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Table 5. Best-fit parameter values versus platoon size. 

Platoon Size Range 

5-10 Vehicles 11-15 Vehicles 16-20 Vehicles 

Site °' (J °' (J °' (J 

I 0.21 0.99 0.24 0.99 NA NA 
2 0.21 0.92 0.24 0.94 NA NA 
3 0.08 0.99 0.14 0.97 0.12 0.97 
4 0.09 0.98 0.11 0.98 0.13 0.97 
5 0.06 0.99 0.10 0.98 0.16 0.96 
6 0.13 0.97 0.16 NA NA NA 

Note: NA= sufficient data not available. 

low-friction roadway characteristics by previous re
search. In addition, the dispersion of passenger
car platoons is less on a four-lane divided arterial 
street than it is on a two-way two-lane arterial 
street. Also, larger platoons experience more dis
persion than do smaller platoons. 

In regard to calibration of the TRANSYT platoon 
dispersion model, the average results of this re
search indicate that appropriate values of the dis
persion factor a and the travel-time factor a 
for passenger-car platoons under low-friction traf
fic flow conditions on urban arterial streets are as 
follows: 

Type of Street 
Two-way two-lane 
Four-lane divided 

!!. 
0.21 
0.15 

i 
0.97 
0.97 

Thus, in order to more accurately account for the 
patterns of passenger-car platoon flow for these 
conditions, the input to the TRANSYT program should 
be revised to enable the user to specify the travel
time factor a as well as the dispersion factor a. 
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Evaluation of Dynamic Freeway Flow Model By 
Using Field Data 

N.A. DERZKO, A.J. UGGE, AND E.R. CASE 

An attempt to calibrate and validate a dynamic freeway model by using real 
data from Queen Elizabeth Way in Ontario, Canada, is described. The model 
used in this research is the one developed by H. Payne; one of the Phillips 
kinetic models was also applied for comparison purposes. The overall conclu
sion is that the models exhibit instabilities in their behavior and do not track 
real road data correctly. 

Traffic simulation models are playing an increas
ingly important role in the development of urban 
freeway traffic management systems because they pro
vide an economical and safe way to evaluate alterna
tive system designs and control strategies prior to 
implementation. Freeway models in common use today 
are adequate for simulating traffic conditions over 

a period of hours but are not sufficiently realistic 
for the research and development of new surveillance 
and control techniques for real-time applications. 
For such applications, the model must have the abil
ity to realistically represent the shorter-term dy
namic phenomena (e.g., shock waves) characteristic 
or traf'tic tlow. These cumlideratiumi l<o!ll tu d t:<o!
view a few years ago of the state of the art of 
traffic flow models and eventually to the conclusion 
that the Payne model (1-6) seemed to be the most 
realistic and the most developed of the very few dy
namic models available at the time. Unfortunately, 
although it had been tested to some degree, the 
model had never undergone a comprehensive validation 
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with actual f.reeway data. A.s a result, the decision 
was made to attempt to calibrate and validate the 
Payne model by using data from the Queen Elizabeth 
Way (QEW) Freeway Surveillance and Control System 
(7). That effort is described in this paper. 
- Shortly after work started on validation of the 

Payne model, we became aware of a Boltzmann-type 
statistical model that was being developed by Phil
lips (8-10). It is a significant improvement over 
an earlier model developed by Prigogine (11) and was 
particularly interesting for two reasm:IB. First, 
Phillips shows that a family of continuum models of 
varying levels of refinement can be derived by tak
ing the various moments of the governing stochastic 
partial-differential equations. One of these con
tinuum models is virtually identical to the Payne 
model but has some important differences (which af
fect model performance at high densities) that were 
later incorporated into the Payne model for compari
son purposes. The second reason the Phillips formu
lation was interesting was because it focused atten
tion on the statistical nature of the calibration 
and validation process, which in turn provided the 
basis for developing a realistic methodology. 

The results so far have not been encouraging, for 
reasons that are not yet entirely understood. Never
theless, it was felt that our experience would pos
sibly be of interest to others working in traffic 
flow model research and development. 

