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Analysis of TRANSYT Platoon-Dispersion Algorithm 

NAGUI M. ROUPHAIL 

The development of an analytical solution to the recursive platoon-dispersion 
formula used in TRANSYT models of traffic flow is presented. Flow rates in 
the predicted platoon measured at the kth interval of the jth simulated cycle 
are expressed in terms of demand and capacity rates at the source intersection 
in addition to signal-control and travel-time parameters. It was found that the 
TRANSYT recursive formula implicitly contains a cycle factor that results in 
an underestimation of the toal flow rate simulated. An estimate of that error 
has been formulated, which can be applied as a constraint on the required simu­
lation time in TRANSYT. The analytical solution also provided insight into 
the determination of critical intersection spacings below which signal coordina­
tion becomes feasible. 

The proliferation of digital computer model applica­
tions in the areas of traffic flow and control in 
the past decade has led to the successful develop­
ment of several widely used traffic signal opera­
tions models, such as Network Simulation Model 
(NETSIM), Signal Operations Analysis Package (SOAP), 
Traffic Network Study Tool (TRANSYT) , and Traffic 
Signal Optimization Program (SIGOP) <l-il. 

TRANSYT, a program for traffic signal timing and 
coordination initially developed in the United King­
dom by Robertson (5), has been successfully applied 
at many intersections in Europe and the United 
States. The TRANSYT-7F version, for example, has 
recently been used in the National Signal Timing 
Optimization Project (6), which encompassed 11 
cities and approximately 500 signalized intersec­
tions in the United States. 

The fundamental principle of traffic representa-

tion in TRANSYT-type models is platoon-dispersion 
behavior. Simply stated, as a queue of vehicles 
leaves the stopline on the green indication, its 
shape is altered along the downstream link in a man­
ner reflective of the desire of individual drivers 
to maintain comfortable time headways. Thus, al­
though the flow rate at the stopline is equivalent 
to the saturation rate in the presence of a queue 
and to the demand rate thereafter (assuming un­
dersaturated operation) , the flow patterns measured 
at an observation point t seconds downstream of the 
stopline would be considerably different. 

Mathematically, platoon-dispersion behavior is 
expressed by the following recursive relationship: 

IN(k + t) = F x OUT(k) + (! - F) x IN(k + t - 1) (1) 

where 

IN(k + t) 

OUT(k) 

t 

flow rate 
predicted 
pointi 

in kth 
platoon 

time 
at 

interval of 
observation 

flow rate in kth time interval of 
original platoon at stoplinei 
e times average platoon travel time 
from stopline to observation point 
le is an empirical travel-time fac­
tor expressed as ratio between travel 
time of leading vehicle in platoon 
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F 

and average travel time of entire 
platoon; a value of 0.8 has been sug­
gested for use in TRANSYT models 
<DJ; and 
empirically derived platoon-smoothing 
factor. 

F is a function of travel time and geometric condi­
tions on the link. To date, however, it has been 
expressed in terms of travel time only, as shown 
below: 

F= !/(!+at) (2) 

where n is the platoon-dispersion factor. Esti­
mates of 0.50 and 0.35 were found to give the best 
fit to observed traffic under moderate travel fric­
tion in the United Kingdom and the United States, 
respectively. However, a recent U.S. study, de­
scribed in a paper in this Record by McCoy and 
others, reported a correlation between the value of 
n and arterial geometries under low-friction traf­
fic flow conditions. Values of n = 0. 21 and 
n = 0.14 were suggested in the modeling of two­
lane two-way and four-lane divided arterials, com­
pared with the 0.25 value recommended in TRANSYT 
under the same conditions. 

Thus the predicted flow rate at any time step is 
expressed as a linear combination of the original 
platoon flow rate in the corresponding time step 
(with a lag of t) and the flow rate of the predicted 
platoon in the step immediately preceding it. 

The platoon-dispersion model formulated in Equa­
tion 1 has been successfully validated with field 
data collected in London and Manchester, England (_~). 

The objectives of this study thus may be stated 
as follows: · 

1. Develop a close-form solution to the platoon­
dispersion algorithm in TRANSYT-type models, 

2. Investigate the time-dependency impacts of 
the algorithm on the predicted platoon flow rates, 
and 

3. Explore potential uses of the analytical ex­
pressions developed in the study for signal-coordi­
nation schemes. 

The first step of the analysis was concerned with 
the determination of the platoon flow rates at the 
stopline of a signalized, isolated intersection, as 
discussed below. 

