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reliable classified count data for highway planning 
and operation. 
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Application of Counting Distribution for High-Variance 

Urban Traffic Counts 

STEPHEN G. RITCHIE 

This paper describes an application of the negative binomial counting distribu· 
tion to high-variance, short-period traffic counts collected on urban arterial 
roads during peak-period flow conditions. The data were collected at four sites 
downstream from signalized intersections in metropolitan Melbourne, Australia, 
during 1977-1978. Alternative parameter estimation techniques are described 
as well as a simple method for dealing with transient traffic demand patterns. 
The results of these comparative evaluations suggest that the negative binomial 
distribution can be applied quite simply to commonly occurring problems that 
involve high-variance traffic counts and that results are often markedly better 
than those for other elementary counting distributions such as the Poisson dis· 
tribution. 

The inherent statistical variability of many flow
related attributes of urban transportation systems 
has important implications for the design, opera
tion, and use of such systems, e.g., in transit ser
vice design (1), traveler mode choice (2,3), and 
delay at sign-iilized intersections (_!) , to -n;.ne only 
a few. 

Moreover, continued emphasis on transportation 
systems management policies has increased the need 
for more accurate and realistic models that are use
ful for urban traffic systems analysis. Such models 
include basic statistical distributions of traffic 
characteristics such as vehicle headways, speeds, 
gap acceptances, and vehicle arrivals at a point, 
which are routinely used by traffic engineers and 
analysts in analyzing traffic system performance, 
designing and improving traffic facilities, and de
veloping traffic simulation models. 

This paper is concerned specifically with 

traffic-counting distributions, which describe the 
distribution of vehicle arrivals at a point during a 
given time interval. Gerlough and Huber (~l have 
described the elementary traffic-counting distribu
tions, namely, the Poisson distribution, the bino
mial distribution, and the negative binomial (NB) 
distribution. These statistical distributions have 
been known to traffic engineers and analysts for 
some time. However, the NB distribution has not en
joyed the same wide application as the Poisson dis
tribution to traffic problems, despite its apparent 
superiority under fairly common variable flow-rate 
conditions where the variance of traffic counts is 
high. 

In this paper an application is described of the 
NB counting distribution to high-variance traffic 
counts and more specifically to short-period counts 
collected on urban arterial roads during peak-period 
flow conditions. Alternative parameter estimation 
techniques are described as well as an explicit but 
simple method for dealing with transient traffic de
mand patterns (i.e., time-varying traffic flow 
rates). The results of these comparative evalua
tions are presented. 

STOCFASTIC NATURE OF URBAN TRAFFIC FLOWS 

In an urban arterial road network, one of the major 
factors that influences the nature of vehicle arriv
als on a link is the presence of upstream signalized 
intersections. The cyclic interruption to flow pro-
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duced by signals operating under peak-period traffic 
conditions tends to result in pulsed flows on the 
links of an urban network. At points downstream 
from a signal it can often be observed that during 
the early portion of a cycle, traffic flow is high 
and in the form of near-saturated platoons. Later 
in the cycle the flow is often light: it then con
sists of turning vehicles that have filtered through 
the upstream intersection and any other vehicles 
that might have entered the link at minor cross 
streets. 

As Gerlough and Huber (~) have noted, if a 
traffic-counting interval corresponds to the green 
portion of the signal cycle or to the complete sig
nal cycle, cyclic effects may be masked. However, 
if the counting interval is short (e.g., 10 s), 
there will be periods of high flow and periods of 
low flow. Thus, combining such short-period counts 
into one distribution results in a high variance, 
which produces a variance-to-mean ratio signif i
cantly greater than 1. 0, the value expected if ar
rivals were random and Poisson in nature. 

In practice, substantial nonrandomness can also 
be exhibited by urban traffic counts with counting 
intervals considerably longer than 10 s. For ex
ample, Newell (.§_) has asserted that typical vari
ance-to-mean ratios of 60-s counts lie between 1. 0 
and 1. 5. Williams and Emmerson (ll obtained an av
erage variance-to-mean ratio of 1. 51 in Newcastle, 
England, and Miller (!!l noted that observations in 
Birmingham generally produced values between 1.0 and 
2. 0 ~ thongh one ~et of data gave ~- ratio of just 
over 4.0. The data analyzed in this paper indicate 
that variance-to-mean ratios of 10-s counts taken on 
multilane urban arterial roads downstream from traf
fic signals can be at least as high as the values 
mentioned above. Also, invariably, as the variance 
of the counting distribution increases relative to 
the mean, the NB distribution provides a better fit 
to the data than a Poisson distribution. 

