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the Golden Gate Bridge and use the previous equation 
to calculate a· capacity increase of ICAP = 18 per­
cent for the $1.00 toll by using TM = 2. 7 s and 
assuming that the booths are not buffered. When the 
booths are buffered, ICAP = 34 percent. 

The result is consistent with a test of tandem 
tolls conducted at the Golden Gate Bridge in 1969. 
By using a makeshift arrangement where the second 
toll collector stood out in front of the islands, 
the flow rate was increased from 625 to 725 vehi­
cles/h (16 percent) (_!, p. 364). 

Tandem tolls could also be used in a truck toll 
lane. Cycle component times for a tractor-trailer 
truck are TC= 14 sand TM= 7.5 s {_l!, p. 189). 

The tandem move-up in time can be estimated as 
TM=5.0s. 

The effectiveness of tandem tolls increases as 
the toll-collection cycle time increases. The pre­
vious equations were applied to derive Table 2. 

APPLICATION TO REDUCE NEED FOR PLAZA WIDENING 

I have presented an example that illustrates one of 
the situations in which a tandem toll system would 
be more economical than additional conventional toll 
lanes for increasing a toll plaza's capacity on 
weekends (]) • 

The cost parameters in the example are as follows: 

1. Capital cost per additional booth: 

Item 
Toll booth 

Cost ($000s) 
40 
30 Toll registry equipment 

Tapered approach road (1500 ft) 1500 
1640 

2. Present worth of staffing: 
$60 000. 

half-day/week, 

By using these parameters, the capacity increase per 
unit of cost is 

1. Tandem: 1.6 cars/(h•$1000) and 
2. Conventional: 0.6 car/(h•$1000). 
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Reliability of Classified Traffic Count Data 

PETER DAVIES AND DAVID R. SALTER 

The reliability of classified traffic count data collected for the planning and 
operation of highway systems is examined. Manual classified count data are 
subject to serious errors, whereas automatic vehicle classification with modern 
microprocessor technology may have other accuracy problems. Accuracy 
checks carried out in the United Kingdom are described for two automatic 
classification systems-for simple classification by using inductive loops alone 
and for detailed classification by using loops and axle detectors in combination. 
An evaluation of automatic classification equipment, including these simple 
and detailed systems, has been carried out in the United States by the Maine 
Department of Transportation. The results of these studies are described. The 
accuracy of simple vehicle classification based on vehicle length alone is limited 
by the fundamental properties of inductive-loop sensors. However, at sites 
with good lane discipline, the accuracy of classification is likely to be sufficient 
for most routine purposes such as the measurement of passenger-car-equivalent 
flows. Tests in the United States have shown that the reduced reliability of 
pneumatic-tube sensors leads to poor classification accuracy when these sensors 

alone are used for vehicle detection. More detailed vehicle classification meth­
ods can give greater accuracy, in excess of 90 percent, but as traffic conditions 
deteriorate, accuracies reduce. In the detailed classification method, there are 
difficulties in discriminating between certain cars, vans, and trucks, particularly 
where lane discipline is poor. Further developments of automatic classification 
techniques are currently in progress, and improvements are anticipated under 
urban traffic conditions and in the portability of detailed classification equip­
ment. However, simple classified counters are already available and already 
have a part to play in displacing unreliable manual counts. Future trends in 
labor and microprocessor costs are anticipated to be such that as new develop· 
ments become available, their rapid exploitation will become increasingly at­
tractive. 

Classified traffic counts have been carried out for 
decades to provide basic information used in the de-
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sign, maintenance, and management of highway sys­
tems. In the past, manual counts have been the only 
source of classified flow data; automatic counts 
have been limited to the recording of axle pairs or 
total numbers of vehicles. More recently, the mic­
roprocessor revolution has changed this state of 
affairs, so that automatic vehicle classification 
and monitoring is now a practical proposition in 
many situations. 

The demands for classified traffic count data are 
various. Simple classification into some five or 
six broad categories of vehicle is a common require­
ment for highway design or traffic signal-timing 
procedures based on passenger-car equivalents 
(PCEs). Longer-term monitoring of classified traf-, 
fie flows provides the basis for forecasts of future 
traffic, disaggregated by type of vehicle. The eco­
nomic appraisal of highway schemes may also require 
a knowledge of the mix of vehicle classes and their 
characteristically different operating costs, occu­
pancies, and values of time. 

A more detailed vehicle classification could also 
have a part to play in some areas of growing con­
cern. Axle-weight distributions of different types 
of truck can be monitored at weighbridge sites and 
the data applied to pavement design or maintenance 
at other locations through detailed classified 
counts. The allocation of road damage costs to dif­
ferent classes of vehicle on toll highways or via 
general vehicle taxation again requires the detailed 
classification of freight vehicles. Other forms of 
classification, such as speed category, headway, and 
lane or turning movement, may also play important 
roles in special situations. 