MACK AND FREFLO MODELS 

The MACK model was developed by Payne C!.-1.l as an 
analytical tool for evaluating ramp control plans 
and strategies for freeways. It is a macroscopic 
model that represents traffic flow in terms of ag
gregate measures such as density, speed, and flow 
rate. 

The FREFLO model (4-6) is a successor to MACK. 
Both models have the same-theoretical foundation. 

In both models, the freeway is divided into sec
tions. The time period is divided into uniform time 
intervals. Each model consists of a set of vehicle 
equations and a corresponding set of dynamic speed
density equations. Traffic performance data are ac
cumulated for traffic flow in each freeway section 
defined. The first type of equation expresses the 
conservation of vehicles: 

where 

6t time interval, 
p section density [vehicles/(lane •mile)], 
n = time index, 
q flow rate across upstream boundary [ve

hicles/ (h • lane)], 
t number of lanes, 

6x section length (miles) , 
fon on-ramp volume (vehicles/h), and 

foff doff-ramp volume (vehicles/h). 

The dynamic speed-density equation is 

uf + 1 ~ uf - llt l uf (uj - uj_ i)/xj + (I /T)[uf - uc(Pj) 

(I) 

+ (v/pj)(pf+ I -pj)/flx;J} (2) 

where 

u = section mean speed (miles/h) , 
T,v relaxation and anticipation parameters, 

and 
Ue (p) equilibrium speed-density curve. 

The three groups of terms express three physical 
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processes. The first is convection; i.e., vehicles 
traveling at speed Uj-1 in the upstream sec.tion 
will tend to continue to travel at that speed as 
they enter the next section. The second term repre
sents the tendency of drivers to adjust their speeds 
to the equilibrium speed-density relationship. The 
third term expresses anticipation of changing travel 
conditions ahead, i.e., tendency to slow down if the 
density is perceived to be increasing. 

The conservation and dynamic equations are used 
together to update values from time n to time n + 1. 
Under conditions of uniform flow, 

qJ~\I = pjuf (3) 

and this relation is used when updating densities by 
means of the conservation equations. 

PHILLIPS MODELS AND THEIR COMPA.RISON WITH 
PAYNE MODEL 

The work of Phillips (8-10) introduces a description 
of traffic analogous to-that used in the kinetic 
theory of gases. 

we begin with a brief review of this description. 
Let x denote position along the highway and v de

note vehicle speed. At each time t, we define a 
function (essentially a probability density func
tion) <p(t,x,v) such that <p(t,x,v) dxdv gives the 
average number of vehicles found in the interval (x, 
x + dx) of road with speed in the interval (v, v + 
dv). We call <p the traffic-distribution func
tion. The description of phase space (x,v) is flex
ible. We could, for example, talk about a distribu
tion function for each lane of a multilane highway 
or for the truck component of traffic. 

The traffic density K(t,x) is found by integrat
ing: 

K(t, x) = fo- .p(t, x, v)dv (4) 

For many purposes, it is convenient to work with the 
function f(t,x,v), which gives the probability that 
a vehicle randomly chosen at point x will have speed 
in the range (v, v + dv). It is clear that the 
following relationship holds: 

.p(t, x, v) = K(t, x) f(t, x, v) (5) 

Phillips C!!.-.!.Q) derives a number of partial-dif
ferential equations (or models) satisfied by the 
moments of the traffic-distribution function. The 
Phillips model that most closely resembles Payne's is 

(oK/ot) + (oKu/ox) = o 
(ou/ot) + u(au/ox) = X(uc - u) - (I /K)(dP/dK)(ilK/ilx) 

where 

u = 

ue(K) 
X (K) 
P(K) 

mean speed, 
equilibrium speed-density relation, 
delay coefficient, and 
traffic-pressure function. 

(6) 

There are both strong similarities and very sig
nificant differences between the Payne and the Phil
lips models. A.lthough these have been discussed by 
Phillips, we present a more quantitative comparison 
here. 