However, a complication is that during peak peri
ods, traffic demands are typically time dependent, 
so that significant degrees of nonstationarity are 
likely to exist in time-series short-period traffic 
counts collected in the field. In theory, this fac
tor invalidates all elementary counting distribu
tions that are appropriate only for time-stationary 
processes and suggests that more advanced time
series analyses may be necessary under such condi
tions (9,10). Such analyses, of course, probably 
exceed ;otonly the experience and time constraints 
of practicing traffic engineers, but also their com
putational resources and accuracy requirements. In 
addition, elementary statistical distributions, and 
particularly the Poisson distribution, have for many 
years been applied widely by traffic engineers to 
problems such as the analysis and description of ve
hicle arrivals at a point, the design of turn pock
ets, warrants for traffic signals and pedestrian 
crossings, as well as accident analysis and simula
tion of traffic flows (11). 

It is highly likely tha~ .such distribution• will 
also prove valuable in the. future, under a range of 
flow conditions, principally due to their relative 
simplicity. Accordingly, it is suggested in this 
paper that when an elementary counting distribution 
is required for a situation in which the variance of 
counts is high or is expected to be high, the NB 
distribution should be given greater consideration 
than in the past. This distribution will typically 
be more realistic and will provide a better fit to 
the data than a Poisson distribution. The remainder 
of the paper is concerned with empirical estimation 
and application of the NB distribution. 

Transportation Research Record 905 

DATA 

The data used in this analysis were collected in 
1977-1978 at several sites in metropolitan Mel
bourne, Australia, on arterial roads downstream from 
signalized intersections. Four surveys w~re CC'J"~ 
ducted, and data were collected manuaD.y by using 
digital counters. In each survey, a 10-s counting 
interval was used. This particular interval was 
chosen because the results of the analyses were to 
be used in a traffic simulation model, a description 
of which may be found elsewhere (12). The charac
teristics of each survey site are briefly described 
below. 

The site for surveys 1 and 2 was about 10 km from 
the Melbourne central business district (CBD) on a 
major divided (three-lane) circumferential arterial 
road. Survey durations were 7:30-9:30 a.m. for sur
vey 1 and 3:30-5:15 p.m. for survey 2. The counting 
station was located approximately 300 m downstream 
from a signalized intersection with cycle length of 
about BO s. 

Survey 3 was conducted about 19 km from the Mel
bourne CBD on a major divided (three-lane) radial 
arterial road. The counting station was located ap
proximately 250 m downstream from an intersection 
with signal cycle length of 100 s. The survey dura
tion was 7:15-10:00 a.m. 

Survey 4 was conducted about 16 km from the Mel
bourne CBD on a four-lane undivided radial arterial 
road. The counting station was located approxi
mately 600 m down.stream from an intersection with 
signal cycle length of 90 s and about 250 m down
stream from a signalized pedestrian crossing. The 
survey duration was 7:00-9:15 a.m. 

At each site, the adjacent land use was residen
tial. For surveys 1-3, the weather was cool with 
intermittent showers, whereas for survey 4, the 
weather was cool and dry. 

As expected, time trends in the peak-period flows 
were evident from 15-min flow profiles for each sur
vey. Analysis of the mean and variance of the 10-s 
counts from each survey was then undertaken for both 
individual 15-min intervals and each whole peak pe
riod of counts. These results are shown in Table 
1. The high variance-to-mean ratios for these sur
veys, both for 15-min and whole-period counts, are 
notable, particularly for survey 3 (Table 1), where 
variance-to-mean ratios of the 10-s counts in some 
15-min periods exceeded 5.0, whereas that for the 
whole period was 4.652. These results are consis
tent with the high degree of nonrandomness, which is 
to be expected in such urban traffic counts but 
which has of ten been unaccounted for in previous 
analyses and studies. 

