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Common Bias in Before-and-After Accident Comparisons 

and Its Elimination 

EZRA HAUER AND BHAGWANT PERSAUD 

When treatment is applied to road sections, intersections, drivers, or vehicles 
that have had a poor accident record in the past, a simple before-and-after com· 
parison of accidents will usually make useless treatments appear effective and 
overestimate the effect of useful treatments. Because much of what we know 
about the effect of various safety countermeasures comes from such studies, it 
is important to demonstrate that this bias can be very large, to show that it can 
be relatively easily purged from before-and-after comparisons, and to examine 
whether the method works. These are the three central aims of this paper. To 
render the statements credible, several data sets are used. The data come from 
Canada (Ontario), Sweden, the United Kingdom, Israel, and the United States 
(North Carolina and California) and relate to road sections, intersections, traf· 
fie circles, driver violations, and driver accidents. These data sets are used 
to demonstrate the magnitude of the bias, to illustrate the technique for its 
elimination, and to examine the success of this debiasing procedure. 

It is common practice to apply treatment to those 
elements of the transport system (intersections, 
drivers, vehicles) that have had a poor accident 
record. This makes good sense. The effect of such 
treatments is often assessed by comparing the acci­
dent histories before and after treatment. The cu­
mulative experience gained from several such before­
and-after comparisons tends to become the current 
lore about the effectiveness of the treatment. 

We will argue below that when systems are se­
lected for treatment because of their poor accident 
experience, the simple before-and-after comparison 
leads to consistently biased conclusions; it makes 
the treatment appear to be more effective than it 
actually is. In the long run, the cumulative result 
of consistent overestimation of treatment effective­
ness can lead to misallocation of resources. 

The simple before-and-after comparison is and 
will continue to be an important source of informa­
tion about the effect of corrective treatments. 
Therefore, it is important that the existence and 
size Of the bias be recognized and that it be elimi­
nated from the results of before-and-after compar­
isons. 

Accordingly, this paper is divided into three 
principal parts. The first will show that the bias 
by selection is not a figment of the theorists' 
imagination. On the contrary, it is an all-perva­
sive and empirically substantiated phenomenon. We 
will also show that the size of this bias is often 
comparable with what one might expect the result of 
an effective corrective treatment to be. The second 
part of the paper will present procedures for the 
removal of the bias from results of before-and-after 
studies . In the third part we will examine how 
these procedures perform when applied to real data. 

REGRESSION TO THE MEAN 

More than a century a go, Sir Francis Galton (! ) ob­
served that the offspring of tall parents were, on 
the average, shorter than thei r progeni tors . This 
phenomenon became known as the regression to the 
mean. As this phrase suggests, when a random devia­
tion from the mean occurs (upward or downward), one 
should expect the next "trait" to be a return (re­
gression) to the mean. One can show other examples 
of the same phenomenon that are closer to our common 
experience. We list below the score s from a profes­
sional golf tournament. A large number of golf 
players are let loose on the course . At the end of 

the first two days of play, t .hm1P with thP. lowP.Rt 
scores are said to have "made the cut" and are al­
lowed to proceed to the final two days of the tour­
nament. (In golf, the score is a count of strokes 
needed to place a small white ball into a fixed num­
ber of holes in the ground. Thus, the smaller the 
score, the better one played.) The scores for the 
first and subsequent pairs of days of the 50 golfers 
who have made the cut are listed below. Thus, one 
golfer who scored 134 during the first two days 
scored 149 during the next two days; the two golfers 
who scored 138 on the first two days had an average 
score of 144.5 during the next two days, etc. 

Total Score for Avg 
No. of Golf er in GrouE 
Golfers Days Days 
in GrouE 1 and 2 3 and 4 

1 134 149.0 
2 138 144.5 
1 139 143.0 
3 140 144.3 
7 141 143.4 
5 142 145.0 
4 143 148.7 

10 144 146.1 
9 145 147.0 
8 146 146.9 

It is quite apparent that those who got in a few 
lucky shots on days 1 and 2 returned to their aver­
age game on days 3 and 4. 