Relatively little is known about the sensitivity 
of design procedures or traffic control measures to 
errors in the classified count data. One study does 
suggest that highway scheme cost-benefit appraisal 
can be highly sensitive to the mix of vehicle 
classes assumed <l>· Traffic forecasting could also 
be very sensitive, based as it is on the extrapola­
tion of past trends from an assumed current situa­
tion; any errors in the base data may well be magni­
fied in forecasts of the future. Finally, pavement 
design, with its high-order power-law relationship 
between axle weight and road damage, could eventu­
ally prove to be most sensitive of all to the basic 
traffic data input. 

In this paper, we consider the reliability of 
classified traffic count data produced by manual and 
automatic means. Recent work on the accuracy of 
manual classified counts suggests that even for 
closely supervised, well-conducted surveys, results 
are much less reliable than might commonly be sup­
posed. Automatic classification offers opportuni­
ties to overcome some accuracy problems but instead 
can lead to errors of a different nature than those 
resulting from manual enumeration. 

We begin by reviewing available evidence on the 
reliability of manual classified traffic counts. 
Next, two automatic classification systems, for 
which results are presented in a number of accuracy 
studies, are described. Road-sensor design and 
software are two key areas in automatic classifica­
tion, so the scope for their improvement is consid­
ered. Finally, the relative merits of automatic and 
manual classification are assessed in the context of 
the current state of the art. 

MANUAL CLASSIFIED TRAFFIC COUNTS 

At first sight, manual classified traffic counting 
appears a straightforward task. Passing vehicles 
are recorded for predetermined time periods either 
by marking different sections of survey forms or by 
hand-operated counters in order to build up a pie-
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ture of the traffic flow disaggregated by vehicle 
class. In practice, however, this simple procedure 
gives rise to considerable scope for error. Vehi­
cles can be missed, double counted, wrongly identi­
fied, or entered in the wrong place. There are many 
reasons why these mistakes occur. For example, enu­
merators are locally recruited temporary staff whose 
motivation and skill may vary considerably. Count­
ing can be a tedious process; it requires extended 
concentration, which may easily be broken. The 
importance of the data may be far from obvious to 
temporary staff, so the apparently harmless inven­
tion of results may prove a strong temptation. 
Close supervision or performance checks are dif­
ficuJ.t and time-consuming, so sanctions against 
carelessness are rare and rewards for vigilance are 
generally nonexistent. 

Even where counts are properly conducted and well 
supervised, there is evidence to suggest that re­
sults can be unreliable. The U.K. Department of 
Transport compared simultaneous counts by a dedi­
cated full-time team with those of teams locally 
recruited for routine census work at three sites 
(2). Although no consistent biases emerged, there 
were considerable variations in both absolute totals 
and percentage of discrepancies. It was concluded 
that errors were apparently serious, both in abso­
lute and percentage terms. 

Further comparisons are described in an internal 
note of the U.K. Department of Transport, the re­
sults of which are summarized elsewhere (3_). The 
results suggest that 95 percent confidence limits on 
16-h total flows are probably within ±10 percent 
but that considerably greater intervals apply to 
most individual vehicle classes: 

Vehicle Class 
Two-wheeled motor vehicles 
Cars and taxis 
Buses 
Light trucks 
Other trucks 

95 Percent Confidence 
Limit (%) 
±35 
±10 
±37 
±24 
±28 

There was some evidence of difficulty in distin­
guishing "light" from "other" trucks, despite 
special markings carried by U.K. trucks; the in­
terval fell to ±18 percent for all freight vehi­
cles combined. However, the greatest percentage of 
errors is seen in two distinctive categories-­
motorcycles and buses. 

In view of these major discrepancies in 16-h 
counts, how good will peak-period data prove to be? 
The answer must be almost certainly that they will 
be worse, since there is less scope for compensating 
errors within shorter-duration counts. Moreover, at 
peak periods, enumerators will be fully stretched, 
and more vehicles may be missed or guessed. Our 
test with simultaneous film recording of traffic 
flows shows that even highly motivated research 
ohservers find it impossible to count with high 
accuracy and are often unaware that they have made 
mistakes. In less-controlled surroundings the 
problems are likely to be still more severe. 

The quality of manual classified traffic counts 
can clearly give cause for concern. When coupled 
with the errors of sampling, scaling, and fore­
casting, the errors of manual enumeration may well 
be sufficient to produce suboptimal design or man­
agement decisions based on wrong information. 
Whether anything can be done about this at reason­
able cost, for example, through the greater use of 
microprocessor-based automatic vehicle classifica­
tion, is another question. This question is con­
sidered in the remainder of this paper. 
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Figure 1. Typical sensor configuration for simple classification. 
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SIMPLE AUTOMATIC CLASSIFICATION 

For many routine purposes such as the determination 
of PCE traffic flows, simple classification into a 
small number of vehicle categories may well be suf­
ficient. One type of automatic vehicle classifier 
already available counts vehicles into separate bins 
according to their overall lengths. Tests are de­
scribed on the accuracy of such a system, a 12-bin 
speed or 4-bin length classifier manufactured by the 
Golden River Corporation. 

When configured as a length classifier, this por­
table microprocessor-based system records classified 
traffic flows disaggregated into length categories 
specified by the user. The system's main component 
consists of a roadside processing unit sealed with 
its rechargeable battery pack into a cast aluminum 
case and linked to inductive-loop sensors in the 
road. A complementary retriever unit is connected 
to the roadside processor for the initial configura­
tion of the system and for the recovery of data at 
intervals as required. 