NB DISTRIBUTION 

De so r ipt ion 

Unlike the single-parameter Poisson distribution, 
the NB distribution iF specified by two parameters, 
the mean m and a para1uter k. Both these parameters 
must be estimated from data or at l&ast from knowl
edge about the mean an1 variance of the data. The 
main issue, however, concerns the procedure for es
timating the parameter k, as discussed in the next 
section. It can be shown that the Poisson distribu
tion is obtained as a limiting form of the negative 
binomial when the parameter k approaches infinity. 
Furthermore, the NB distribution can be obtained 
from the Poisson distribution when the Poisson pa-
rameter is 
but varies 

constant during each counting interval 
between intervals with an Erlang (or 
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Table 1. Analysis of 10-s traffic-count 
resu Its for each study. Time 

Survey 1 a 
7:30 a.m. 
7:45 a.m. 
8:00 a.m. 
8:15 a.m. 
8:30 a.m. 
8:45 a.m. 
9:00 a.m. 
9:15 a.m. 

Whole period 

Survey 3a 
7:15 a.m. 
7:30 a.m. 
7:45 a.m. 
8:00 a.m. 
8:15 a.m. 
8:30 a.m. 
8:45 a.m. 
9:00 a.m. 
9:15 a.m. 
9:30 a.m. 
9:45 a.m. 

Whole period 

Avg Flow 
(vehicles/IO s) 

2.522 
2.689 
2.856 
3.233 
3.022 
2.822 
2.000 
1.714 
2.615 

5.944 
5.911 
6.156 
6.111 
6.033 
6.333 
5.811 
4.689 
4.166 
3.544 
3.244 
5.268 

al 5-min periods starting at tjmes listed below. 

Pearson Type III) density function (13). 
The NB probability P(n) of n arrivals in a given 

counting interval can be written in several forms, 
one of which is 

P(n) = (k/(rn + k)] k (rn/(rn + k)JR 
(
n+k- 1) 

k-1 
(1) 

where 

n = 0,1,2, ••• , 
m mean arrival rate, 
k distribution parameter (k > OJ , and 

(
n+k-1) 

k -1 
= (n + k -1)!/n! (k -1)! 

Recursion equations have also been derived: 

P(o) = [k/(rn + k)] k (2) 

P(n) = [(n T k - 1)/n] [rn/(rn + k)] P (n - 1) for n;. 1 (3) 

Parameter Estimation 

Large-sample methods of parameter estimation for the 
NB distribution have been summarized by Williamson 
and Bretherton (14). The principal techniques are 
the method-of-moments (MM) procedure and the 
maximum-likelihood (ML) method. In the MM pro
cedure, the first two distribution moments are 
simply estimated from the sample moments and then 
used to estimate the parameter k. On the other 
hand, although the ML method is generally more effi
cient, it is somewhat more complex computationally. 
It involves finding parameter estimates that maxi
mize the sample-likelihood function, which gives the 
relative likelihood of observing the sample data as 
a function of the parameter values (15). 

Let f (n) be the observed frequency of n arrivals 
per counting interval (n= O, 1, 2, ••• ), z be the 
highest value of n observed, and N be the total num
ber of observations (or counts) • Then 

N = L f(n) (4) 
n=O 

Variance/ 
Mean Ratio 

1.142 
1.577 
1.311 
1.675 
1.480 
1.916 
1.494 
1.765 
1.613 

4.009 
4.139 
4.662 
5.415 
5.432 
5.003 
4.946 
5.011 
2.919 
3.596 
2.316 
4.652 

Time 

Survey 2a 
3:30 p.m. 
3:45 p.m. 
4:00 p.m. 
4:15 p.m. 
4:30 p.m. 
4:45 p.m. 
5:00 p.m. 

Whole period 

Survey 4a 
7:00 a.m. 
7:15 a.m. 
7:30 a.m. 
7:45 a.m. 
8:00 a.m. 
8:15 a.m. 
8:30 a.m. 
8:45 a.m. 
9:00 a.m. 

Whole period 

Avg Flow 
(vehicles/ l 0 s) 

1.056 
1.622 
1.611 
1.411 
1.767 
1.544 
1.367 
1.483 

3.478 
5.133 
5.256 
5.433 
4.889 
4.189 
4.211 
4.200 
3.600 
·~.488 

and the sample mean m is given by 

rn = (1/N) L nf(n) 
n=O 

The sample variance v is given by 

' ~ 
v= (1/N(N-l)J j N n~o n

2
f(n)- [n~o nf(n)J

2 ! 