FLOW RATES AT ISOLATED INTERSECTIONS 

Consider the flow patterns occurring at an isolated 
signalized intersection (or peripheral intersection 
in a TRANSYT network), assuming undersaturated oper­
ation. 

The following variables are defined: 

c = cycle length (s), 
g effective green time (s), 
r effective red time (s), 
). g/c, 

gs saturated green time (s), 
gu unsaturated green time (s), 

n = number of time steps in a cycle as de­
fined in TRANSYT, 

q average demand rate (vehicles/s) , 

s = saturation flow rate (vehicles/s) , 
q/s, y 

x 
IN(k,j) 

OUT(k,j) 

degree of saturation (= y/:I.), 
arrival rate in step k of cycle j, and 
departure rate in step k of cycle j. 
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Based on the flow profiles indicated in Figure 1, 
it can be shown that 

sg, = q(r + g,) or g. = rq/(s - q) = ry/(1 - y) 

Since r = c - g = c(l - ).) , 

g, = cy(I - ).)/(! - y) (3) 

It is assumed that the red interval is made up of 
k1 time steps. Therefore, 

or 

(4) 

Similarly, k2 is defined as the last time step 
in the saturated portion of the green phase, mea­
sured from the beginning of the effective-red inter­
val. Thus 

k2 x(c/n)=r+g. 

or with some manipulation, 

k2 = n(l - ).)/(! - y) (5) 

Finally, let k3 be the last time step in the 
cycle. By definition, 

(6) 

Thus the following flow rates are used to describe 
the original platoon flow in step k of cycle j at 
the "source" intersection: 

IN(k,j) = q I..,; k ..,; n, for allj 

OUT(k,j) = o I ..,; k .;; n(i - A), for allj 

OUT(k,j) = s n(l - ).) < k..,; n(i - ).)/(! -y), for allj 

OUT(k,j) =q n(l - A)/(1-y) < k " n, for allj 

(7) 

(8) 

(9) 

(10) 

Note that under fully saturated conditions (i.e., 
). = y) , the outflow rate described in Equation 10 
is eliminated. 

ANALYTICAL SOLUTION DEVELOPMENT 

Case for Initial Cycle 

The inflow rate in step k of the first simulated 
cycle measured at an observation point t seconds 

Figure 1. Flow patterns at isolated intersection. 
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downstream of the stopline is expressed mathemati­
cally" by Equation 1, rewritten below: 

IN(k + t, 1) = F x OUT(k, 1) + (1 - F) x IN(k + t - 1, 1) (la) 

From Equation 8, it is evident that no departures 
occur in the red interval; i.e., 

JN(k+t, l)=O 1.;k .; n(l -A.) (11) 

The flow rate corresponding to the saturated portion 
of the effective-green phase is derived from Equa­
tion 9 as 

IN(k + t, I) = F x s + (1 -F) x IN(k + t - 1,1) 

Let k now be measured from the beginning of the ef­
fective-green phase and define the variable uo as 

u0 = IN[n(l -A)+ t, l] 

where the subscript zero refers to the last step of 
the effective-red interval, 

Substituting into Equation 1 gives 

Uo+ 1 = F x s + (1 - F)uo 

u!+I =Fxs+(l-F)u1 

and, in general, 

uk = F x s + (1 - F)uk-l 

Therefore, 

k-1 
uk = (1 - P)k uo + L F,(l - F)Q 

Q= O 

When k is measured from the start of the red in­
terval, 

But from Equation 11, uo = O; therefore, 

JN(k + t, 1) = s(l - (I - F)k-n(t-X)] n(l - A.) < k .;;; n(I - >..)/(! - y) (12) 

The flow rate corresponding to the unsaturated 
portion of thA grAAn phaBe i~ derived from Equwtion 
10 as 

IN(k + t, 1) = F x q + (1 - F) x IN(k + t - !, !) 

Let k be measured from the beginning of the unsatu­
rated portion of the green phase and define uo as 

~o =IN { [n(l - >..)/(! - y)] + t , 1} 

where the subscript zero refers to the last step of 
the saturated green time. 