The road sensors consist of up to three pairs of 
matched inductive loops; each pair of loops is loca­
ted in a single traffic lane (Figure 1). A wide 
range of loop dimensions will be accepted by the 
equipment, but typical loops would be 1. 5 m long by 
2.5 m wide (4 ft 11 in by 8 ft 2 in) spaced 5 m (16 
ft 5 in) apart. The loops can either be cut into 
permanent slots or be attached temporarily to the 
road surface. 

The classifier operates by timing vehicles be­
tween the two loops to give individual vehicle 
speeds. These data on speed and on the vehicle's 
presence time over each loop allow vehicle lengths 
to be calculated. Each vehicle is logged into one 
of four counting bins according to its estimated 
length. By the selection of appropriate length 
bands, simple vehicle classification is practicable 
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into categories of motorcycles, cars, small trucks, 
and heavy vehicles. Total flows in each class are 
recorded in memory at intervals of between 1 min and 
24 h as preset by the user. 

One optional output for use in setting up the 
system consists of individual vehicle speeds or 
lengths, which appear on the liquid crystal display 
on the front panel of the retriever unit. This fa­
cility was used in tests on the accuracy of the sys­
tem for individual speed or length comparisons. In­
dependent speed che.cks were carried out by precise 
timing of vehicle leading axles between pairs of 
pneumatic tubes, located next to the inductive loops 
of the speed and length classifier. Classifier 
length measurements were compared with vehicle man­
ufacturers' data following manual identification of 
vehicle makes. The accuracy of the independent mea­
surements has been assessed elsewhere (i_). 

Precise timing was carried out by using a por­
table roadside microcomputer. A' machine code rou­
tine was written for a Golden River Environmental 
Computer to scan the sensors and increment a 32-bit 
counter between signals on successive tubes. The 
routine was calibrated by using a stopwatch over in­
tervals of 30 min to 1 h, which gave a count rate of 
23 485/s. Repeated short-duration checks against a 
microsecond-resolution advance timer showed no sta­
tistically significant systematic error and a random 
standard error of ±0.11 ms (±0.02 percent). 

Hand-written recording of vehicle speeds, 
lengths, or makes was only possible at low flows. 
In other cases, individual vehicle results were dic­
tated into a portable tape recorder or where possi­
ble were recorded automatically in the portable 
roadside computer memory. At the busiest site, im­
mediate identification of vehicle makes was imprac­
tical, so a cinecamera was triggered by a road 
sensor to provide a photographic record of each 
vehicle. Vehicle makes were subsequently identified 
from the film. 

The three sites selected for accuracy checks of 
the speed and length classifier were each of dis­
tinctive character. The first was a 6-m (20-ft) 
two-way internal-access road on the University of 
Nottingham campus, which provided a low-speed, low­
volume site at which private cars predominate. The 
second site was an urban dual two-lane highway with 
a 65-km/h (40-mph) speed limit that carried fairly 
high volumes of general mixed traffic and buses. 
The final site was a rural high-speed single-lane 
highway with local dualing at intersections. Its 
modest traffic volumes included a higher proportion 
of commercial vehicles than those of the other sites. 

SIMPLE CLASSIFICATION ACCURACY RESULTS 

The results of individual vehicle speed comparisons 
are summarized below (1 km/h = 0.6 mph): 

Site 
Low 

speed 
(1) 

Low 
speed 
(2) 

urban 
High 

No. of 
Vehicles 
204 

215 

327 
161 

Mean 
Speed 
(km/h) 
32.82 

31.29 

61. 65 
71. 54 

Systematic 
Difference 
(km/h) 
-0.32±0.08 

-0.49±0.06 

-0.09±0.05 
-0.99±0.09 

Random 
Difference 
(km/h) 
±1.10 

±0.86 

±0.87 
±1.07 

Speed measurement forms the first stage of length 
classification, so its accuracy is of considerable 
interest. The two sets of results presented for the 
low-speed site correspond to measurements on dif­
ferent days. 
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At the low-speed and the high-speed sites there 
were significant systematic differences between the 
speed measurements of the classifier and the inde­
pendent system. A proportion of the differences may 
be due to systematic error in the independent speed 
measurements. Another factor, however, could be the 
matching of loop pairs for speed measurementi pre­
cise geometry and equality of loop feeder lengths 
appear to be of considerable importance. Systematic 
errors could if necessary be overcome by individual 
site calibration. 

The random discrepancies in speed measurements do 
not vary greatly between sites. A proportion of the 
discrepancies is simply due to rounding to the near­
est kilometer per hour on the liquid crystal dis­
play, which of itself would account for about ±0. 3 
km/h. A smaller proportion will be due to errors in 
the independent speed measurements. The remaining 
random error in the speed measurements is unlikely 
to be of importance in vehicle classification. 