Variance/ 
Mean Ratio 

1.136 
1.158 
1.321 
1.750 
1.565 
1.574 
1.865 
1.503 

2.728 
3.000 
2.662 
3.412 
2.971 
3.154 
3.130 
3.420 
2.483 
3.084 
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(5) 

(6) 

By using the MM procedure to estimate the NB pa
rameters, the mean arrival rate m is obtained from 
Equation 5, whereas the parameter k is obtained from 

k=rn/[(v/m)-1] (7) 

where m and v are obtained from Equations 5 and 6, 
respectively. From Equation 7, it is apparent that 
the variance-to-mean ratio must be greater than 1 to 
enable the NB distribution to be fitted. Also, as 
this ratio approaches unity (the value for a Poisson 
process) , k approaches infinity (also the limiting 
value for a Poisson process). In addition, it is 
clear that the MM procedure requires only the sample 
mean and either the sample variance or the variance
to-mean ratio. The importance of this is that a 
realistic counting distribution may be specified 
with only limited sample data, simply on the basis 
of a mean flow rate and a suitably chosen variance
to-mean ratio. Limited empirical evidence, to be 
described in the next section, suggests that the 
variance-to-mean ratio of 10-s traffic counts on 
urban arterial roads increases nonlinearly with the 
mean flow rate. The variance-to-mean ratios in 
Table 1 for surveys 1-4 fall in the range 1.1-5.4. 
Also, as noted earlier, typical values for 60-s 
traffic counts have been found to lie between LO 
and 2.0. These values may provide some guidance in 
selecting a suitable default variance-to-mean ratio, 
especially when the variance of counts cannot be 
calculated directly from sample data in a specific 
application. 

In the ML approach to estimating the distribution 
parameters, the mean arrival rate m is found, as be
fore, from Equation 5. However, an ML estimator of 
the parameter k is found from the solution for k 
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(other thank=~> of the equation g(k) = 0: 

g(k) = N log (1 + (m/k)] - {ff(!)+ f(2) + ... + f(z)] /k} - { [f(2) + f(3) 

+ ... + f(z)] /(k + !)} - ... - [f(z)/(k + z - l)] (8) 

The equation g(k) = 0 can be solved directly on many 
computers and on some programmable calculators by 
using a standard routine for finding the roots of an 
equation. Alternatively, an iterative solution pro
cedure such as the Newton-Raphson method (16) may be 
readily programmed for a microcomputer as well as 
for some hand calculators. By using the Newton
Raphson method, the value of k for the (j + 1) st 
iteration is given by 

(9) 

where k j+l • kj are values of k for the (j + 1) st 
and jth ite r ations and g(k) is as in Equation B. 

g'(k)= [-Nmfk(m + k)] +{ [f(J) + f(2) + ... + f(z)] fk2
} 

+ {[1'(2)+ 1'(3) + ... + f(i)] /(k + 1)2
} 

+ . .. + ff'(z)/(k + z - 1)2 1 (10) 

In applying Equation 9, a starting value of k 
(kol can be found by using the MM procedure. How
ever, if initial values of k much greater than the 
root are taken, spurious results can be obtained. 
In fact, the ML results reported in this paper were 
obtained by using Equation 9 with a fixed initial 
value of ko ~ 1. 0 because, in acme case a, .... v ...... ~. 

gence could not be obtained with an MM initial value. 
To decide when an acceptably accurate estimate of 

k has been obtained from Equation 9, a decision rule 
in the form of a convergence criterion is neces
sary. The criterion used allowed a maximum relative 
error of 10"' or 0.01 percent. Iterations were 
terminated when the following inequality was satis
fied: 

(11) 

Once convergence was achieved, the ML estimate of k 
was obtained from 

(12) 

Transient Traffic Demands 

In view of the time dependencies exhibited by the 
peak-period traffic counts for surveys 1-4, a method 
was proposed that might account more satisfactorily, 
in a very simple fashion, for the underlying non
stationarity. This involved fitting separate dis
tributions to the 10-s counts in each 15-min inter
val and aggregating the resulting frequencies to 
form an aggregated whole-period frequency distribu
tion for each survey. The purpose of this procedure 
was to investigate whether the aggregated distribu
tion of counts would fit the data better while at 
the same time explicitly recognize the transient 
nature of the traffic demand pattern for each sur
vey. These results, together with those for the 
normal method of estimating a single distribution on 
the whole sample of peak-period counts, are pre
sented in the next section. 