From Equation 12, it can be shown that 

~o = s{ I - (! - F) [n(l -A.)/(! - y)] - n(l - >..)} 

= s {I - (1 - F) [ny (1 - A.)/(J -y)]} (13) 

Proceeding in a similar fashion as that above for 61, 
6 2 , and so on gives 

' ' k-1 
uk = (1 - F)k u 0 + L Fq(l - F)2 

Q=o 

=(1-F)k ~o + q(l -(1-F)k] 
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Substituting uo from Equation 13 and letting k be 
measured from the start of the red interval, 

IN(k + t, J) = s [1 _(I _ F)"Y(l -X)/( 1-Y)] (1 _ F)k-[ n(t-X)/(1-y)) 

+ q { 1 - (I - F)k-[n(l-X)/(1-y)J} (n(l - >..)/(1 -y)] 

(14) 

A summary of the flow rates derived in this sec­
tion is presented in Table 1. Note that the flow 
rates are valid only in the first simulated cycle in 
TRANSYT, as the subsequent analysis explains. 

Case for Subsequent Cycles 

If we refer to Table 1, it can be proved that 

L IN(k + t, !) < L OUT(k, 1) for 0 .;;; t.; ~ 
k=I k=I 

This is primarily due to the recursive nature of the 
platoon-dispersion formula itself, which continu­
ously incorporates a fraction of all previous flow 
rates in the calculation of the predicted platoon. 
Thus the difference 

n 

L OUT(k, !) - L IN(k + t, 1) 
k=! k=I 

may be viewed as a residual flow from cycle 1 that 
will be dispersed in cycles 2, 3, ••• , j according 
to the dispersion formula in Equation 1. The same 
reasoning may be applied for platoons generated in 
the second and subsequent cycles throughout a simu­
lation run. 

Thus for a particular cycle j, the flow rate in 
the predicted platoon at time (k + t) may be viewed 
as the sum of two components: 

1. Flow rate due to the original platoon gener­
ated in step k of cycle j at the source intersection 
and 

2. Residual flow rate from all previous platoons 
generated in cycle 1, 2, .•• , j - 1 at the source 
intersection. 

The first component is identical to the flow rate 
generated in the first simulated cycle, i.e., with 
no consideration of previous platoons. This concept 
is illustrated graphically in Figure 2, which de­
picts the progression of a platoon downstream of an 
isolate..:i inl.,t:llection and the associate(! residual 
flows generated in each cycle. 

The residual flow rate from the ith cycle that 
occurs in step k of the jth cycle (j > i), Ri,j,k• 
can be expressed by the following equation: 

R;,i,k =IN(n+t, l)x(l -F)k+n(H-1) 

For example, letting i = 1, j 2 gives 

Rl,2,k = IN(n + t, !) x (!-Ft 

Table 1. Platoon-flow boundary values. 

Case Travel Time kl <; k .. k2 

I 0 I .;;; k.; n(l -A.) 
2 0 n(l -A)< k .;;; [n(l - A)/(! -y)] 
3 0 [n(l -A)/(l -y)} < k .; n 
4 Same as I 
5 Same as 2 
6 Same as 3 

k2 
"o~ = (c/n) I: IN (k + t, ~) . 

k=k1 

(15) 

Q~· 

Zero 
qc(l - ;\.)/(! -y) 
qc(A.-y)/(l -y) 
qc(l - >..) 
qcy(l - >..)/(! - y) 
qc(>.. - y)/(l -y) 
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Figure 2. Platoon-dispersion formula characteristics. 
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Figure 3. Summary of flow rates for initial cycle. Boundaries for (k) IN(k+t, l ) 

l S k s n(l - >.) 0 0 

2 ~ n(l-1') < k ~ ( I->') 

n( l -1') < k 
(l - y) S n q 

s[l -(l-F)ny( l -X) /(1-y)] >< 

(1-F) k- [ n ( 1-1.) / (1 - y)] 

+ q [i _ (l-F/-[n(l-1')/(l-y) ]] 

a l = Red phase at source intersect i on 

2 = Saturated por tion of green phase 

3 = Unsaturated port i on of green phase 

which is 
OUT(k,l) 
sidered. 

consistent with Equation l 
term is eliminated when cycle 

since 
2 is 

the 
con-

Therefore, the total flow rate in the predicted 
platoon, including residuals from all previous 
cycles, is expressed as 

(
J-1 ) 

IN(k + t,j) = ~ Ri,i,k + IN(k + t, l} 
i= l 

(16} 

which suggests that the flow rates (and consequently 
the actual number of vehicles) simulated in TRANSYT 
appear to be systematically related to the length of 
a simulation run. 