What are the salient features common to the two 
examples that link golf and heredity and how are 
these relevant to before-and-after comparisons in 
safety? 

In both cases, people were selected for subse­
quent monitoring on the basis of some trait or score 
that was found to be higher (or lower) than the 
average score for the population from which the se­
lection is made. When later the same trait or score 
was observed again, there was a tendency for it to 
be closer to the population average. 

This does not mean that selection procedures that 
identify groups on the basis of high (or low) scores 
will not identify groups whose future scores will be 
higher (or lower) than the average scores of the 
population from which they are selected. In fact, 
such selection procedures will of ten identify groups 
whose future scores will continue to be higher (or 
lower) than average. The crucial issue is the fact 
that the aver ages of the original selection scores 
wi J 1 11lmost invariably be higher (or lower) than the 
subsequent scores of the selected groups. 

The parallel in safety is simple. Intersections, 
drivers, vehicles, etc., are often selected for 
treatment or improvement if they have an unusually 
high number of accidents or a high accident rate. 
Due to the same regression-to-the-mean phenomenon, 
one should expect these systems to have less acci­
dents subsequently even if nothing is done to them. 
Yet in a simple before-and-after study, such an ob­
served reduction is normally interpreted as an indi­
cation that the countermeasure has been effective. 

Skeptics might doubt that what holds for golf 
scores or stature applies also to the occurrence of 
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Tab-le 1. Regression to the mean: Ontario data. 

No. of 
Sections 
in Group 

12 859 
4 457 
1 884 

791 
374 
160 

95 
62 
33 
14 
33 

a Avg= 13.33. 

No". of Accidents for Avg 
Section in Group 

First Year 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

;;. 10' 

Second Year 

0.404 
0.832 
1.301 
1.841 
2.361 
3.206 
3.695 
4.968 
4.818 
6.930 

10.39 

Change 
(%) 

Increase 
-16.8 
-35.0 
-38.6 
-41.0 
-35.9 
-38.4 
-29.0 
-39.8 
-23.0 
-22.0 

accidents. To convince them that the phenomenon is 
real and important, we will use accident data taken 
from several countries and that describe a variety 
of circumstances. 

System of Road Sect ions : Ontario, Canada 

The King's Highways (excluding freeways) are divided 
into 20 762 sections 1 km in length. As shown in 
Table 1, 12 859 of these had no nonintersection ac­
cidents in the first year of a two-year period, 4457 
had one such accident, etc. The average number of 
accidents per kilometer during the first year was 
0.707 and during the second year, 0.746. 

On many of the 12 859 road sections that had no 
accidents in the first year (first line in Table 1), 
some accidents occurred during the second year. 
That this should be so is in accord with intuition. 
It will facilitate the understanding of the regres­
sion-to-the-mean phenomenon if we attempt to make 
the basis of this intuitive understanding more ex­
plicit. 

Every road section that is open to traffic will 
register an accident from time to time. Thus, the 
long-term mean number of accidents per year for any 
road section, however small, is always larger than 
zero. A year in which no accidents occurred on a 
road section is therefore an event that by chance is 
below the long-term mean value. During the next 
year there could again be zero accidents. However, 
there could also be 1 , 2, 3, accidents. The 
average number of accidents in the long term is 
therefore larger than zero. 

This is the essence of the regression to the 
mean. When a random down fluctuation occurs, one 
should expect a return to the mean; when a random up 
fluctuation occurs, one should also expect a return 
to the mean. 

Inspection of Table 1 reveals that this is in 
fact what happens. Road sections with no accidents 
in the first year have, on the average, 0.404 acci­
dent in the second year. Thus, 0.404 is an estimate 
of the long-term mean number of accidents for this 
group of road sections. Similarly, the 4457 road 
sections that all recorded one accident in the first 
year regress to the mean and have, on the average, 
0. 832 accident in the second year. Road sections 
with two accidents in the first year regress to 
1.301 accidents in the second, etc. Naturally, road 
sections that had no accidents in the first year 
have a lower long-term mean (0.404) than road sec­
tions with, say, eight accidents in the first year 
(4.818). 