Since the continuity equation is identical in the 
two models, we begin by rewriting the u-equations in 
a way that suggests finite difference conversions. 
Phillips' equation becomes 

(ou/ilt) = -u(ilu/ilx)- ((dP/dK)(oK/Kox)] -X(K)[u - u.(Kl] (7) 
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Figure 1. Comparison of 
A(K) and 1/T. 

Figure 2. Speed-density 
curves. 

Figure 3. Phillips pressure 
coefficient. 
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Payne's formulation is 

(au/at)= -u(a u/ax)(v/T)(aK/Kax )-(1/T)(u - u, ) (8) 

The tendency-to-equilibrium term is the last one 
in each of the above equations. A graph showing 
). (K) and l/T is given in Figure 1. The value of 
l/T shown is the MACK default value. The Phillips 
coefficient X(K) is calculated by using the 
following: 

(9) 

where Ko, Lo, Co, and Cr are constants given 
by Phillips (~, p. 12). The equilibrium speed-den
sity curves for Phillips and Payne are compared in 
Figure 2. Again, for Payn~'!! curve we us" Lia" MACK 
default curve: 

u,(K) = 107K3 - 2.31K2 +0.021 5K-7.4x w-s 

For Phillips, we use 

(JO) 
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where ~ = K/ (Ko - Kl and ui. ud, and Od 
are constants given by Phillips (~, p. 27). 

The two curves are qualitatively similar, but 
Payne's curve suffers a bit from the limitations im
posed by being cubic. In particular, Ue = 0 for 
K > 145 is unrealistic. 

The second-to-last terms in Equations 7 and 8 
also warrant comparison. In Phillips' equation, the 
term (dP/dK) (aK/Kax) arises out of traffic-pres
sure considerations, where (~, p. 64) 

P(K) = (oau~K)/ \u~ + I4.64<Ja[K/(Ko -Kll 2 I (11) 

In Payne's work, the counterpart (v/T) (aK/Kax) 
i9 called the anticipation term; The Phillips pres
sure coefficient is plotted in Figure 3. We note 
that tdP/dKI < 25. Payne's anticipation term 
is enormous bY comparison: ~/T = (3600 x 5)/15 
1200. 

With Phillips, it must be noted that dP/dK < 0 
for K > 62 vehicles/mile. This property will 
cause the mean traffic speed to increase for in
creasing density in this region. This surely cannot 
be correct. 

This completes the quantitative comparison of 
Payne's and Phillips' first-order mean speed equa
tions. Later in this paper we discuss the results 
of replacing the subroutine in MACK, which embodies 
a finite-difference version of Payne's differential 
equation. The consequences of the differences in 
the two equations become evident there. 

FREEWAY DATA 

The QEW Freeway Surveillance and Control System, lo
cated west of Toronto, provides continuous traffic
data collection, traffic-responsive control based on 
both mainline and ramp conditions, incident detec
tion, hardware-status monitoring, a performance 
evaluation, and reporting capability. The system 
has been described in detail by Case and Williams 
(2). Extensive data and information supplied from 
10 mainline detector stations and several ramp
meter ing installations served as an excellent input 
for our study of a dynamic freeway flow model. 

Specifically, the data and information collected 
during weekday peak hours in October 1978 have been 
used • 

PRELIMINARY STATISTICAL ANALYSIS 

The purpose of this section is to understand the 
substantial statistical fluctuations in real road 
data . 'T'he Phillips description of traffic is the 
one we adopt as the basis for our analysis. 

Flow Rate 

The distributions of detector output given here are 
for stationary conditions. If the expected flow 
rate is X vehicles per unit time, then the prob
ability of counting a vehicle in a small time inter
val T is XT. This type of situation leads to the 
Poisson distribution. Its properties are well 
known. The probability of k vehicles in time T is 

p(k) = (H)k exp(-AT)/k! (12) 

The mean of this distribution is 

E(k) = k~ 
1 

kp(k) =AT (13) 

and the variance is 

Var(k) = i; (k - AT)2 p(k) = H 
k = O 

(14) 
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The traffic-distribution function affects the 
counterdistribution solely through the constant A. 

