FRQ	MAX ELEV	W.S. VEL ELEV	YEAR	FISH Y/N	VERT HORIZ CL	CLEAR

POSTING

C/P	WEIGHT	1ST DT	LAST DT	CLOSE	FLD	SPEC				
A	LIMIT	COMB	POSTED	POSTED	ALL	TRAF	REASON	COND	COND	IMPACT

S1	S2	S3	S4	SUFF	RATING	ELIG	HRR	EST/UPD

Figure 14. Sample screen 5.

MODSIROb V4300001 SIRS INSPECTION & IMPROVEMENTS 03/17/82 09:24:33
ID 08221000767000020831 FUNCTION: I (A=ADD, I=INQUIRY, U=UPDATE)
INSPECTION

DATE	NEXT	INSP	INSP	MAN-HOUR	CRAN	INSPECTION COST					
INSP	INSP	TP BY	ENG	RIG	OFF	HR	ENG	RIG	OFFICE	NAME	CONSULTANT
120180											

HIRED APPR APPR SUP SUB CUL REM STRC DK UND WATER APPR SAFE

BY	SLAB	RDWY	DECK	STR	PAINT	STR	CHAN	RET	LIFE	COND	GM	CLR	WAY	ALIGN	LOAD
	7	7	7			7	N	N	50	8	7	8	N	8	8

INV RATING LOADS DPR RATING LOADS RATE TYPE LOAD STRESS AASHTO AASHTO

1	2	3	4	5	1	2	3	4	5	METH	MEM	CAT	TYPE	RANGE	SPECS	MANUAL
236					254											

PROPOSED IMPROVEMENT

YEAR	TYPE	TYPE OF	IMPROVEMENT	DESIGN	ROADWAY	NUMBER	
NEEDED	WORK	PRIORITY	SERVICE	LENGTH	LOAD	WIDTH	LANES

DESIGN YEAR ADJ ROADWAY IMPROV ESTIMATED COST PROPOSED IMPROVEMENT

ADT	ADT	YEAR	TYPE	ENG	DEMO	SUBSTR	SUPSTR	OTHER

ALL DATA HAS BEEN DISPLAYED. NO MORE. REQUEST MORE DATA OR SELECT NEW FUNC.

Figure 15. Sample screen 6.

SIRS REPAIR & PAINTING
FUNCTION: (A=ADD, I=INQUIRY, U=UPDATE)

REPAIR DATA

REF	YEAR	DRAWING	TYPE	REPAIR	REPAIR DESCRIPTION			
		NUMBER	WORK	COST	PGM			

PAINTING DATA

REF	YEAR	TONS	EST AREA	NUMBER	GALLONS	COLOR	TYPE	PAINT
		STEEL	SURFACE	COATS	PAINT	NUMBER	CLEANING	COST

Figure 16. Sample screen 7.

SIRS PRINT D491 A THRU F

ENTER STRUCTURE IDENTIFICATION NUMBER(S)

DIST CNTY CL APPL ROUTE SPUR EQU STATION

1. -
- 2.
- 3.
- 4.
- 5.

2. The coding manual (PennDOT publication number 100); and

3. A manual on inventory and inspection of bridges (PennDOT publication number 24), which includes the current federal inventory and coding guide and PennDOT supplements.

To understand the inventory rating, operating rating, and posting values, it is suggested that bridge engineers be consulted for an explanation. Reference can also be made to the 1978 American As-

sociation of State Highway and Transportation Officials' (AASHTO) manual for maintenance and inspection of bridges.

For bridge-design-related information, refer to the PennDOT design manual, part IV, and the 1977

AASHTO standard specification for highway bridges and the interim specifications for the years 1978, 1979, 1980, and 1981.

Publication of this paper sponsored by Committee on Structures Maintenance.