The last column of Table 1 shows that the phenom­
enon is consistent, real, and nothing short of dra­
matic. To be sure, there are several confounding 
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factors at play. Treatment in one form or the other 
may have occurred, road and environmental conditions 
may have been better during the second year, law 
enforcement may have improved. However, none of 
these potentially confounding factors can beg in to 
explain a substantial part of the observed conver­
gence on the mean. 

Imagine now what would have happened had the Min­
istry hired a shaman to pray for accident reduction 
on road sections that had in the first year seven or 
more accidents. The apparent effectiveness of this 
"treatment" is, from the figures in Tabl e 1, about 
30 percent. 

In summary, road sections that in one period had 
more than the average number of accidents will usu­
ally have less accidents in the next period even if 
no corrective treatment is applied. This is the 
essence of our concern. If one is to have a realis­
tic assessment of the effect of some corrective 
treatment on the basis of a before-and-after compar­
ison, the bias due to the regression to the mean has 
to be accounted for. 

It is natural to ask at this point whether this 
bias can be substantially reduced (or even rendered 
negligible) if systems are selected for treatment on 
the basis of accident data that have been accumu­
lated over a long period of time. The hope is that 
such data closely represent the mean rather than a 
random up or down fluctuation. The empirical evi­
dence can be examined on the basis of the following 
data set. 

system of Road Sections : Israel 

A seven-year history of nonintersection accidents 
was obtained for each of 828 km of rural roads in 
Israel. This data set enabled us to examine the 
relationship between the magnitude of the regression 
to the mean and the duration of accident history. 
To do so, we regard the last year (year 7) as the 
"after" period; years 6, 5+6, 4+5+6, etc., are con­
side red "before" periods, which are 1, 2, 3, 
years in duration. 

Table 2 summarizes the empirical evidence. Sev­
eral interesting observations follow. 

First, the regression to the mean for road sec­
tions does not recognize national boundaries. It is 
as evident for Israeli as for Canadian road sec­
tions. Thus, prayers for accident reduction on road 
sections that in one year had three or more acci­
dents (Table 2, bottom) might s e em to bring about a 
55 percent reduction in the number of accidents. 

Second, as the duration of the before period in­
creases (column 1 of Table 2), the relative size of 
the regression to the mean diminishes (column 5). 
This i s as anticipated. Note, however, that even 
with a before history of six years, the size of the 
phenomenon is far from negligible. 

At the peril of boring the converted and belabor­
ing unnecessarily a point that is already clear, we 
will present further empirical evidence. The intent 
is to demonstrate by real cases that what holds for 
human stature, golf scores, and road sections also 
holds for traffic circles, intersections , driver 
accidents, and traffic law violations. We hope that 
the breadth of geographical coverage will show uni­
versality and that the variety of circumstances will 
underscore the all-pervasive nature of this phe­
nomenon . 

The first two accident-related data sets dealt 
with road sections. The next two illustrations 
focus on intersections. 

Approaches to Traffic Circles: United Kingdom 

Transverse yellow bar markings with gradually dimin-
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Table 2. Effect of duration of before period: Israeli data. 

Duration 
of Before 
Period 
(years) 

No. of Road 
Sections 

No. of Accidents 
per Year 

Before After 

Road Sections with One or More Accidents per Yeur 

1 337 530 317 
2 258 393 277 
3 231 321 250 
~ 191 292 230 
5 178 272 224 
6 170 258 222 

Road Sections with Two or More Accidents per Year 

I 126 319 164 
2 64 159 91 
3 47 111 78 
4 45 107 75 
5 37 92 70 
6 28 72 55 

Road Sections with Three or More Accidents per Year 

1 45 157 71 
2 16 53 31 
3 5 17 15 
4 4 15 10 
5 7 25 21 
6 7 24 19 

Change 
(%) 

-40 
-30 
-28 
-21 
-18 
-14 

-49 
-43 
-30 
-30 
-24 
-24 

-55 
-41 
-12 
-33 
-16 
-21 

Ta!:!le 3. Regression tc the meer.: V.K. roundabout dat=. 