RESULTS 

A number of comparative analyses were conducted by 
using each of the four data sets from surveys 1 
through 4. These analyses examined several issues, 
including methods of applying the theoretical count
ing distributions to peak-period counts, parameter
estimation techniques, and goodness-of-fit statis
tics. More specifically, for each of the four 
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surveys the overall goodness of fit of both Poisson 
and NB distributions to the coll'ected data was de
termined, two methods of applying the Poisson and NB 
distributions to the peak-period counts were inves
tigated, and in each analysis that involved the NB 
distribution, two methods of parameter estimation 
were used, namely, the MM procedure and the ML 
method. However, before further discussion of these 
analyses and results, the goodness-of-fit statistics 
are described. 

All goodness-of-fit statistics were based on r 
pairs of observed and predicted frequencies. For 
both 15-min and whole-period frequency distribu
tions, the cumulative predicted probability distri
bu.tion (Poisson or NB as appropriate) was used to 
derive r. The minimum value of r was chosen that 
satisfied the following: 

r-1 

L P(r);,. 0.99 (13) 
r=O 

w~ere P(r) is the predicted probability of r vehicle 
a:rivals in a 10-s counting interval. 

Consideration was given to several goodness-of
fit statistics, in particular to Kolmogorov-Smirnov 
and chi-square statistics. However, the nonpara
metric Kolmogorov-Smirnov test was not employed be
cause the predicted distribution parameters were 
estimated from the sample (17). Further, use of 
chi-square statistics would have involved several 
difficulties. These centered on the statistical 
requirement for a minimum predicted frequency per 
cell, which would necessitate combining some ad
jacent frequencies in the tails of distributions and 
would lead to difficulty or ambiguity in the inter
pretation of chi-square statistics for different 
models applied to the same data set. 

This difficulty or ambiguity may arise not be
cause of the minimum frequency requirement per se, 
but because different cell structures, different 
numbers of cells, different numbers of parameters 
estimated from the observed data and required for 
the calculation of predicted frequencies, and hence 
different degrees of freedom can be defined for dif
ferent models. Also, the large sample strictness 
inherent in these statistics results in very strict 
tests and a tendency to reject the fit of many 
models unless they fit the data extremely well (18). 

It was therefore judged desirable to use statis
tics that could be readily interpreted and used to 
compare the goodness of fit of different counting 
distributions to the same data set. Accordingly, a 
mean absolute deviation statistic (D) and coeffi
cient of determination (R 2 ) were chosen. 

The absolute deviation (d) between any observed 
and predicted frequency is given by 

d = IO(n) - F(n)I (14) 

where O(n) is the observed frequency of n arrivals 
per counting interval and F(n) is the predicted fre
quency of n arrivals per counting interval. 

The mean absolute deviation (D) between the ob
served and predicted frequency distribution is then 
given by 

r-1 

D = L IO(n) - F(n)l/r (15) 
n=O 

with r defined as before. The main advantage of 
using absolute differences for D is that if the pre
dicted frequency distribution underestimates some 
frequencies and overestimates others, positive and 
negative differences cannot cancel to give a false 
measure of the overall goodness of fit. 

The coefficient of determination was obtained 
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Table 2. Fitted counting distributions 
m• and results for each survey. 

Survey Distribution (vehicles/ I 0 s) k Iterations D R2 

Poisson 2.615 28.42 0.61 
(2.496, 2.734) 

NB-MM 2.615 4.266 13.58 0.9! 
(2.457 ' 2.772) (2.377' 6.156) 

NB-ML 2.615 3.439 7 11 .93 0.93 
(2.457' 2.772) (2.554, 4.323) 

2 Poisson 1.483 26.10 0.79 
( 1.388, 1.578) 

NB-MM 1.483 2.949 6.73 0.99 
(1.364, 1.601) (1 .823, 4.076) 

NB-ML 1.483 2.639 6 5.28 0.99 
(1.364, 1.601) (1.741 , 3.538) 

3 Poisson 5.268 69.51 0.13 
(5.125 , 5.411) 

NB-MM 5.268 1.442 14.79 0.79 
(4.913, 5.622) (1.232, 1.653) 

NB-ML 5.268 1.024 2 8.94 0.94 
(4.913, 5.622) (0.908, 1.140) 

4 Poisson 4.488 50.84 0.01 
( 4.342, 4.634) 

NB-MM 4.488 2.153 13.63 0.76 
(4.200, 4.776) (1.778, 2.529) 

NB-ML 4.488 1.547 4 9.12 0.89 
(4.200, 4.776) (1 .331 , 1.763) 

895 percent confidence interv als form and k are shown in pa rentheses and are based on Anscombe's study (!2). 

from a linear regression between the predicted and 
observed frequencies of arrivals for each survey. 