Solving Equation 16 for j = 2,3,4, respectively, 
gives 

IN(k + t, 2} = IN(n +t, 1)(1 - F)k + JN(k + t , l} 

IN(k + t, 3) =(~, R;,3,k) + IN(k + t , l} 

But from Equation 1 5 , 

R1,3,k = IN(n + t , l} x (1- Ft+n 

R2,3,k = IN(n + t, 1) x (1 - F)k 

Ther efor e, i t can be shown t ha t 

IN(k + t, 3} = IN(n + t , 1)(1 - F)k [l + (1 - F)"] + IN(k + t, 1) 

(17} 

(18} 

A similar derivation for j = 4 gives 

IN(k + t, 4) = IN(n + t, l}(l - F)k (I+ (1 - F)" + (1- F)2 ") 

+IN(k+t , 1} (19) 

which leads to a general expression for cycle j, 
j > l: 

IN(k + t,j) = [ IN(n + t, 1)(1 - F}k :~o (I - Fr"] + IN(k + t, l} 

= IN(n + t, 1)(1 - Fl { [I - (1 - F}"<Hl] / (l - (I - F}" ]} 

+ IN(k+t,l} (20) 

Equation 20 is a general platoon-dispersion for­
mula that predicts the flow rate in the kth step 
(l < k < n) of the jth simulated cycle in 

TRANSYT-:- Because the term containing the cycle 
designation j vanishes at j = l, the expression is 
considered valid for any cycle, including the ini­
tial one. 

values of IN(n + t,l), 
the set of general ex­
realized. A summary of 
4. 

By substituting the 
IN(k + t,l) from Figure 3, 
pressions for flow rates is 
these is presented in Figure 

CYCLE FACTOR AND ERROR ESTIMATION 

The dependency of platoon flow rate on cycle desig­
nation implies that each time an IN histogram is 
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Figure 4. General expressions for flow rates. 

OUT(k,j) IN(k+t,j) Cycle Regiona k1 $ k $ k2 (j) 

l * 1 $ k $ n(l-A) 0 0 

2• n(l-1.) <k<~ - (1-y) 

3• 11_(1->.) k 
(1-y) 

$ n q 
s[l - (l-F)ny(l-\)/(1-yJ] (l-F/ -[n(l-A) /(1-y)] 

+q[l - (l-F)k-[n(l-1.)/(1-y)J] 

n (1-\) 

(1-F)k [I -(1-F)n(j,~l) ]{q[t - (l-F)n(A-)')/(1-}')J 

1 - (1-F) 

+ s (J-F)n(\-rJ (1 -r ) x [1 _ (l-F)ny(l-\)/(1-yJ]} 

n(l-J.) < k <~ 
- ( L-r) 

s[1 - (l-F/-n(l-1-J] + (1-F)k[l - (1-F)n(.~l) ] 
I - (I -F) 

> 1 
x {q[t - Ll-F)n(,\-~·)/(1 -y l] + s(l-F)n(!.-y)/(1-y) 

x [1 - (1-F)n) (1-!.)/(l-r)J} 

s [l - Ll-F)ny(l-!.)/(1-y)J (l-F)k-[n(l-1.)/(l-y)] 

n(l - >.) < 
ll->'l 

s n q 

+q[l - (l-F)k-[n(l-1.)/(1-rJl] + (1-F)k [l - (l-F)
11

(jn-I)] 

1 - (1-F) 

x {q[l - (1-F)n(!.-y)/(l-yJ] + s(l-F)n(A-)')/(l-y) 

x [1 - (l-F)ny(l-1')/(J-y)]} 

al - Red signal indication at source intersection. 2 • Queue released on green indication (g
5 

in eq. 3). 

= Vehicles Released at arrival rate on green indication. 

constructed in TRANSYT from essentially the same OUT 
patterns, the resulting flow rates will be dif­
ferent. This time dependency is re~lected in Equa­
tion 20 by the term (1 - (1 - F) n(J-1)], hereafter 
designated the cycle factor. 