Aggregate Accidents 
No. of Accidents for Each Group 
per Site in No. of Sites 
Year 1 in Group Year 1 Year 2 

10+ 5 74 54 
9 2 18 10 
8 7 56 49 
7 2 14 6 
6 9 54 48 
5 9 45 35 
4 7 28 29 
3 11 33 44 
2 15 30 46 
I 9 9 13 
0 6 0 7 

82 36i" 341 

Change 
(%) 

-37 
-44 
-13 
-57 
-15 
-22 

+4 
+33 
+53 
+44 
Increase 

ishing spacing are known to reduce speed. Results 
of a study on the effect of such markings on acci­
dents at approaches to traffic circles (roundabouts) 
have been published (2). These will be used later 
to show that when before-and-after comparisons are 
cleansed of the bias by selection, proper conclu­
sions can be reached even when it is not practical 
to include corresponding control sites in the 
study. At present, however, we will use the data 
only to show that had the researchers not taken 
proper precautions, the regression to the mean would 
have destroyed the validity of their results. 

For the 82 roundabout approaches included in the 
study, the number of injury accidents during each of 
two years prior to treatment is shown in Table 3. 

Since there was no treatment or any other impor­
tant change between the two years, the observed ef­
fect is largely due to the regression to the mean. 
The mean annual number of accidents per approach is 
4.5. Sites that had more than four accidents in 
year 1 tend to experience a reduction in year 2; 
approaches with less than the mean in year 1 had an 
increase. 

The danger is obvious. 
cided to treat with yellow 

Had the researchers de­
bar markings approaches 
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Table 4. Regression to the mean: reported and injury accidents at 
intersections in Sweden. 

No.of 
Intersections 
in Group 

No. of Accidents per 
Intersection During 
Before Period 

All Keported Accidents 

1500 
657 
244 
101 

53 
39 
17 
16 

Injury Accidents 

2039 
441 
119 

24 
14 

0 (0) 
1 (0.85) 
2(1.70) 
3 (2.56) 
4 (3.41) 
5 (4.26 
6 (4.11) 
8.92 (7 .60)• 

0 (0) 
I (0.85) 
2(1.70) 
3 (2.56) 
4.143 (3 .53)b 

Avg No. of Accidents 
per Intersection During 
Equivalent After Period 

0.37 
0.77 
1.04 
1.79 
1.94 
2.69 
3.05 
5.46 

0.19 
0.42 
0.71 
1.33 
I.SO 

Note: Figures in parentheses are exposure adjusted. 

~These figures are for sites with seven or more accidents in J 972-197 S. 
These figures are for sites with four or more accidents during 1972-1975. 

Change 
(%) 

Increase 
(-9) 
(-39) 
(-30) 
(-43) 
(-37) 
(-40) 
(-28) 

Increase 
(-51) 
(-59) 
(-48) 
(-57) 

that have many accidents (more than four per year), 
they would have observed a reduction even if the 
treatment was useless. With a useful treatment, the 
observed reduction would be an overestimate of 
treatment effectiveness. 

The consistency with which the phenomenon appears 
in such a limited data set is quite remarkable. A 
more extensive study is examined below. 

System of Intersec t ions : Sweden 

This illustration is based on 2637 unsignalized 
rural road junctions that were unaltered during the 
period 1972-1978 (3). The four-year stretch 1972-
1975 is regarded a; the before period and the three 
years 1976-1978 as the after period. The top part 
of Table 4 is based on all police-reported acci­
dents, whereas the bottom half is based only on 
personal-injury accidents. 