As noted earlier, whole-period fits of the count
ing distributions were determined by estimating the 
distribution parameters from the whole sample of 
10-s counts for each survey. The results are shown 
in Table 2 for the Poisson distribution, NB distri
bution with parameter estimation by the MM procedure 
(NB-MM), and NB distribution with parameter estima
tion by the ML method (NB-ML). It can be seen that 
the Poisson fits were inferior to the NB distribu
tion, especially for the higher-flow, higher vari
ance-to-mean ratio surveys, 3 and 4. For these two 
surveys the Poisson fits were very poor. For all 
surveys, the NB-ML distributions gave better results 
than the NB-MM distributionsi the difference was 
most noticeable for surveys 3 and 4. 

For each survey, distribution parameters were 
then estimated separately for each 15-min interval. 
The frequency distributions so formed were aggre
gated over each peak period to form aggregated 
whole-period fits, shown below: 

Survey Distribution 0 R' 
1 Poisson 25.32 0.66 

NB-MM 12.97 0.92 
NB-ML 11.88 0,93 

2 Poisson 24.39 0.81 
NB-MM 7.05 0.98 
NB-ML 5.74 0.99 

3 Poisson 59.44 0.05 
NB-MM 15.18 0.76 
NB-ML 9.60 0.92 

4 Poisson 47. 77 o.oo 
NB-MM 13.52 o. 77 
NB-ML 9.35 0.89 

This approach resulted in some improvement in the 
Poisson fits, but these were still much worse than 
either NB fit. In general, there were only marginal 
changes in the NB fits compared with estimating the 
NB parameters on the whole sample as in Table 2, al
though surprisingly these changes indicated slight 
reductions in the goodness of fit of the NB distri-
butions. 

Because of the marked improvement in statistical 
goodness of fit of the NB distributions over the 
Poisson distributions, it was decided to inspect 

some of the derived NB frequency distributions more 
closely. Figures 1 through 4 show the observed and 
aggregated NB-ML frequency distributions for each of 
the four surveys. At least two features emerge from 
these figures. First, although the overall fits ap
pear very good, the NB distribution tended to under
estimate slightly the number of intervals with zero 
arrivals, which were largely caused by the cyclic 
interruption of the upstream signals. Second, the 
tails of the fitted distributions were much longer 
than those of the observed distributions. One rea
son for this latter feature is probably that, like 
the Poisson distribution, the NB distribution treats 
vehicles as if they were points. Physical con
straints on the maximum number of vehicles able to 
pass a point in a given time interval are conse
quently unaccounted for. Such constraints arise, 
for instance, from finite vehicle lengths, quite 
apart from any inability or unwillingness on the 
part of drivers to minimize the gap between their 
vehicle and the one in front of them. Figures 3 and 
4 for surveys 3 and 4, the higher-flow multilane 
surveys, also show that the NB distribution tended 
to underestimate the frequency of arrivals in the 
mid- to higher range of observed arrivals. These 
arrivals probably consisted of reasonably compact 
platoons, which are characteristic of flows down
stream from a signal during peak periods. However, 
the NB distribution also tended to overestimate the 
frequency of low (but greater than zero) arrival 
intervals. 

Finally, it was observed that the sample vari
ance-to-mean ratios for the 10-s counts in each 
15-min interval for each survey tended to vary with 
the mean flow rate. The following relationship was 
therefore fitted (with t-statistics in parentheses): 

v/m = 1.203 + 0.0956 m2 R2 = 0.81 
(7.34) (12.13) (16) 

where m and v are as defined previously in Equations 
5 and 6 and shown in Table 1 for each survey. The 
constant in Equation 16, 1.203, is statistically not 
significantly different from 1.0, the variance-to
mean ratio value for a Poisson process. Equation 16 
may thus be interpreted to suggest that as the mean 
flow rate approaches zero, the limiting counting 
distribution is a Poisson distribution, whereas the 
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Figure 1. Aggregated frequency distribution: Survey 1. 
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Figure 2. Aggregated frequency distribution: Survey 2. 
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departure from a Poisson process increases with the 
mean flow rate. 