To demonstrate the impact of the cycle factor on 
the number of vehicles generated in a TRANSYT run, 
consider a simulation period lasting m cycles. 
Since the total number of vehicles leavinq the stop­
line each cycle is qc, the total number of vehicles 
simulated is mqc. At an observation point t seconds 
downstream of the stopline, the corresponding number 
of vehicles arriving in cycle j can be calculated as 
follows: 

Qi= (c/n) ~ !N(k + t,j) (21) 
k = I 

and the total number of vehicles simulated in m 
cycles is 

(22) 

The relative cycle error based on m simulated cycles 
(EnJ is now defined as 

Em= [qc - (Q/m)] /qc x 100 percent (23) 

where Q/m is the average number of vehicles gener­
ated per cycle in the predicted platoon, based on a 
simulation run lasting m cycles. 

The variable Qj in Equation 21 has been calcu­
lated for the three flow patterns considered at the 
source intersection. The results are tabulated in 
Figure 5, 

In order to ascertain the validity of the total 
flow expressions of Q, two special cases were con­
sidered: 

1. Travel time is zero (F = 1): In this case, 
the IN flow value in Equation 21 should duplicate 
the OUT flow values at the source intersection , 

2. Travel time is infinity (F = 0): In this 
case, the IN flow values in Equation 21 should du­
plicate the IN flow values that occur at an isolated 
intersection. 

In both cases, cycle dependency was considered neg­
ligible, since j was set to infinity. Formulas for 
the two cases are summarized in Table 1. 

Proof: Based on the OUT patterns derived in 
Equations 8 through 10, the total flow generated at 
the source intersection can be expressed as follows: 

n(l-1..) 

Q1 = ~ 0 x ( c/n) I .;; k<; n(l - /I.) 
k = I 

n(l-1..)/(1-y) 

Q2 = L sx(c/n) n(l - /I.)< k.;; [n(I - /1.)/(1 -y)] 
k=in(l-1..)]+l 

q x (c/n) [n(l - /1.)/(1 - y)] < k.;; n 
(n(l-1..)/(1-y}]+l 

(24) 

(25) 

(26) 

It can be rea<llly shown that the values of Q1 1 

Q2, and Q3 correspond precisely to expressions 
1, 2, and 3 given in Table 1. 

Proceeding in a similar fashion for t = m, it 
is observed that the q multipliers in expressions 4, 
5, and 6 are actually the durations of the red, 
saturated-green, and the unsaturated-green inter­
vals, respectively, at the source (and in fact iso­
lated) intersection. In other words, the flow rate 
in each of the three regions has a fixed value q 
throughout the cycle, a distinct feature of the 
isolated-intersection arrival-flow pattern. 

A computer program was written to calculate the 
relative cycle error (Eml for a variety of travel-
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Figure 5. Number of vehicles generated in predicted platoons. 

Figure 6. Relative cycle error for t = 20 s. 
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time, signal-control, and simulation-run parame­
ters. The results are depicted graphically in Fig­
ures 6 and 7. These graphs are useful in the 
preliminary determination of the required duration 
of a simulation run, so as to maintain the relative 
cycle error below a prespecified threshold. For 
example, for a pair of intersections that are 20 s 
apart (under free-flow conditions), a relative cycle 
error of 10 percent will not be exceeded if a simu­
lation period is selected that is (a) 4 cycles long, 
each made up of 30 steps, or (b) 17 cycles long, 
each made up of 5 steps. The corresponding values 
for a travel time of 60 s are 11 steps and 49 cycles. 

It was also noted that the cycle error is vir­
tually independent of the degree of saturation at 
the source intersection, at least within the degree 
of saturation range tested in this study (0.55 < x 

1 s 'k s n(l-1') 

n(l-A) < k < n(l-J.) 
- (l-y) 

n[l-.\) < 
( 1-y} 

$ n 

77 

£ l l - {l-F)n(Jn- 1) x llF-F) x [1 - (l-F)n(l-1')] 

n l - ( 1- F) 

x (q [1 - (l-FJn(1'-y)/(l-y)} s(l-F)n(A-y)/ll-y) 

x [1 - (l-F)ny(l-A)/(1-y)J)! 