In Table 4, the number of before-period accidents 
has been adjusted to reflect differences in length 
of the before and after periods and in exposure. 
Unlike the road sections examined earlier, only 
intersections that remained physically unaltered are 
included in this data set. Therefore, the change in 
the number of accidents between the before and after 
periods is attributable almost exclusively to the 
regression to the mean. 

It is interesting to note that the change in in­
jury accidents is larger than that for all reported 
accidents. The exact reason will become clear 
later. However, the main element of the explanation 
is already evident. It is the difference in the 
mean towards which the number of accidents re­
gresses. Since there are less injury accidents than 
all reported accidents, the size of the regression 
to the mean for injury accidents is larger than that 
for all reported accidents. 

The four data sets examined so far dealt with 
accidents occurring on elements of the road system. 
The regression-to-the-mean effect that has been 
shown to exist in these illustrations must be taken 
into account when safety benefits of corrective 
treatments to road sections and intersections are 
estimated. 

Corrective treatment is 
user (rather than at the 
example, those convicted 

often aimed at the road 
road system) • Thus, for 
repeatedly for impaired 



Transportation Research Record 905 

driving may be sent for a week-long course, those 
who accumulated a certain number of demerit points 
may receive a warning letter, etc. As before, when 
the selection for treatment is on the basis of a bad 
record, the regression to the mean may be at work . 
Accordingly, one should expect an improvement in the 
record even when no treatment is administered. That 
this is in fact the case will be demonstrated in the 
following examples. 

Sys tem o f Drivers: Uni t e d S tates (Nor t h Carolina ) 

In an investigation about the predictability of 
accidents and violations on the basis of past per­
formance, the records of some 2.5 million drivers in 
North Carolina were examined (4). 

In the tabulation below, drivers are placed in 
seven groups according to the number of traffic law 
violations during the first two-year period. For 
each group, the average number of violations in the 
subsequent two-year period is also given. The ex­
istence and size of the regression-to-the-mean ef­
fect are evident from the examination of the last 
column. (The total number of drivers in the group 
included 674 drivers with seven or more violations 
in the first period.) 

No. of Violations for 
Avg Driver in Grou12 

No. of First Second 
Drivers in Two-Year Two-Year 
Grou12 Period Period Change l 'l 
2 096 935 0 0.191 Increase 

298 645 l 0.457 -54.3 
73 216 2 0.763 -61.9 
21 907 3 1.024 -65.9 

7 224 4 1.266 -68.4 
2 597 5 1.459 -70. 8 
1 042 6 1. 500 -75.0 

2 502 240 0.225 0.252 +12.0 

As in earlier illustrations, the regression to 
the mean is not the only cause of the noted change. 
First, the average number of violations per driver 
has changed somewhat (from 0.225 to 0.252). second, 
many violations are linked to accidents the occur­
rence of which may have a substantive effect on 
one's driving. Third, the level of enforcement, 
driver maturation, possible corrective treatments, 
etc., all may exert some influence. Nevertheless, 
as will be demonstrated later, the main reason for 
the drop from, say, 6 to 1. 5 is the fact that the 
group includes drivers who, on the average, have 1.5 
violations per year and who due to the laws of 
chance happened to record six in the first two 
years. Similarly, the estimated long-term mean num­
ber of violations in two years for the group of 
drivers who during the first two-year period had no 
violations is 0.191. The regression is always to 
the long-term mean specific to the selected group. 