Computer Model for Life-Cycle Cost Analysis of Statewide Bridge Repair and Replacement Needs

WILLIAM A. HYMAN AND DENNIS J. HUGHES

The Wisconsin Department of Transportation (WisDOT) has developed a computer simulation model that uses life-cycle cost analysis, in addition to information on the structural adequacy and functional obsolescence of bridges, to determine the least-cost mix of bridge repair and replacement work for up to 25 000 bridges and up to 20 program periods. The mathematical structure underlying the replacement decision rule is partly based on the solution to an unconstrained cost-minimization problem suitable for assessing funding requirements for bridge work irrespective of budget constraints. The decision rule also depends on the condition, age, and life expectancy of each bridge. This paper presents a description of the computer model and the results of examining three policy directions for 4500 state-owned bridges for the program period 1982-1999. WisDOT is using these results for its State Highway Plan and to provide guidance in formulating its six-year highway investment program and its biennial budget proposal for bridge repair and replacement. The results indicate that WisDOT should probably replace between 27 and 38 bridges/year from 1982 through 1999, that the cost of repair work will increase more than 75 percent over the period, and that the average condition of the bridges will decline over the period if the Department minimizes the cost of repair and replacement work. The paper also discusses issues regarding implementation. One can learn to run the model with several days training, and in-house staff needed to maintain the model may be as little as one-quarter of a person-year annually.

It is estimated that 105 000 bridges nationwide require replacement; about one-third of them are on the federal-aid highway system (1, p. 4). Assuming an average replacement cost of \$300 000/bridge, current bridge replacement needs throughout the country total \$31.5 billion. These are enormous costs. Are they believable?

Estimates of bridge replacement needs on state and federal highway systems are usually based on the number of bridges that have become structurally deficient, functionally obsolete, or closed. A bridge is structurally deficient if the superstructure or substructure requires immediate repairs or rehabilitation or if the ability to carry normal live loads is severely impaired. A functionally obsolete bridge has a narrow deck, low vertical clearances, or poor alignment relative to the roadway (2).

Is structural adequacy or functional obsolescence a sufficient criterion to determine replacement needs? Clearly not. By definition, a structurally inadequate bridge is in immediate need of major repairs, rehabilitation, or replacement, but it does not require replacement. Moreover, a functionally obsolete bridge may be in excellent condition and have many additional years of useful life even if it is narrow, has substandard clearances, or has poor alignment. Thus, such criteria as structural adequacy and functional obsolescence are not sufficient to determine replacement needs by themselves.

A more germane issue is whether repair or rehabilitation is more cost effective than replacement at various times during the life cycle of a bridge.

This paper reports the development and application of a computer simulation model that supplements information on the structural adequacy and functional obsolescence of structures with life-cycle cost analysis in order to determine the number of state-owned bridges in Wisconsin that will require replacement in each period from 1983 to the year 2000.

The computer model also estimates the number of bridges that will require different repairs, including concrete overlays, new decks, painting, joint work, and other minor repairs. The model calculates the cost of replacement and each type of repair work in each period and forecasts bridge condition. Results may be summarized by type of structure.

The Wisconsin Department of Transportation (WisDOT) is currently using the model to evaluate long-term bridge repair and replacement needs for its State Highway Plan (3) and to provide estimates of required bridge funding levels for the Six Year Highway Improvement Program (4) and the Department's biennial budget proposals. Other states and the federal government may find the model useful for similar applications.

SCOPE OF PROBLEM IN WISCONSIN

In Wisconsin, there are close to 12 000 bridges. The state owns nearly 4300 bridges that carry traffic on or over the state trunk highway system. In addition, the state has both repair and replacement responsibility for an additional 200 bridges. The total of 4500 bridges under state responsibility has been the focus of this study.

The three most common structure types are steel deck girders, prestressed concrete, and concrete slabs. They represent 77 percent of all these bridges and 85 percent of the total deck area. The Department has ceased to build trusses and reinforced-concrete deck girders, which comprise most of the remaining bridges. Forty-eight percent of the 4500 bridges are on the highest functional systems: Interstates and principal arterials. Repair costs are concentrated on these structures, since they account for 57 percent of the deck area, and repair costs are proportional to deck size. The average size of bridges has been increasing over time as new bridges have been designed to constantly improve standards. Bridges on lower function and volume roads are more likely to be replaced in the next 20 years because they are generally much older than bridges that serve higher function and volume roads.

Indeed, structure age significantly influences system-level bridge needs. The average age of all