We proceed to find the relation of A to the 
traffic-distribution function K(x)f(x,v). Since th. 
analysis is done at the fixed point x where the de
tector is located, we shorten the notation to 
Kf(v). During a time dt, v dtKf(v)dv vehicles are 
counted with speeds in the interval (v, v + dv). The 
weighting factor v enters because a faster vehicle 
will be picked up from farther upstream during any 
given counting interval 6t. Hence, K dtfovf(v)dv ve
hicles are counted altogether, so that 

A= K fo~ vf(v) dv (15) 

The reasoning in the previous paragraph produces the 
speed distribution as a by-product. The speed-dis
tribution function is avf (v), where a is chosen 
to make 

Jo~ avf(v)dv = I (1 6) 

The mean speed observed at the detector counter is 

v0 = E(v) =°'Jo~ v2 f(v)dv (I 7) 

It is important to note that this number may be dif
ferent from the actual mean speed, defined as 

v = Jo~ vf(v) dv ( 18} 

We note that 

v0 =(v 2 + a 2 )/V=v +(a/v)a (1 9) 

where a is the standard deviation of the random 
variable v. The variance of the observed mean speed 
is defined to be 

Occupa ncy 

suppose that p(t)dt gives the fraction of ve
hicles on the road with measured lengths in (t, 
t + dt). Since t is the length as measured by 
detectors, it must include any component contributed 
by the detector zone. We make the (not-altogether
j ustified) assumption that length is independent of 
speed. Then the probability that a passing vehicle 
has length in (t, t + di) and speed in (v, v + dv) is 
av f(v)p(i)dvdt. Such a vehicle contributes an amount 

L =max [(Q/v), 6tcoun<erl 

to the occupancy counter, where 6tcounter is the 
counting interval. We make the simplifying assump
tion that conditions are such that t/v < 6tcounter 
always; that is, 

f(v) = 0 for V .;; Qmax/f>tcoun<cr 

w~th this simplifying assumption, the expected oc
cupancy contribution per vehicle becomes 

E(L) = °' fo~ dQ fo~ dv(Q/v)vf(v)p(Q) = af Jo~ f(v)dv = aQ ( 20) 

The variance of 1 is 

V(L) = f o~ dQ f; <lv[(Q/v) - a&] 2 vf(v jp(Q) (21) 
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The calculations are simplified if we note that the 
assumed independence of v and i together with 
t/v = (l/v)t lead to the formulas 

E(Q/v) = E(Q)E( l/v) 

E[(Q/v)2] = (E(Q2)E(l/v2) 

from which 

Var(L) = E(Q 2 )E(l/v2
)- [E(Q)E(l/v)) 2 

= Var(Q)Var(l/v) + E(Q)2 Var(l/v) + E(l/v) 2Var(Qj 

(22) 

(23) 

(24) 

It can be checked that the standard deviation of 
a single length measurement is small relative to the 
mean of such a measurement. 

We shall see shortly that the dominant cause of 
variation in the output of the occupancy counter is 
the fact that the number of vehicles counted tends 
to follow the Poisson distribution, except at very 
high density. 

The occupancy counter records the sum S of a ran
dom number N (having Poisson distribution) of iden
tically distributed length measurements Li • This 
situation leads to the following formulas: 

E(S) = E(L)E(NJ 

Var(SJ = Var(L)E(N) + E(L)2 Var(N) 

= Var(L) + E(L) 2 E(N) (25) 

when N has a Poisson distribution. The mean occu
pancy reading, which uses Equations 13 and 15, is 

E(S)/T = A. E(L) (26) 

Density/Occupancy Ratio 

In using road data to check speed times density = 
flow rate, we first calculate speed times occu
pancy . If we substitute mean values for each factor 
on the left, we should obtain from Equations 19, 20, 
and 26 

u; v2 f(v)dv/J; vf(v)dv) (Ao&) 

The estimate of mean flow rate is 

A.=KJ; vf(v)dv cm 

from Equation 15. Now, consider the following esti
mate: 