In the table below, the same North Carolina driv­
ers are placed into seven groups according to the 
number of accidents they had in the first two-year 
period. For each group, the average number of acci­
dents in the subsequent two-year period is listed. 
The Change column gives an indication of the regres­
sion to the mean. Some of this change may be due to 
reduced exposure and change in driving style, which 
is linked to the accident trauma experienced in the 
first period. How much of the change is attribut­
able to such causes and what part is due to regres­
sion to the mean will be explored later. (The total 
number of drivers included 10 with seven or more 
accidents in the first period.) 
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No. of Accidents for 
Avg Driver in Grou12 

No. Of First Second 
Drivers in Two-Year Two-Year 
Grou12 Period Period Cha nge ( \ ) 

2 234 577 0 0.117 Increase 
235 080 l 0.216 -78.4 

27 919 2 0.348 -82.6 
3 953 3 0.499 -83.4 

584 4 0.703 -82.4 
99 5 0.848 -83.0 
18 6 0.944 -84.3 

2 502 240 0.122 0.130 +6.l 

These tabulations lead to the following observa­
tions: 

First, drivers with one or more violations or 
accidents in the first period are seen to have, on 
the average, 60-80 percent less violations or acci­
dents in the second period, in spite of the increase 
in the number of violations and accidents from the 
first to the second period. Note that the magnitude 
of the change is much larger for drivers than that 
for the elements of the road system. 

Second , as observed earlier in the case of the 
intersections in Sweden, the smaller the mean 
towards which observations regress, the larger the 
change. 

System of Drivers: United States (California) 

This last illustration endeavors to reinforce two 
points made earlier: (a) regression to the mean is 
not bound by geography--accident records of drivers 
in California show the same effect as the records of 
North Carolina drivers: (b) the magnitude of the 
effect remains large even when the before period is 
three years long. 

In the table below, some 93 000 randomly s elected 
drivers who have driven in California for at least 
six years have been placed into four groups accord­
ing to the number of accidents they had during the 
three-year period 1969-1971. (Data were obtained 
from R. Peck, Department of Motor Vehicles, State of 
California, March 1982.) For each group, the aver­
age number of accidents in the subsequent three-year 
period (1972-1974) is listed. The Change column 
gives an indication of the regression to the mean. 
(The total number of accidents for 1969-1971 was not 
reported for the last group of drivers.) 

No. of No. of Accidents for 
Drivers Avg Driver in Groue 
in Grou12 1969-1971 1972-1974 Change !'l 
79 327 0 0.152 Increase 
11 897 l 0.238 -76.2 

l 525 2 0.374 -81.3 
250 3+ 0.548 

Entries in the previous two tables are remarkably 
similar in spite of the difference in geography, 
driver population, and time frame. One is again led 
to conclude that the phenomenon is universal. Even 
though three years of data are used for the before 
period in the California study, the effect remains 
very large. 

Having shown the existence of the regression to 
the mean in a diverse set of circumstances, we will 
regard it as empirically substantiated. From here, 
we take it as "common ground" that if a system (road 
section, intersection, driver, vehicle, etc.) is 
observed to have a higher-than-mean number of acci­
dents in one per i od, it should be expected to have 
less accidents in the next period if no corrective 
treatment is applied to it. 

It follows that if corrective treatment is ap-
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plied to systems that had a poor accident record, it 
is impossible to estimate the safety benefits of the 
treatment from its accident record after treatment 
without first accounting for the effect of the re­
gression to the mean. How to do so is explained 
next. 

OBTAINING UNBIASED ESTIMATES IN UNCONTROLLED 
BEFORE-AND-AFTER COMPARISONS 

To assess the safety P.ffP.ct that some corrective 
treatment had on a system to which it has been ap­
plied, one compares the safety performance of the 
system after the treatment against what one would 
expect the safety performance of the system to have 
been during the same period of time had the treat­
ment not been applied. This is the logical premise 
on which all attempts to estimate the safety effect 
of countermeasures are founded, no matter how simple 
or sophisticated the associated experimental design. 

In light of this logical premise, it is important 
to note that a simple before-and-after comparison is 
equivalent to stating, "I assume that the safety 
performance before treatment is a good estimate of 
what the safety performance would have been during 
the after period had treatment not been applied." 

The first part of this paper has been devoted to 
the demonstration that this assumption runs counter 
to abundant empirical evidence and that when systems 
are selected for corrective treatment because of 
their poor safety record, one must expect them to 
have an improved accident record in the subsequent 
period if no treatment is applied. The central task 
of this section is to provide a credible answer to 
the question, What accident record should one expect 
during the after period if no treatment is adminis­
tered? 