Although Equation 16 is based on results for the 
15-min intervals in each survey, it was able to pre
dict quite accurately (i.e., well within a 95 per
cent confidence interval) the whole-period variance
to-mean ratio for each survey. Clearly, if further 
traffic surveys under a broader range of geometric 
and traffic conditions, and counting intervals, than 
those in surveys 1-4 confirmed a simple functional 
relationship such as that in Equation 16, applica
tion of the NB distribution would be further simpli
fied. In that case, the distribution parameters 
could be estimated (by using the MM procedure) 
solely from the mean flow rate, as for the Poisson 
distribution. 

CONCLUSIONS 

The analysis in this paper suggests that the NB dis
tribution can be applied quite simply to commonly 
occurring problems involving high-variance traffic 
counts with results often markedly better than those 
for other elementary counting distributions, such as 
the Poisson distribution. 

Several methods of fitting counting distributions 
to time-dependent peak-period counts were investi-
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Figure 3. Aggregated frequency distribution: Survey 3. 
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Figure 4. Aggregated frequency distribution: Survey 4. 
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gated, as well as alternative parameter-estimation 
techniques. From the results, it would appear that 
unless there is a particular reason to explicitly 
account for the temporal aspect of peak-period traf
fic demands, as may be the case in a traffic simula
tion study, the simpler method of estimating the NB 
distribution from the whole sample of peak-period 
traffic counts is to be preferred. Furthermore, 
from a practical viewpoint, the somewhat simpler MM 
parameter-estimation technique may often be pre
ferred to the ML ·method, although the latter yields 
more efficient parameter estimates. In any case, it 
is clear that a relatively simple alternative to the 
Poisson distribution exists, which can yield a much 
better representation of high-variance, short-period 
urban traffic counts. 

It is hoped that this paper might stimulate re
newed interest in application of the NB counting 
distribution, pa.rticularly on the part of practi
tioners concerned with urban traffic systems 
analysis. 
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Delay Models of Traffic-Actuated Signal Controls 

FENG-BORLIN AND FARROKH MAZOEYASNA 

Traffic-actuated signal controls have more control variables for engineers to deal 
with than a pretimed control. The increased sophistication in their control logic 
provides greater flexibilities in signal control but also makes the evaluation of 
their performance more difficult. At the heart of the problem is that traffic de
lays cannot be readily related to the control variables of a traffic-actuated control. 
This prompts practicing engineers to rely mostly on short-term, subjective field 
observations for evaluation purposes. To provide an improved capability for 
evaluating alternative timing settings, delay models are developed in this study for 
semiactuated and full-actuated controls that employ motion detectors and se
quential phasing. These models are based on a modified version of Webster's 
formula. The modifications include the use of average cycle length, average green 
duration, and two coefficients of sensitivity that reflect the degree of sensitivity 
of delay to a given combination of traffic and control conditions. Average cycle 
length and average green duration are dependent on the settings of the control 
variables and the flow pattern at an intersection. They can be estimated by exist
ing methods. 

Traffic-actuated controls employ relatively complex 
logic to regulate traffic flows. This type of logic 
infuses a much-needed flexibility into signal con
trol, but it also makes the performance evaluation 
of a traffic-actuated control difficult. A major 
problem is that traffic delays resulting from such a 
control cannot be readily related to the settings of 
the control variables and the flow pattern at an 
intersection. 

Current understanding of traffic delays at a 
traffic-actuated signal is obtained only through 
sensitivity analyses with the aid of computer simu-

lation models. Tarnoff and Parsonson <ll have pro
vided a detailed review of the findings of these 
simulation studies. Computer simulation models, 
however, have significant limitations. 

For one thing, practicing engineers may not be 
familiar with the nature and the capability of such 
models. Furthermore, to ensure broad applicabili
ties, simulation models are often difficult to use 
in terms of data needs, requirements of computer 
facilities, and the time one has to spend to learn 
how to use them. As a result, practicing engineers 
still rely mostly on short-term, subjective field 
observations in evaluating timing settings. 

An alternative to the use of computer simulation 
is to develop a model in the form of a formula or a 
set of formulas. Such a model would allow expedient 
evaluation of a large number of alternatives and 
would be particularly useful in searching for opti
mal ways of using a signal control. This in turn 
could encourage practicing engineers to improve the 
efficiency of existing signal controls. 

To partly satisfy this need, this paper presents 
a set of delay models for semiactuated controls and 
full-actuated controls that employ motion detec
tors. These delay models are calibrated in terms of 
simulation data. They are applicable to signal con
trols at individual intersections when single-ring, 
sequential phasing is used. The traffic flows con-