£ 1~ + {( I - (J-F)n(j-1) 
n I (J-y) I - (l-F) 11 

xq[l- (l-F)n(A-y)/(1-y)J +s(l-F)n(A-y)/(l-y) 

x [i . (l-F)ny(l-J.)/(1-y)J). s } 
(l-F ) n(l-J.) 

x ((1-~ Jn~J ->.) •J x [1 - (1-F)ny(J-J.)/ll-y)J)\ 

c ! •1nP-r) { >[I - (1-11)
11 ·(l-:\)/(l-Y)) 

ii (1-y) - + (l-F)n(l-X)/(1 -r ) 

+ 1(1 - ( l - F)n(jn-1)] x (q [1 - (l-F)n(J.-y)/(1-y)J 

l - (1-rJ 

• s(l-F) 11 (>.-i•J/(l-y) x [1 - (1-r)ny[l-A)/[l-y)J)I} 

~ (ll - l 'J 11 ~l -J.) '1 x [ 1 _ (l-F)n(J.-y)/(1-y)J)/ 

C • 60 seconds 

5 11.,11 cycle 

- - - ?IO 1t•P'/ cycle 

NUMBER OF CYCLES 

SIMULATED 

~ 1.00). Thus in a simulation of a TRANSYT net­
work, the controlling factor in the selection of re­
quired simulation time and interval duration is in 
fact the highest link travel time. Once an accept­
able cycle error is attained for that critical link, 
all other links in the network will automatically 
satisfy that same requirement. 

Of course, if the analytical expressions derived 
in this study were to substitute for the recursive 
relationship in TRANSYT, under steady-state cycle 
conditions (i.e., j = m), then the cycle error 
would be totally eliminated. 

SIGNAL COORDINATION FEASIBILITY LIMITS 

The derivation of analytical solutions to the pla­
toon recursive formula makes it possible to study 
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Figure 7. Relative cycle error for t = 60 s. 

100 

90 

i 80 
e .... 
ri 70 

0 

"' 60 

"' .... 
... 50 
..J 
<.> 40 ,.. 
<.> 

... 30 > 
;:: .. 20 

I 
I 
I 
I 
I 
I 
I 
\ 

' \ 

Transportation Research Record 905 

C• 60 11cond1 
- 5 1t1p1/cycl1 
- - 30 1tep1/cycl1 

..J ... 
"' 10 -~4-------~ - - -- -

10 20 30 50 60 
NUMBER OF CYCLES 

SIMULATED 

Figure 8. P1 versus travel-time functions for x a 0.625. LEGEND, r • RED INTERVAL EXAMPLE' C• 60 11c 
r • 12 HC 
9/ 12 llC 
,. 0.50 

G, • SATURATED GREEN INTERVAL. 
g0 •UNS~TURATEO GREEN INTERVAL 

____ J o. 
ISOLATED g, 

ll z 
oo ----· - ·- ·- ·- ·- ·- ·- - · 
"'-... :;: 
.,."' 50 
..J J: 
~o 40 _ _, 
~ .... 

30 .. 
~ 

20 

10 

10 20 

the potential value of providing signal coordination 
between the source intersection and a hypothetical 
destination intersection located within t seconds of 
travel. This is accomplished by comparing the ac­
tual flow rates arriving at the destination inter­
section with the predicted flow rates had the desti­
nation intersection been considered isolated in 
nature. 

Consider a time interval of length r that corre­
sponds to the red signal indication at the source 
intersection. For an isolated intersection, the 
proportion of vehicles arriving in r (Pc) is 
simply the proportional duration of interval r to 
the cycle length (c). In other words, 

P, = c( l - 'A)/c = 1 - A (27) 

Now if we consider the actual proportion of arrivals 
in interval r based on platoon dispersion after time 
t (Pr,tl, it can be shown that 

3 

P, 1 = Q~ ,/ ~ Q~ i x 100 percent 
I > i= l I 

(28) 

where Qm, i is the steady-state (j = m) number 
of vehicle arrivals at the destination intersection 
that originated in interval i (i = 1,2,3) at the 
source intersection. Q-values are depicted in Fig­
ure 5. 

Similar expressions 
arrivals corresponding 

are developed for vehicle 
to the saturated (gs) and 

30 40 

ISOLATED r, g, 

60 70 80 

TRAVEL TIME FROM 
SOURCE SIGNAL lttcl 

unsaturated (9ul portions of the green interval, 
as follows: 

Pg,= cy(l - X)/c(l - y) = y(l - X)/(l -y) (29) 

3 
Pg, 1 = (Q~,gsf ~ Q~,;) x 100 percent (30) 

• l=I 

(31) 

3 

Pgu,t = (Q~.su /.~ Q~.1) x 100 percent 
J= l 

(32) 

The values of P1 , where I denotes a general inter­
val, are plotted against free-flow travel time be­
tween source and destination intersections in Fig­
ures 8 and 9 by using three different demand/ 
capacity ratios. 