The results of the individual vehicle length com­
parisons are given below (1 m = 3.2 ft): 

Systematic Random 
No. of Difference Difference 

Site Vehicles (m) (m) 
Low speed 91 -o. 70±0.06 ±0.54 
Urban 276 -0.90±0.04 ±0.68 
High speed 105 -0.17±0.06 ±0.64 

Lengths are systematically underestimated at all 
sites, apparently due to the use of two-turn loops 
instead of the three turns normally recommended by 
the manufacturer. The variations between sites are 
probably associated with different feeder lengths 
and indicate a need for individual site calibration. 

Random errors are also significanti they are of a 
similar order of magnitude at each site. The main 
contributor to random error appears to be differ­
ences in the lateral position of vehicles. The tab­
ulation below shows how vehicles passing over either 
edge of the loop have their lengths systematically 
underestimated in relation to those near the cen­
ter. At this site the loop width was 2 m (6 ft 7 
in) (1 m = 3.2 ft): 

Distance from Curb 
to Nearside Wheel 
(m) 

0.0-0.9 
0.9-1.2 
1. 2-1. 4 

No. of 
Vehicles 
12 
22 
60 

Systematic 
Difference 
(m) 

-1.36 
-1.02 
-0.74 

Figure 2. Zones of detection for three-turn rectangular loop. 

I cm= 0. 39 in 
ALONG LANE ACROSS LANE 
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Distance from Curb Systematic 
to Nearside Wheel No. of Difference 
!ml Vehicles !ml 
1.4-1.6 58 -0.67 
1. 6-1. 8 68 -0.89 
1.8-2.1 43 -0.96 
>2.1 5 -1.24 

These results provided a strong indication that 
the variations in length measurement were associated 
principally with the characteristics of inductive 
loops rather than those of the measuring equipment. 
The effective length of loops appears to vary con­
siderably with the lateral position of vehicles as 
well as with feeder lengths and number of turns. 
With this in mind, some laboratory and field trials 
were carried out at the University of Nottingham 
into the fundamental properties of inductive-loop 
layouts. 

The laboratory tests set out to examine the mag­
netic fields of loops by breaking them down into 
three component parts at right angles. Experimental 
techniques have been described in detail elsewhere 
(~). The experiments aimed to produce contour maps 
that show the limits of the zone of detection for 
each component of the loop's magnetic field. 

Typical contour plots for a three-turn rectangu­
lar loop are shown in Figure 21 the heights of the 
zone of detection are shown in centimeters. The 
loop was a one-third scale model of a 2. 8-by-2. 0-m 
configuration (9 ft 2 in by 6 ft 7 in). 

For a two-dimensional body such as a thin steel 
plate, detection results when the component of the 
magnetic field cuts it at right angles. Thus detec­
tion begins when a vehicle's front panel enters the 
horizontal field running along the traffic lane. It 
ends as the rear panel leaves the equivalent down­
stream field. Vehicles crossing the edge of the 
loop can be picked up as their side panels cut the 
horizontal field running across the traffic lane. 
The curvature of these field boundaries is such that 
the loop's effective length changes continuously 
across its width. These findings were confirmed in 
a number of field trials. 

Experiments with a wide variety of loop layouts 
indicated that although this basic problem cannot be 
wholly overcome, it can be reduced by the adoption 
of broader loops of rectangular outline. The over­
all width must be limited, however, by the need to 
prevent the zones of detection from spreading too 
far into adjacent lanes. 

These basic limitations of the loop sensor con-
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strain the a~curacy of simple vehicle classification 
by using loops alone. The effect of the errors 
will, however, depend on the vehicle length catego­
ries selected in relation to the distribution of 
lengths within the traffic stream. Misclassifica­
tion will only affect vehicles whose lengths are 
similar to the category boundary values, and even 
here random errors will tend to cancel out. Classi­
fication accuracy will also be heavily dependent on 
lane discipline at the survey point, which varies 
considerably from site to site. Preliminary results 
from U.K. sites suggest that simple classification 
can be reasonably reliable based on vehicle length 
from loops alone. 

One weakness of length classification is its in­
ability to distinguish buses from long freight vehi­
cles., An additional parameter, chassis height, can 
be estimated from the strength of the loop signal, 
providing opportunities for the extension of simple 
classification to this additional vehicle category. 
The problems of chassis height measurement are dis­
cussed in later sections. 

DETAILED AUTOMATIC CLASSIFICATION 

In cases where more detailed information is needed 
or where more accurate results are sought, a more 
complex form of automatic vehicle classification may 
be necessary. The accuracy tests described in this 
paper were carried out on a detailed classification 
system that was developed by the U .K. Transport and 
Road Research Laboratory (TRRL) • It consists of 
permanent sensors in the road for vehicle detection 
and a roadside, mains-powered microprocessor system 
for the calculation of various parameters permitting 
detailed vehicle classification. 

The road sensors consist of one inductive loop 
and two triboelectric axle sensors per lane, as 
shown in Figure 3. Sensor dimensions can be varied 
(these are specified as initial data to the micro­
processor system) , although standard layouts have 
been used at most classification sites to'date. The 

Figure 3. Sensor configuration and roadside equipment for detailed classification. 
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axle-detector spacing is usually 1 m (3 ft 3 in) , 
and loops are typically 2.8 m long by 2.0 m wide (9 
ft 2 in by 6 ft 7 in) . 

