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Derivation of Equations for Queue Length, Stops, and 

Delay for Fixed-Time Traffic Signals 
W.B. CRONJE 

The existing methods for the calculation of queue length, number of stops, and 
delay for isolated traffic intersections are applicable either to undersaturated 
stationary conditions or to oversaturated conditions. As far as is known, no 
model exists that is applicable to all conditions. Equations are derived for the 
calculation of queue length, number of stops, and delay for isolated fixed-time 
signalized intersections that are applicable to undersaturated as well as to over­
saturated conditions. In the derivation the macroscopic approach to traffic 
flow is used. This approach has been shown to be sufficiently accurate for 
practical purposes. Traffic flow at a signalized intersection is considered a 
Markov process. Equations are derived for expected queue lengths, expected 
number of stops, and expected total delay. These equations can also be used 
for the optimization of isolated fixed-time signalized intersections. 

Traffic flow at a signalized intersection is a 
Markov process. The states being considered are the 
queue lengths at the beginning and the end of the 
signal cycle, and the time interval over which 
changes in these states take place is the length of 
the signal cycle. 

The equation governing the states is as follows: 

where 

QE = overflow of vehicles at end of cycle, 
Qs = overflow of vehicles from previous cycle, 

q ~ average arrivals per unit time interval, 
c = cycle length (s), 
g ~ effective green time (s) , 
s = saturated flow (vehicles/s) , 

(I) 

q•c number of arriving vehicles per cycle, and 
s•g maximum number of departing vehicles per 

cycle. 

Equation 1 can be represented by the transition 
probability matrix shown in Figure 1, in which 
P(Qe,OE:l is the probability of transition from 
state Qe to state ~· P(s•g) is the probabil­
ity distribution of departing vehicles, and P(q•c) 
is the probability distribution of arriving vehicles. 

Equation 1 is illustrated by Figure 2, in which r 
is effective red time in seconds. 

DERIVATION 

Consider one approach to an intersection controlled 
by a fixed-time signal. Consider one cycle on the 
approach in which vehicles are expected to arrive 
according to a distribution P(q•c). The satura­
tion-flow vehicles are distributed according to 
P(s•g). 

Let P(Qs,QE) be the probability of an over­
flow of QE vehicles at the end of the cycle, given 

an overflow Q8 at the start of the cycle. The form 
of this probability is shown as a matrix in Figure 3. 

The expected overflow at the end of the cycle is 
given by 

= ,~. P(s·g) [. , .~ o P(q·cJ OB~o (QB+ q·c - S·gJP(QuJ 

'TI P(q·cJ s··-r- I (Qu + q·c - S·gJP(QBJ ] 
~·c=o QB=o 

= E(QBJ + E( q·cJ - E(s·gJ 

A queue-length diagram with overflow at the end 
of the cycle is indicated in Figure 4. 

The total number of stops per cycle is the number 
of vehicle arrivals while there is a queue. Overflow 
vehicles stop twice. 

If there is overflow at the end of the cycle, the 
total number of stops per cycle is as follows: 

N = Qll + q·c (3) 

A queue-length diagram without overflow at the 
end of the cycle is indicated in Figure 5. 

If there is no overflow at the end of the cycle, 
the total number of stops per cycle is as follows: 

N =QB+ r·q + [(Qu + r·qJ/(s - qJ] q 

Figure 1. Transition probability matrix for Equation 1. 
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Figure 2. Queue-length diagram illustrating Equation 1. 

Ti me 

Figure 3. Transition probability matrix. 

0 2 8 

P{Q8, QE) = P(s • g) · P(q • c) 

1 
Replacing r in Equation 4 by (c - g) gives 

N =QB+ c·q + [(q ·c)/c] ((Os+ q·c - s·g)/ { [(s·g)/g ] - [(q ·c)/c] I) (5) 

Except for the third term of Equation 5, Equa­
tions 3 and 5 are identical. The third term of 
Equation 5 clearly covers the case of no overflow at 
the end of the cycle and is applicable to the zone 
to the left of the origin in Figure 3. 

The expected number of stops per cycle is there­
fore given by 

E(N) = ~ N·P(N) 

= ,i:, P(s·g) k~o P(q·c) Q~= o (o .. +q·c + [(q ·c)/c ] 

((Os+ q·c - s·g)/ { [(s·g)/g] - [(q·c)/c] I)]· P(Qs) I 
s•i.: - 1 s · ~ -4 ·c- I 

= E(Qu) + E(q·c) + ,2;, P(s·g) ~.f= o P(q·c) Q;=o P(Onl · [(q·c)/c·] 

x (00 i q·c - s·g)/ { [(s·g)/g] - [(q·c)/c] I (6) 
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Figure 4. Queue-length diagram with overflow at en.d of cycle. 

Figure 5. Queue-length diagram without overflow at end of cycle. 

A queue-length diagram with overflow at the end 
of the cycle can also be represented by Figure 2. 

Total delay is the area under the queue-length 
curve. 