Flow rate/(speed x occupancy) = u; vf(v)dvj 2u; v2 f(v)d vQ (28) 

which is a useful estimate for the density/occupancy 
(d/ o) ratio 1/1 only for very narrow distributions 
f (v) (which is often not the case) • The degree of 
bias in Equation 28 can be better judged from the 
following formula: 

Density/occupancy= (speed x density)/(speed x occupancy) 

= ( l/Q)[µ2/(µ2 + 0 2 )) (29) 

where ~ and a are the mean and standard devia
tion of v with respect to the density function 
f (v) • This means that the d/o estimates based on 
Equation 28 are too low. The correction factor is 

(µ 2 + 02)µ' = I+ (a/µ )2 (30) 

Calculations of this correction for road data we 
have been using yield correction factors < 1. 05 in 
most cases and < 1.10 for very broad distributions. 
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Figure 4. Evaluation procedure. 
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The evaluation was done by using MACK, a program 
that incorporates a finite-difference version of 
Payne's model. Currently, MACK has been superseded 
by FREFLO. However, the underlying finite-difference 
scheme describing the traffic dynamics is identical, 
as can be seen by a c,omparison of the UPDATE sub
routines in each. Consequently, we would expect 
similar results for FREFLO. 

MACK calculates the traffic-state functions (den
sity and mean speed) along the road at each time in
terval by using as input the initial state and the 
upstream on-ramp and off-ramp flow rates as func
tions of time. This corresponds to an initial
boundary-value problem for the underlying partial
differential equation. 

MACK is linked to the QEW road data files by 
means of a program that calculates the MACK input 
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information and produces a MACK input data set. The 
input of road geometry is also done in MACK input 
format to minimize modifications to MACK software. 

The evaluation procedure is summarized in Figure 
4, and Figure 5 shows the sectioning geometry and 
ramp configurations. 

STATISTICAL AND VISUAL COMPARISONS 

If we assume that the section deviations between 
MACK output and road data have approximately normal 
distributions and are independent for different road 
sections, then the normalized sum of squares of sec
tion deviations has a chi-square distribution and 
standard statistical theory can be used. 

As an example, we apply the test to evaluate how 
closely the density calculated by MACK agrees with 
the density derived from occupancy observations for 
one of our runs. The relevant figures are contained 
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Table 1. Calculated versus observed densities. 

Road Density Observed Density Calculated Estimated Standard 
Section (vehicles/mile) (vehicles/mile) Observed Density 

l 14.0 15.7 4.0 
2 18.0 16.3 4.0 
3 25.0 17.3 4.1 
4 53.0 18. l 4.2 
5 79.3 18.6 4.2 
6 86.4 18.7 4.3 
7 85.0 20.0 4.5 
8 76.9 21.2 4.6 
9 67.0 21.3 4.6 

10 62.6 21.4 4.6 
11 60.5 19.4 4.4 
12 60.0 23 . l 4 .8 

Note: 2-min data, fixed time; x2 = E[(observed- expected)/standardJ 2 = 5353. 

Figure 6. Speed-occupancy data. 

70 

80 

:-& 
50 .. 

Gi. ... 
l!lo : 

40 

i: ... 
~ 
Q 
w 
w ... 
"' 30 

20 

10 

SPEED·DENSITY CURVES: 

A - DENSITY • 2.0 x OCCUPANCY 

B - DENSITY = 2.5 x OCCUPANCY 

OEWDATASET N0.14 

TIME : 8:00 -8:30 AM 

10 20 30 40 50 tiO 70 

OCCUPANCY (%) 

in Table 1. A value of x' in this range has ex
tremely small probability (<< 0.005), which can be 
seen from a standard chi-square table with f = 12. 
The hypothesis is that the values calculated by MACK 
are the correct section density values. Under the 
circumstances, a reasonable conclusion is that MACK 
is not correct. 

A visual comparison is possible because MACK out
put includes a number of graphs and a density plot. 
Since our procedure generated road data output in 
the same format, a great deal can be learned by 
simply comparing plots. 