The roadside equipment includes loop-detector 
electronics and axle-detector signal-processing 
units, as well as the microprocessor and its periph­
erals. These initial interfaces transform raw 
pulses from the sensors into square-wave signals 
suitable for input to the microprocessor. The mi­
croprocessor itself is an RCA 1802 COSMAC single­
board machine with lSK EPROM holding the classifica­
tion software and 2K RAM for temporary data 
storage. Permanent recording is on magnetic car­
tridge. The system is shown in Figure 3. 

The classification system resolves road sensor 
signals to 1-ms timing for the calculation of vehi­
cle parameters. The first parameter, vehicle speed, 
is calculated from the times of the leading axle on 
successive axle detectors. Given the speed, wheel­
base lengths are derived from the time intervals be­
tween axles on a single-axle detector. Overall 
length is estimated from the vehicle's presence time 
over the inductive loop. Finally, chassis height is 
estimated from the strength of the inductive loop 
signal to assist discrimination between certain 
classes of vehicle with similar wheelbase and over­
all lengths. The detector signals from a typical 
vehicle are shown in Figure 4. 

The microprocessor compares the vehicle parame­
ters of wheelbase, overhang, and chassis height with 
limiting values held in memory. When a parameter 
match is found, the vehicle class is identified. 
Twenty-five separate categories of vehicle are dis­
tinguished by the existing system, which allows con­
siderable flexibility in modes of aggregation to 
suit the requirements of individual users. The ve­
hicle categories are shown in Figure 5. 

Output from the system is available in real time 
as a vehicle-by-vehicle listing. More commonly, 
summaries are produced and stored on magnetic car­
tridge at intervals specified by the user. The sys­
tem is capable of producing data on vehicle flow, 
time headway, speed, class, wheelbase, and overall 
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Figure 4. Sensor time sequence diagram. 
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caravan or trailer 

31 Rigid 2 axle heavy 6 5 goods vehicle 

32 Rigid 3 axle heavy • goods vehicle 

33 Rigid 4 axle heavy A SS g\Jods vehicle 

34 Rigid 3 axle h~avy •£ s goods vehicle 

35 Rigid 4 axle heavy • 530 goods vehicle 
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TIME 

Class Vehicle 
nc 

45 

46 

51 

52 

53 

54 

55 

56 

61 

62 

dcscriptio11 

Rigid 2 axle HGV • • +1 axle caravan I or treilE:r 

Ri~ld 2 axlo HGV 

' +2 oxle (cl ose I •• coupled) tt.aill?r 

Artie, 2 axle tractor ... 
+1 axle semi-trailer 3 
Artie, 2 a :cle tractor .. 
+2 axle s-emi-trailer II 
Artie, 3 axle tractor. 
+1 axle semi-trailer ~ I 
Artie, 3 11xlt'I tractor • 
+2 axle semi-trailer -_.... II 
Artie, 2 aiclt tractor .. 
+3 axle 1f,ml-trailer Ill 
Artie. 3 dxle tractor. 
+3 axle semi-trailer .._.. M Ill 
Bus or coach, 2 axle 

I • Bus or coach, 3 axle 

II • 
Vehicle with 7 or ---more axles 

1 N Vehicle with 1 a~1e ~ounted 

2N 2 axle vehicle not otherwis~ classified 

JN 3 axle vehicle not otherwise classiried 

4N 4 a Kie vehicle not othe1 wise classified 

SN 5 axle vehicle nN otherwise classilied 

6N 6 axle vehicle not otherwise cla~sified 

TRRL VEHICLE CLASS LISTING COMPATIBLE WITH EEC REGULATION R1108/70 
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length for four lanes of traffic with capacity flow 
in each lane. 

As an example of the classification methodology, 
consider the problem of correctly classifying the 
following three types of four-axle vehicle: 

1. Class 22, car + two-axle trailer: 
2. Class 46, rigid two-axle truck + two-axle 

(closed-coupled) trailer: and 
3. Class 52, two-axle tractor + two-axle semi­

trailer. 

The classification program contains the vehicle di­
mension r eference table, which for these three cate­
gories consists of the values given in Table l. 

From Table 1 it can be seen that the class-46 ve­
hicle can be identified without using the chassis 
height code. Separation of classes 46 and 52 occurs 
on the second wheelbase dimension, and similarly 
classes 46 and 22 are separated by the first wheel­
base. The separation between classes 22 and 52, 
however, is based on the chassis height code if and 
only if the wheelbase or wheelbases actually overlap. 

Similar data are held in memory for other cate­
gories of vehicle: limiting values for the appropri­
ate parameters are specified. Should the software 
fail to find a match to any of the 25 recognized 

Table 1. Typical U.K. vehicle dimensions for detailed classification. 