The graphs clearly demonstrate that the source 
platoon rapidly degenerates (with time) into a uni­
form flow pattern, although theoretically the two 
patterns coincide only at t = m. It is also ob­
served that the rate of platoon degeneration is de­
pendent on the degre'E! of saturation at the source 
intersectioni in general, a platoon degenerates more 
rapidly at higher degrees of saturation. 

To the extent that the platoon-dispersion formula 
in TRANSYT is valid, Figures 8 and 9 may be used to 
investigate intersection spacing thresholds for sig­
nal coordination. There is no attempt in this paper 
to develop any such guidelines, in part because of 
the narrow scope of the numerical examples depicted 
in the figures. However, as additional data are 
successfully tested, a mathematical model with 
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Table 2. Cycle dependency of queue lengths and delays: numerical example. 

Cycle 

Variable !st 3rd 10th 50th 

Average flow rate in predicted 0.032 0.210 0.247 0.249 
platoon• (vehicles/s) 

Average flow rote in green in- 0.064 0.22 1 0.253 0.255 
tcrvolb (.vehlcles/s) 

Average queue length0 (vehicles) 0 2.58 3.55 3.63 
Uniform vehicle delay [vehicles/ 0 154.8 213.0 217.8 

(s·cycle)] 

~Averaa:o at sburce intCr&i:c Uon ~ o.2svcihlcJc/s. 
Aauming 'lero gy-een ort~c l bctw~*'h lnU.'..11cctiom' a.nd green interval of 30 ~· 

cQu.-euo. lenglh is zero In fin.t cycle slnec nll iurivaJs occur in the green inn1rvol at the 
destination intersection. 

travel time and degree of saturation as independent 
variables and a measure of the absolute difference 
between Pr and Pr,t as the dependent variable 
could be used directly to estimate the value of pro­
viding signal coordination between a pair of inter­
sections. 

ILLUSTRATIVE EXAMPLE 

The following numerical example demonstrates the 
impact of cycle error on the magnitude of uniform 
vehicle delay, which is a component of the perfor­
mance index in TRANSYT. Mathematically, delay is 
expressed as follows: 

n 

du = (c/n) 2: mk (33) 
k=l 

where du is the uniform delay in vehicles per sec­
ond per cycle and mk is the queue length during 
step k in vehicles c, n, k as defined earlier. mk 
is calculated as follows: 

mk =max {mk - 1 + (c/n) [IN(k) - OUT(k)), 0} (34) 

Thus, for a pair of intersections operating under 
a simultaneous-progression pattern (i.e., offset• 
OJ and identical g/c ratios, it is assumed that 
c = 60 s, g = 30 s, t = 60 s, n ~ 10, a = 0.35, 
q ~ 900 vehicles/h (0.25 vehicle/s), and s = 1800 
vehicles/h (0.50 vehicle/s). 

By using the flow equations shown in Figure 4, 
the predicted platoon-arrival rates at the destina­
tion intersection were calculated. When these IN 
flow rates were overlaid on the OUT patterns (that 

20 30 40 60 
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is, zero offset, g/c = O. 50 at the destination in­
tersection) , queue length and delay estimates were 
obtained by using Equations 33 and 34. 

This procedure was carried out for platoons gen­
erated in the 1st, 10th, and 50th cycles of a simu­
lated TRANSYT run. The results are summarized in 
Table 2. 

The average flow rates, queue lengths, and uni­
form delays exhibited virtually identical variations 
with cycle number. All were underestimated in cy­
cles 1, 2, and 3. Between the 3rd and the 10th 
cycles, all performance measures were within 5 per­
cent of their terminal values reached at the later 
cycles. The location of a knee (point of substan­
tial slope c hange ) in the delay-versus-cycle rela­
tionship may be viewed as a desirable upper limit on 
the simulation time beyond which little will be 
gained in terms of computational accuracy of the 
performance measures . 

Further work is planned regarding an investiga­
tion of cycle-factor impact on the final TRANSYT 
settings, which was beyond the scope of this paper. 

CONCLUSIONS 

An analytical solution to the recursive platoon­
dispersion formula used in TRANSYT-type models has 
been developed in this paper. 

The findings of the study have potential signifi­
cance in several aspects of macroscopic traffic sim­
ulation modeling: 

1. The recursive relationship in TRANSYT con­
tains a time-dependent factor, which in turn under­
estimates the total flow generated in a simulation 
run and consequently all performance measures (such 
as delays and stops) associated with it. The analy­
tical expressions developed in the study give a pre­
cise measurement of that factor. 