MODIFIED MACK 

When difficulties were experienced with MACK, it was 
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Figure 7. Speeds. 
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decided to try a modified version prepared by re
placing the original finite-difference scheme with 
one based on Equation 7. The relevant formulas are 
as follows: 

(3 1) 

qj1+ I = pjuj1 (32) 

ur I = uj - [ uj I (uj' - uj~ i)/ [l&j + &j-1 )/2] l + (t .. (pj )uj' - llc(Pj' I 

+ (dP/dKJ(pj J I (pj'+ I - p)' J/[pj'(fu<j + &j-1 )/2 ] l) tit] (33) 

where >.., ue, and 
Phillips. 

(dP/dK) are as defined by 

RESULTS 

We rely on visual comparisons in this presentation 
because they suffice for indicating the magnitude of 
the deviation between MACK output and road data. We 
describe selected output from a typical sequence of 
runs. The d/o ratio used is 2.0. This value of the 
d/o ratio has been standardized in all our runs in 
order to come as close as possible to preserving the 
continuity relationships: flow = speed times den
sity. It can be seen from Figure 6 that this value 
of the d/o ratio leads to a speed-density curve that 
is too far from the origin. This means, of course, 
that the equilibrium speed at any given density is 
too high. 

Figure 7 shows selected mean speed graphs for 
real road data. The corresponding output for MACK 
that uses the default equilibrium speed-density 
curve gives the same information from MACK output. 
The key feature to be noted is that the mean speeds 
increase and the road empties as time progresses in 
the MACK output, whereas the road data exhibit 
fairly steady conditions. The same pattern in terms 
of densities can be seen in Figure Ba and b. 

In an attempt to calibrate MACK, the speed-den
sity curve was shifted by scaling the density-occu
pancy axis. The effects of scaling are shown in 
Figure 6. A larger scaling constant produces a 
curve that is closer to the or ig1n, that is, one 
that yields a lower speed at fixed density. The best 
fit of speed-density curve to our observed scatter 
diagrams was obtained with a scaling constant of 
1.25 (i.e., density= 2.5 times occupancy). Use of 
the best-fit speed-density curve did not correct the 
road-clearing effects exhibited by MACK output (see 
Figure Be). 
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Figure 8. Densities. 
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Next, an attempt was made to see whether MACK 
would tro.ck roo.d do.ta correctly for some speed-den
sity curve, even if it did not fit the usual defini
tion of such a curve. Figure 8d shows a density 
plot for a scaling constant of 1.4 (i.e., den
sity= 2.8 times occupancy). Downstream and up
stream clearing is still evident. In addition, how
ever, density concentrations as in a traffic jam 
have appeared at section 4. When the scaling con
stant is increased to 1.4, the density concentration 
continues to coexist with upstream and downstream 
road clearing except that now an actual shock wave 
forms that moves upstream. 

Finally, the performance of our modification of 
MACK based on Phillips' differential equation was 
tested to check whether the differences in terms al
ready discussed could account for the poor MACK 
tracking properties. Figure 9 shows a density plot 
for the same run as the one presented in Figure 8. 
Once more we see that abnormally low and high den
sities coexist even for the speed-density relation 
provided by Phillips. 

DISCUSSION AND CONCLUSIONS 

The behavior we have witnessed in this series of 
runs is suggestive of an instability in the simula-
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tion method. There are several areas where the 
simulation method, which is actually a solution al
gorithm for a system of first-order partial-differ
ential equations, needs a more detailed study. The 
handling of the downstream boundary condition is 
responsible for the fact that density decrease and 
associated increases in speed move from the down
stream to the upstream end in all cases. It is also 
conceivable that the handling of the merging process 
has a significant effect on the relationship between 
speed and density. This effect does not seem to be 
large enough to cause the simulation error to con
centrate downstream of on ramps. These occur in the 
present geometry in sections 1, 7, and 12. 