Wheel base ( m) Chassis 
Height Overhang 

Vehicle Class 2 3 Code (m) 

21-22 1.90-2.95 l.90-6.00 0.50-1.30 l, 2, or 3 0-12.75 
51-55 1.90-3.51 3.76-15.0 1.05-2.50 0 0-12.75 
41-46 2.96-9.20 1.90-3.75 1.05-2.50 Not used 0-12.75 

Table 2. Detailed classification accuracy under free-flow conditions. 
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classes, the vehicle is logged according to its num­
ber of axles but is otherwise unclassified. Further 
details of the system and its operation are given 
elsewhere (.§_ ,z > • 

ACCURACY OF DETAILED SYSTEM 

In order to assess the accuracy of the detailed 
classification equipment, photographic logging of 
vehicles has been carried out at four test sites. 
Vehicle class, as identified from film, has been 
compared with the microprocessor class assignment 
for some 15 000 vehicles in rural and urban loca­
tions in order to determine the capabilities of the 
system in a range of traffic flow regimes. At other 
sites, classifier output has been compared with the 
results of manual classified counts. 

Accuracy studies undertaken by TRRL at two rural 
sites, where free-flow conditions prevail, suggest 
that the overall accuracy of classification is about 
92 percent <2> • Accuracies are lower for certain 
classes of vehicle where particular problems are met 
in discriminating between similar parameters. uni­
versity of Nottingham accuracy studies (8) indicate 
that under free-flow urban traffic conditions, over­
all accuracy remains quite high. However, as con­
gestion levels, bringing slow-moving traffic and 
poor lane discipline, accurate classification be­
comes increasingly difficult. 

The accuracy of each installation has been as­
sessed by the compilation of accuracy matrices, 
which compare microprocessor and visual classifica­
tion. Summaries of the matrices are provided in 
Tables 2 and 3, which indicate the accuracy of 
classification for the more common vehicle types. 
The results allow compensating errors betwen classes 
where they occur. 

Table 2 shows that at the rural sites, despite 

Rural Site" Urban Siteb 

Observed Classifier Percentage Filmed Classifier Percentage 
Vehicle Class Total Total Error of Error Total Total Error of Error 

0 57 40 -17 30 127 61 -66 52 
1 4159 3976 -192 5 5712 5979 +267 5 
2 266 392 +126 47 781 508 -273 35 
21-22 56 56 34 43 +9 26 
31 319 357 +38 12 675 641 -34 5 
32-35 43 43 121 128 +7 6 
41-46 4 4 25 31 +6 24 
51-55 71 70 -1 2 239 226 -13 5 
61 39 41 +2 5 55 42 -13 24 
N-classes 44 +44 1 99 +98 
Missed 53 46 

8 0vera11 accuracy= 92 percent. bOverall accuracy= 90 percent. 

Table 3. Detailed classification accuracy for experimental installations. 
Noncongested Conditions" 

Filmed Oassified Percentage 
Vehicle Class Total Total Error of Error 

0 23 12 -11 49 
1 2103 1879 -224 11 
2 283 483 +200 71 
21-22 21 21 0 
31 336 347 +11 3 
32-35 55 44 -11 20 
41-46 3 9 +6 200 
51-55 112 98 -14 13 
61 15 17 +2 13 
N-classes 1 100 +99 
Missed 64 23 

3 0verall accuracy = 80 percent. 
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the high overall accuracy, a major source of error 
lies in the classification of cars, vans, and light 
commercial vehicles. The physical similarity be­
tween cars and vans makes their separation diffi­
cult, so classification errors can be substantial. 
Under free-flow urban conditions, results are com­
parable with those for the rural situation, as indi­
cated in Table 2. The problem of misclassification 
of cars, vans, and two-axle trucks is again apparent. 

The serious underestimation of motorcycles (class 
0) in Table 2 (urban site) is related to the use of 
commercial axle detectors that have low sensi ti vi ty 
and do not cover the full width of the lane. A new 
form of axle detector developed by TRRL has been 
used at other sites. This tends to reduce problems 
of motorcycle classification by its greater sensi­
tivity and its coverage of the whole traffic lane. 

Both urban and rural studies indicated that the 
most common causes of misclassification are related 
to vehicles changing lanes. Discrimination of cars, 
vans, and two-axle trucks is dependent on an estima­
tion of chassis height; vehicles with higher chassis 
give weaker signals. The same effect can, however, 
result when vehicles cross the side of the loop 
rather than its center. Although special routines 
are provided in the detailed classifier to detect 
straddling vehicles and adjust their chassis-height 
values, the resulting classification was still not 
wholly satisfactory. 

To help resolve these problems, reference was 
again made to the University laboratory study of 
loop zones of detection (~) . Model tests and full­
scale field trials led to the selection of a series­
wound double rectangular loop in each lane, as shown 
in Figure 6. The tests indicated that more uniform 
length and chassis height measurements could be ex­
pected from these loops for a wider range of vehicle 
lateral positions. The new loops were installed at 
an experimental urban site with a high proportion of 
straddling vehicles following an upstream merge. 
Another feature of the site is congestion during 
busy periods. 

weaving at the two urban sites was compared by 
using the Golden River Environmental Computer system 
for precise timing of vehicles across three pneu­
matic tubes. Parallel tubes were used to measure 
vehicle speeds, and the time on a third, diagonal 
tube was used to indicate lateral position. Figure 
7 shows the distribution of vehicle lateral posi­
tions at both installations; the higher proportion 
of straddlers is found at the experimental site. 