If there is overflow at the end of the cycle, 
total delay is given by (see Figure 2) 

D =Owe+ 0.5 (q·c·c - s·g-g ) (7) 

If there is no overflow at the end of the cycle, 
total delay is given by (see Figure 5) 

D =Os· r +q-r · (r/2) + [(OH+ q-r)/(s - q)] · [(Os+ q-r)/2] (8) 

Replacing r in Equation 8 by (c - g) gives 

D =Os · c + O.S(q·c·c - s·g·g) + 0.5 ((Ou+ q-c - s·g) 

-;. { [(s·g)/g] - [(q·c)/c]l) (9) 

If the same reasoning is applied to Equations 7 
and 9 as in the case of the number of stops, the ex­
pected total delay is given by 

s·g-1 
E(D) = c · E(0 8 ) + O.S[c · E(q·c) -g, ·E(s·g)) + E P(s·g) E P(q·c) 

&·ll 4·c-o 

s·g- wc- t 

x E_ P(Q 8 l{(Os+q·c-s·g) 2 /{[(s ·g)/g] -[(q·c)/cJl) o .. -o r (I 0) 

Assume that the overflow at the start of the 
cycle is distributed according to the following geo­
metric distribution: 

(11) 

with 

f= E(OuJl[l + E(Qu)l (!'.!) 



Transportation Research Record 905 

Some properties of the geometric probability dis­
tribution are 

i ( I - f) fi = I - f" t I 
i = 0 

(13) 

E (i- n)(l -f)fi = [r/(I - r)j(l - f")-11 
i=O 

(14) 

f (i-n)2 (1- f)fi = [1/(1-f)I{ [f/(1-f)][2-f"(l + f)] 
i=O 

(15) 

The last part of Equation 2 is as follows: 

s·g-q·c-1 

Q;=o (Qo + q·c- S·g)P(Qu) (16) 

In expression 16, put n • (s•g - q•c) and 
substitute P(Qal from Equation 11. Then expres­
sion 16 becomes 

n-1 n 

Q ~o (Qo -n)(l -f)fQB = ~ (Q0 -n)(l -f)fOB -(n-n)(J -f)f" 
B Qe=O 

If Equation 14 is applied, Equation 17 becomes 

[f/(1- f)J(I - f")- n = { E(Q8 )/[1 + E(Q0 )]} /(I - ( E(Q8 ) 

_,.[I+ E(Q 8 )]}) (1-f")-n= E(QoXI -f")-n 

= E(QoXI - r•· 4 - 4 ·c)- S·g + q·c 

Equation 2 therefore becomes 
s·g-1 

E(QE) = E(Qo) + E(q·c)- E(s·g) - ~ P(s.g) ~ P(q·c) 
s·g q·c=O 

(17) 

x [E(Qe)(I - f' g-q·c) + q·c - s·g) (18) 

The transformation of Equation 6 is identical, 
which gives 

s·g-1 

E(N) = E(Qe) + E(q·c) + s~g P(s·g) 4 ·~o P(q·c) ( [(q·c)/c]/{ [(s·g)/g) 

- [(q·c)/c] I) [E(Q9)(1 - rs·g-q·c) + q·C - S·g) (19) 
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The numerator of the last part of Equation 10 is 

s·g-4 ·c-J 

08~ 0 P(Qe)(Qe + q·c - s·g)2 
(20) 

If the same transformation is applied, expression 
20 becomes 

E (Qu -nf(l - f) f 00 -(n- n)( J-f)f" = £ (Q 0 -n)2 

Qu=o Qu=o 

x ( l-f)fQu 

If Equation 15 is applied, Equation 21 becomes 

(1/(1 -f)] {f/(I - f)[2-f"(I + f)J + n2 -(n + lj2f i 
= Jl/(l - f)] {E(Q0 )[2-f'" ~-4·c(I + f)] +(s·g-q.c)2 

- (s·g - q·c + 1)2 f} 

Equation 10 therefore becomes 

s·g-1 
E(D) = c · E(Q 0 ) + 0.5 [c · E(q·c) - g · E(s·g)) + ~ P(s·g) ~ P(q·c) 

s·g q·c =O 

x ( 1/2 { [(s·g)/g] - [(q·c)/c] \) { E(Q0 )[2 - rs·s-4·°(1 + f)] 

+ (q·C - S·g) 2 
- (s·g- q·C + 1)2 fl [1/(1 - f)j 

(2 1) 

(22) 

where Equation 18 gives E(~), the expected over­
flow at the end of the cycle1 Equation 19 gives 
E (N) , the expected number of stops per cycle; and 
Equation 22 gives E(D), the expected total delay per 
cycle. 

CONCLUSIONS AND RECOMMENDATIONS 

I have shown in another paper in this Record that 
the equations developed in this paper for expected 
queue length, expected number of stops, and expected 
total delay show very close agreement with simula­
tion. 

They are also applicable to undersaturated as 
well as to oversaturated conditions. By assigning 
monetary rates to number of stops and delay as cal­
culated by Equations 19 and 22 and varying the green 
times for the various phases, the optimum cycle 
length at the minimum cost can be obtained. 
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