To cast the problem in more precise terms, let b 
denote the number of accidents occurring on a system 
during some period before treatment and a denote 
the number of accidents expected to occur on the 
same system during an after period of the same dura­
tion had treatment not been applied. Our task is to 
estimate a. 

When a is estimated, what evidence should 
count? A general answer to this simple question is 
not easy to provide. However, when the system is 
selected for treatment out of a larger group of can­
didates, there are at least two pieces of informa­
tion that must affect the estimate: 

1. The safety performance of the selected system 
during the before period (b) and 

2. The safety performance during the before 
period of all other candidate systems. 

The relevance of the first piece of information 
is self-evident. The second piece of information is 
relevant because the safety record of the selected 
system was compared with the safety records of other 
candidates when the selection was made. 

The estimation of a turns out to be astonish­
ingly simple. 

Estimation Rule 1 

The estimate of the number of accidents expected to 
occur in the after period on systems that during the 
before period had k accidents is the number of acci­
dents occurring on systems that had (k + 1) acci­
dents in the before period. 

This rule is best illuminated by a simple ex­
ample. Consider the data in Table 1 and pose the 
following question: How many accidents should one 
expect to occur during the second period on the 62 
Ontario road sections that in the first period had 
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seven accidents? [We know, of course, from Table 1 
that the actual number of accidents on these road 
sections during the second period was 308 = (62 x 
4. 968) . But for the moment we imagine that we are 
just at the end of the first period and have to pro­
vide an estimate.] 

Following estimation rule 1, we find a = 8 x 33 = 
264 accidents. It is tempting to inunediately com­
pare this estimate with what actually transpired. 
Such temptation should be resisted until a system­
atic juxtaposition of estimates and the actual num­
ber of accidents is carried out later in this sec­
tion. Suffice to note that were one to assume (as 
is normal practice) that road sections with seven 
accidents in the before period are likely to have 
the same number of accidents (seven) in the after 
period, a gross overestimate would be obtained. 

Estimation rule 1 can be recast into an alterna­
tive (equivalent) form. 

Estimation Rule 2 

The estimate of the number of accidents expected to 
occur in the after period on .a system that during 
the before period had k accidents is the number of 
accidents occurring during the before period on sys­
tems that had (k + 1) accidents divided by the num­
ber of systems on which k accidents occurred during 
the before period. 

To continue the previous illustrative example, an 
Ontario road section that during the first period 
had seven accidents should be expected to have 
(8 x 33)/62 = 4.3 accidents during the second period. 

It should be noted that when the two periods 
differ in duration or in exposure, a correction 
should be applied to the estimate of a in the cus­
tomary manner. 

In some cases it is convenient to use a third 
variant of estimation rule 1. 

Estimation Rule 3 

The estimate of the number of accidents expected to 
occur during the after period on systems that during 
the before period had k or more accidents is the 
number of accidents occurring on systems that had 
(k + 1) or more accidents during the before period. 

To return to the data in Table 1, Ontario road 
sections that during the first period had seven or 
more accidents should be expected to have during the 
second period 830 = (8 x 33 + 9 x 14 + 13.33 x 33) 
accidents. As can be easily ascertained, the actual 
number of accidents on these road sections was 907. 

The above estimation rules have been obtained in 
an entirely rigorous way, as shown in the next sec­
tion. The proof rests on the universally accepted 
but empirically unproven assumption that accident 
occurrence on each system obeys the Poisson proba­
bility law. Thus, while each road section or driver 
has its own characteristic mean (number of accidents 
per unit time), the probability of a specific reali­
zation is specified by the Poisson distribution. 

Since the proof of the pudding is in the eating, 
the last section is a patient juxtaposition of un­
biased estimates and the empirical evidence con­
tained in the data sets already introduced in the 
first part of this paper. 