It is also conceivable that a careful adjustment 
of the speed-density curves on a section-by-section 
basis may improve the fit between the simulation and 
road data for one particular data set. We must re
member, however, that the qualitative character of 
the simulation has shown itself remarkably sensitive 
to the simulator speed-density relation. The work 
simulator is emphasized because the curve that must 
be used to retard the road-clearing phenomena is far 
below the picture of speed versus density that one 
obtains in plots of real road data. Then, within a 
tiny range of curves, the shock phenomena set in. 

Each of these phenomena must be carefully ex
amined with regard to its statistical properties in 
designing a simulator that will properly track road 
data. They fall into the realm of fine tuning. we 
do not believe that they contain the seeds of the 
explanation and correction of the performance of 
MACK or for that matter any simulator based on a 
finite-difference method for solving a system of 
first-order differential equations governing mean 
density and speed. we hasten to note that for the 
MACK modification by using a differential equation 
based on Phillips' theory, the results were quanti
tatively worse than those for MACK. 

Well-Posedness of Partial- Differential Equation 

"Well-posedness" means that the solution must be 
unique and depend on the given data in a continuous 
fashion. 

we observe that either of the first-order models 
is a 2-x-2 system of first-order partial-differ
ential equations. The intuitively reasonable ini
tial-boundary value problem (IBVP) is outlined in 
Figure 10. That is, u(x,t) and K(x,t) are to be 
found, given initial states on t = O, 0 < x < L, 
given upstream traffic data (state) for x = O, 
t > O, and given on/off-ramp data for appropriate 
values of x and t > 0. 

Strictly speaking, the well-posedness of the IBVP 
needs proof. The method of characteristics is 
available to handle such questions for first-order 
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equations, and although our intuition about traffic 
flow strongly backs a conclusion that the IBVP is 
well posed, a study along these lines should be 
undertaken at some point in the light of the diffi
culties we have experienced. 

Finite-Difference Scheme 

In examining this aspect of a simulator, we must re
member that we are in fact trying to solve a sto
chastic problem in partial-differential equations. 

Several key questions emerge in looking at a 
finite-difference solution to the first-order IBVP: 

1. Given steady boundary conditions, does there 
exist a steady-state solution to the IBVP? 

2. Does the time-dependent state approach the 
steady state from any initial value? 

3. Do the effects of a momentary perturbation in 
a boundary condition die out as they would in a real 
traffic situation? (This is a key stability ques
tion.) If they do not, then the statistical fluc
tuations inherent in real road data make them unus
able as initial and boundary data. 

The use of MACK or FREFLO to track real road data in 
fact requires deeper knowledge than the above. we 
must, in fact, know something about the distribution 
of state variables generated from distribution of 
input data. These distributions should reflect sta
bility of the finite-difference scheme as already 
mentioned and they are needed to devise meaningful 
tests to determine whether the simulator is tracking 
faithfully. Techniques are available for tackling 
these questions, and at this point, it seems that 
they are well worth trying. 

Concluding Remarks 

The overall conclusion must be that MACK and FREFLO, 
by virtue of their identical underlying differential 
equation, exhibit instabilities in their behavior 
that make them unsuitable for use as simulators 
tracking real road data in the sense of solving an 
IBVP. Furthermore, it appears that the difficulties 
cannot be corrected by using the first-order differ
ential equation derived by Phillips. 

Numerous reasons can be advanced for the observa
tions we have made, but two are dominant in impor
tance. First, road traffic has a very strong and 
complex stochastic aspect. Fluctuations on a moder
ate time scale of 5-10 min are very high relative to 
the mean size of quantities being measured. These 
fluctuations of necessity find their way into any 
scheme designed to simulate road behavior and wreak 
havoc if there are any instabilities present. In 
fact, for meaningful results we must ask not just 
for the absence of instabilities--that is, con
tinuous dependence on data and parameters--but for 
the presence of strong stability properties to cause 
decay of the influences of earlier fluctuations. 