2. Time dependency of flow rates generated in 
TRANSYT may be reduced by increasing the simulation 
period, the number of steps per cycle, or both when 
the recursive relationship is used. As an option, 
however, it is possible to use the analytical ex­
pressions derived in this study under steady-state 
cycle conditions (i.e., assuming an infinite number 
of runs) , which thus eliminates the time-dependency 
effect. 

3. A number of expressions developed in this 
study describe the process by which a platoon of 
vehicles degenerates into a uniform-flow pattern. 
The rate of degeneration was found to increase with 
the degree of saturation at the source intersec-
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tion. Mathematical models are suggested to evaluate 
signal coordination feasibility limits between a 
pair of intersections. 
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Optimization Model for Isolated Signalized 

Traffic Intersections 

W.B. CRONJE 

The existing methods for the optimization of isolated fixed·time signalized 
traffic intersections are applicable either to undersaturated stationary condi­
tions or to oversaturated conditions. As far as is known, no model exists that 
is applicable to all conditions. A model is developed for the optimization of 
fixed-time signalized intersections that is applicable to undersaturated as well 
as to oversaturated conditions. In the model, the macroscopic approach to 
traffic flow is used. Although it is not so accurate as the microscopic approach, 
values are obtained for delay and number of stops that are accurate enough for 
practical purposes and that use much less computer time. Macroscopic simula­
tion is then approximated by the geometric probability distribution. In this 
case also, values for delay and number of stops are obtained that are accurate 
enough for practical purposes and that use much less computer time. Conse­
quently, the geometric probability distribution model is recommended for the 
optimization of fixed-time signalized traffic intersections. 

The purpose of this paper is the development of a 
model for the optimization of fixed-time signalized 
intersections. 

Most of the research in the field of signalized 
intersections has been done for undersaturated con­
ditions. In this paper, however, we shall not refer 
to specific shortcomings, but as a result of these 
shortcomings, it has been decided to develop an ac­
curate model for practical application to undersatu­
rated and oversaturated conditions. 

First, microscopic and macroscopic simulation are 
compared in the stationary zone with reference to 
averag" rlelay and number of stops. The difference 
is found to be negligible for practical purposes, 
and macroscopic simulation is used in the further 
development of the model because it uses much less 
computer time. 

Second, average delay and number of stops are 
determined by macroscopic simulation in the nonsta­
tionary zone. Good agreement is found between the 
values obtained at the end of the nonstationary zone 
and those in the stationary zone. Macroscopic simu­
lation in the nonstationary zone can therefore be 
deemed correct (see Figure 1). 

Last, macroscopic simulation is approximated by 
the geometric probability distribution to further 

reduce computer time. Good agreement is found for 
all practical purposes, and the geometric model is 
therefore recommended for the optimization of fixed­
time signalized intersections. 

COMPARISON BETWEEN MICROSCOPIC AND MACROSCOPIC 
SIMULATION 

Macroscopic traffic flow at a signalized intersec­
tion is indicated in Figure 2, which shows average 
arrivals per unit time interval (q), overflow of 
vehicles at the end of the previous cycle (QBJ , 
overflow of vehicles at the end of the cycle (QEJ, 
cycle length (cJ in seconds, effective green time 
(gJ in seconds, effective red time (r) in seconds, 
and saturated flow ( sJ in vehicles per second. The 
total delay per cycle (DJ is the area under the 
queue-length diagram: 

D = [(2·03 + q·r)r/2] + [(q·r +Os+ 0E)g/2] (!) 

The number of stops per cycle (NJ is the number of 
vehicles that arrive while there is a queue plus the 
overflow at the start of the cycle (QBJ: 

N=c·q +Os (2) 

Microscopic traffic flow is indicated in Figure 3. 
In the macroscopic case, arrival of vehicles per 

cycle is obtained by generating random numbers. In 
the microscopic case, gaps between vehicles are ob­
tained similarly. 

By working from a zero origin, the times of ar­
rival and departure are obtained; thus the delay is 
experienced. By summation of the delay for all ve­
hicles, the total delay (DJ is obtained. The aver­
age delay (d) is then the total delay divided by the 
sum of all the vehicles arriving during the period 
considered. 

The number of stops is obtained as follows. 