Two separate accuracy studies were undertaken at 
this site during free-flow traffic conditions. The 
first, a routine comparison of microprocessor and 
film classification, indicated an overall accuracy 
of about BO percent (Table 3). The reduced accuracy 
was clearly related to the high proportion of strad­
dling vehicles, as shown for example in the number 
of cars wrongly classed as vans. It was not clear 
from these results whether the new loop design had 
helped to limit the problem of misclassification. 

Further comparisons were therefore carried out by 
using a test vehicle at a range of lateral posi­
tions. The variations of loop output with lateral 
position for the conventional and experimental loops 
are shown in Figure B. The experimental loops do 
give a more consistent signal over a wider range of 
lateral positions than the conventional loops. On 
the other hand, they do not cover as wide an area as 
had been expected from the experimental tests. One 
factor in this result appears to be interference be­
tween the fields of adjacent loops. 

To summarize, the results of the tests on de­
tailed automatic classification suggest that high 
overall accuracies can be obtained at many free-flow 
sites where the incidence of lane changing is low. 
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Some classes of vehicle still create problems, and 
work is continuing on further improvements. Accu­
rate classification under urban traffic conditions 
presents greater difficulties, and research in this 
area is at an earlier stage. 

EVALUATION OF U.S. AUTOMATIC CLASSIFICATION SYSTEMS 

Six automatic classification systems have been 
tested by the Materials and Research Division of the 
Maine Department of Transportation for the Federal 
Highway Administration (FHWA) (10) • Standard accu­
racy checks were applied to six currently available 
systems. Five of these, including the Golden River 
four-bin length classifier, provided simple classi­
fication on the basis of axle configuration or vehi­
cle overall length. The detailed classification 
system developed at TRRL was also tested at the 
Maine facility. 

Accuracy checks included the cross-comparison of 
automatic classification listings with film records 
and the collection of summary data over longer test 
periods (overnight and over weekends). 

Results for the simple classification systems 
indicated that the poor reliability of both the ve­
hicle sensors and the classification equipment was a 
major source of error in vehicle identification. 
Pneumatic tubes were subject to both accidental and 
purposeful damage, which resulted in axle under­
counting, and in addition poor signal definition 
from the air-switch units led to axle undercounting 
even when pneumatic tubes were not damaged. 

Systems that used inductive loops for vehicle 
sensing were found to be oversensitive to minor ad­
justments of, or variations in, the loop-detector 
units. The tests with the Golden River four-bin 
length classifier were limited by equipment faults, 
but a small sample of results suggested that loop 
problems were less noticeable and that the measure­
ment of vehicle overall length was generally more 
accurate. 

It was noted that the classification schemes used 
in the various simple classification systems did not 
offer adequate detail when compared with the data­
collection requirements suggested by FRWA. Not only 
were the schemes limited by the number of categories 
used, but there could be misleading overlap between 
the categories that were defined. 

Tests with the TRRL detailed classification sys­
tem indicated that many of the above problems were 
overcome through the use of both loop and triboelec­
tr ic sensors. Specific accuracy checks indicated 
that overall and axle-length measurements were ex­
tremely good and that speed measurements were to 
within ±1.61 km/h (1 mph) of recordings made with 
radar equipment. In all, 98 percent of the 3000 
vehicles checked were classified correctly, despite 
a much-reduced initial calibration procedure. 

FURTHER DEVELOPMENTS IN DETAILED CLASSIFICATION 

Additional research is currently in progress at both 
the University of Nottingham and TRRL to further im­
prove the performance of the detailed vehicle clas­
sifier. Areas of interest include classification 
under congested traffic conditions, further improve­
ments to sensor response for lightweight vehicles, 
further modifications to loop design for chassis 
height discrimination, and the classification and 
counting of bicycles. 

Software development has been studied at the Uni­
versity by means of a classification simulation run 
on a minicomputer. Raw signals from the sensor 
array, recorded in conjunction with films of vehicle 
flow, provide data on which modifications to soft-
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Figure 6. Experimental sensor configuration for detailed classification. 
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Figure 7. Distribution of vehicle lateral positions at two 
urban sites. 
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Figure 8. Variation of loop output with vehicle lateral position. 
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ware can be tested and appraised. Under experi­
mental conditions, fine tuning of parameter boundary 
values and new procedures for dealing with unclassi­
fied vehicles have improved the accuracy of classi­
fication from 88 to 97 percent on a sample of 5000 
vehicles . It r emains to be seen whether these im­
provements will prove sufficiently robust to be 
transferable to routine conditions in the field. 

The development of queue conditions over the ve­
hicle sensors is known to cause a substantial reduc­
tion in the accuracy of classification. A major 
problem is the sensing of very slow-moving vehicles 
at the loops and axle detectors. Modifications to 
hardware are already in progress, and software de­
velopment of special routines for congested condi­
tions will follow in due course. 