The second reason is that the concepts involved 
in obtaining a differential equation and an IBVP for 
the mean speed function lead to a very sensitive 
dependence on the speed-density relation and pos
sibly other parameters. Once the upstream flow rate 
and the on/off ramp flow rates are known, a time
averaged flow rate for each road position is a con
sequence. Suppose that at some point the speed-den
sity relationship is too slow to move a sufficient 
number of vehicles over the longer time scale of 5-
10 min. Then densities will increase upstream of 
the point in question to conserve vehicles. This 
effect will depress the road speed even further, ul
timately starting the typical shock wave moving up
stream. Since such effects are cumulative, it is 
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clear that they will be observed even if the speed
density relation is mismatched by a tiny amount. 
Conversely, it is clear that if the speed-density 
relation used by the simulator is a bit too large, 
we will find the scenario of less density and more 
speed, which moves ultimately to clear the road of 
traffic. 

Discussion 

Harold J. Payne 

This paper contributes to the examination of the 
FREFLO model necessary to reach a judgment con
cerning its ability to represent freeway traffic 
flow and to indicate steps necessary to make use of 
the model. 

In this discussion, three points are addressed: 

1. The calibration/validation process necessary 
before using FREFLO, 

2. Applicability and restrictions in the use of 
FREFLO, and 

3. Recent model improvements. 

The authors describe an effort to calibrate 
FREFLO for application to the QEW freeway in 
Toronto. This entailed collection of data, rectifi
cation of measurements to model variables (outputs), 
and then a cycle of execution of the FREFLO model, 
assessment of match of model results to data, and 
adjustments to FREFLO. Similar efforts have been 
successfully undertaken in connection with NCHRP 
Project 3-22A, Guidelines for Design and Operation 
of Ramp Control Systems (~). In that study, FREFLO 
was calibrated for freeways in Los Angeles and 
Dallas. The calibrated model subsequently played a 
major role in that study. 

A key element of that calibration, and one that 
was unfortunately and unnecessarily lacking in the 
Toronto work, was the involvement of the FREFLO 
model builders in the calibration effort. At this 
time, the special requirements for effective use of 
FREFLO are not widely known or fully documented, so 
this type of involvement is very important. 

In the instance of the work reported in this 
paper, a critical model restriction was not properly 
observed. The situation is depicted in Figure 11. 
The downstream extent of the congestion modeled by 
FREFLO must be completely interior to the freeway 
segment modeled; some uncongested zone must exist at 
the downstream end. (There are adequate techniques 
to deal with congestion at the upstream end, how
ever.) Such was not the case in the Toronto work. 
As a consequence, all calibration efforts were 
doomed to failure. 

As a final point, some recent work <Q> has re
vealed that a discontinuous speed-density relation
ship, of the sort depicted in Figure 12, more 

Figure 11. Critical restriction on use of FR EF LO. 
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Figure 12. Recent improvements to FREFLO. 
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accurately reflects the equilibrium behavior of 
freeway traffic. The discontinuity has significant 
impacts on the ability of FREFLO to model geometric 
discontinuities. It may also be very important to 
the study of ramp metering (13). 

Authors' Closure 

We would like to thank Payne for his comments. 
During the study, and especially in its initial 

stage, the FREFLO model builder was involved in our 
work. We had considerable documentation and even 
the benefit of his personal instructions. 

We would like to point out that the behavior ex
hibited by the model was very similar to that ob
served in an earlier FREFLO simulation ( 14) of an 
idealized freeway with a bottleneck in the middle. 
The situation with uncongested downstream sections 
was simulated by using simplified hypothetical test 
cases, but the results exhibited incorrect patterns 
similar to those shown by Payne (6). Many different 
"cures" to the problem werp t .ri P-;;,, i nt:'l 1.1a inCJ thosQ 
suggested by Payne, but to no avail. Finally, it 
was concluded that the hypothetical speed-density 
curve used was unrealistic and the decision was made 
to proceed with an evaluation based on data obtained 
from an actual system , the subject of this paper. 

For a model t<!l .be of any practical value, the 
model builder must strive to develop ones that do 
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not require any additional involvement by the 
builder during implementation and application stages. 
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