A final area of interest to many potential users 
of the system is the development of temporary sen­
sors for a portable detailed classification system. 
Recent improvements to temporary loop sensors have 
resolved some problems in this area, but temporary 
axle detectors other than pneumatic tubes have yet 
to be developed to satisfactory standards. There 
are many possibilit i es for developments in this area 
and further work is currently proposed. 

CONCLUSIONS 

The evidence available on manual classification sug­
gests that its accuracy is very much lower than 
might commonly be supposed. When coupled with the 
errors of sampling, scaling, and forecasting, the 
reliability of manual classified traffic count data 
must be seriously open to question. 

The development of microprocessor equipment for 
traffic data collection makes long-term monitoring 
at increased numbers of survey points a practical 
p r oposition . Apart from the probability of improve­
ments in classification accuracy by using automatic 

LOOP e e CABLES • 

e quipment, the increased coverage through space and 
time should lead to smaller sampling errors, which 
gives a more reliable base for the forecasting of 
future traffic levels. Furthermore, in conjunction 
with axle-load data, the availability of more de­
tailed classified count information might also pay 
dividends in the fields of pavement design and high­
way maintenance. 

The accuracy of simple vehicle classification by 
using loops alone may be limited more by the in­
herent properties of loop sensors than by the micro­
processor equipment or software adopted in any 
particular case. Nevertheless, provided that clas­
sification sites are chosen well and on-site cali­
bration is carried ' out with care, the evidence sug­
gests that classification can be sufficiently 
accurate for the determination of PCE flows. Simple 
vehicle classification equipment that uses only 
pneumatic-tube sensors has been shown to be less 
reliable due to the susceptibility of these sensors 
to accidental or purposeful damage. 

The detailed vehicle classification equipment, 
which uses loop and axle sensors, is now commer­
cially available from the Golden River Corporation. 
Further developments to the system are currently 
under way in a number of areas, and progress can be 
anticipated in the extension of the system to a full 
range of urban sites as well as to portable equip­
ment for temporary census points . The widespread 
application of these techniques may still be some 
years ahead, although some applica tions for routine 
traffic monitoring are already under way. 

In the longer term, the falling cost of micro­
processor equipment together with increasingly high 
labor costs point to an inevitable growth in the 
attractiveness of automatic vehicle classification 
techniques. Some of those techniques will be ap­
plied in the future: others are available now. If 
properly used, their application should lead to more 
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reliable classified count data for highway planning 
and operation. 
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Application of Counting Distribution for High-Variance 

Urban Traffic Counts 

STEPHEN G. RITCHIE 

This paper describes an application of the negative binomial counting distribu· 
tion to high-variance, short-period traffic counts collected on urban arterial 
roads during peak-period flow conditions. The data were collected at four sites 
downstream from signalized intersections in metropolitan Melbourne, Australia, 
during 1977-1978. Alternative parameter estimation techniques are described 
as well as a simple method for dealing with transient traffic demand patterns. 
The results of these comparative evaluations suggest that the negative binomial 
distribution can be applied quite simply to commonly occurring problems that 
involve high-variance traffic counts and that results are often markedly better 
than those for other elementary counting distributions such as the Poisson dis· 
tribution. 

The inherent statistical variability of many flow­
related attributes of urban transportation systems 
has important implications for the design, opera­
tion, and use of such systems, e.g., in transit ser­
vice design (1), traveler mode choice (2,3), and 
delay at sign-iilized intersections (_!) , to -n;.ne only 
a few. 

Moreover, continued emphasis on transportation 
systems management policies has increased the need 
for more accurate and realistic models that are use­
ful for urban traffic systems analysis. Such models 
include basic statistical distributions of traffic 
characteristics such as vehicle headways, speeds, 
gap acceptances, and vehicle arrivals at a point, 
which are routinely used by traffic engineers and 
analysts in analyzing traffic system performance, 
designing and improving traffic facilities, and de­
veloping traffic simulation models. 

This paper is concerned specifically with 

traffic-counting distributions, which describe the 
distribution of vehicle arrivals at a point during a 
given time interval. Gerlough and Huber (~l have 
described the elementary traffic-counting distribu­
tions, namely, the Poisson distribution, the bino­
mial distribution, and the negative binomial (NB) 
distribution. These statistical distributions have 
been known to traffic engineers and analysts for 
some time. However, the NB distribution has not en­
joyed the same wide application as the Poisson dis­
tribution to traffic problems, despite its apparent 
superiority under fairly common variable flow-rate 
conditions where the variance of traffic counts is 
high. 

In this paper an application is described of the 
NB counting distribution to high-variance traffic 
counts and more specifically to short-period counts 
collected on urban arterial roads during peak-period 
flow conditions. Alternative parameter estimation 
techniques are described as well as an explicit but 
simple method for dealing with transient traffic de­
mand patterns (i.e., time-varying traffic flow 
rates). The results of these comparative evalua­
tions are presented. 

STOCFASTIC NATURE OF URBAN TRAFFIC FLOWS 

In an urban arterial road network, one of the major 
factors that influences the nature of vehicle arriv­
als on a link is the presence of upstream signalized 
intersections. The cyclic interruption to flow pro-