Determination of Estimation Rules 

Out of n systems, those that during time period 1 
recorded k or more accidents are chosen. We wish to 
find the number of accidents one should expect to 
occur on the chosen systems during period 2 of the 
same duration. Let B(k) be the expected number of 
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accidents on the chosen systems in period 1 and A(k) 
be the expected number of accidents on the chosen 
systems in per.iod 2. 

Let mi, i = 1,2, ••• ,n, be the expected number 
of accidents on candidate system i during periods 1 
and 2 and let Pij denote the probability that sys­
tem i will have j accidents. With this notation , 

P (system i is chosen) = L Pii 
j=k 

and the contribution of system i to B(k) is 

If we sum over all systems, 

B(k) = L L iP;J 
i=l j=k 

(!) 

(2) 

If we assume that the number of accidents on a sys­
tem obeys the Poisson probability law, 

Pii = exp(-mi)mj/j ! 

for system i and 

(3) 

If we substitute Equation 3 into Equation 2, 

n 

B(k) .= L m1 L Pij-1 
i=l j=k 

n 

= L mi L Pii 
I=\ j=k-1 

(4) 

On the other hand, the expected number of accidents 
on system i during period 2 is mi. By using Equa­
tion 1, 

n 

A(k) = L m1 L Pii (5) 
i=l j=k 

If we compare Equations 4 and 5, 

A(k)=B(k+ !) (6) 

Equation 6 leads directly to estimation rule 3. 
Note that to obtain Equation 6, one assumes only 

that accident occurrence is governed by the Poisson 
probability law. The mean number of accidents 
(mi) differs from system to system. 

By using the result in Equation 6, we can write 

A(k) - A(k + !) = B(k + !) - B(k + 2) (7) 

The expression on the left-hand side is the expected 
value of the difference (number of accidents in 
period 2 on systems that in period 1 had k or more 
accidents minus number of accidents in period 2 on 
systems that in period 1 had k + 1 or more acci­
dents). This is, of course, the expected number of 
accidents in period 2 on systems that in period 1 
had k accidents and will be denoted by a(k). 

Similarly, the expression on the right-hand side 
in Equation 7 is the expected number of accidents 
occurring during period 1 on systems with k + 1 
accidents and will be denoted by a(k + 1). Thus, 

a:(k) = IJ(k + !) (8) 

Equation 8 leads directly to estimation rule 1. 

EMPIRICAL EXAMINATION OF WHETHER ESTIMATION 
RULES YIELD UNBIASED ESTIMATES 
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The main content of this section is an examination 
of the estimated number of after-period accidents 
(or violations) compared with the number of after­
period accidents (violations) actually recorded. 
The hope is that they are in good agreement. 

Were one to plot estimates along one axis of a 
rectangular coordinate gr id and the recorded number 
of accidents on the other axis, an ideal agreement 
would place all such points on the diagonal. There 
are at least three reasons why such an ideal rela­
tionship should not be expected. 

First, as is evident from reading the estimation 
rules, what plays the role of an estimate is a 
(Poisson-distributed) random variable. As such it 
is, of course, subject to considerable variability. 
Second, the recorded number of accidents to which 
the estimate is compared is similarly subject to 
large random variation. Thus, even if the expected 
location of the point was on the diagonal, the ran­
dom variation in its ordinate and abscissa will 
cause it to deviate from it. Third, as has been 
pointed out several times earlier, the before period 
can never be regarded as equivalent to the after 
period even if precautions are taken to consider 
only untreated systems and correction for exposure 
is applied. This source of uncertainty will cause 
even the (unknown) expected location of the points 
to be off the diagonal. Thus, a realistic assess­
ment of what constitutes good agreement is that the 
points are fairly close to the diagonal and a re­
gression line through the points has a slope close 
to unity. 

Since the estimation rules are essentially equiv­
alent, it would be redundant to apply all three to 
each data set. we begin by applying all three rules 
to the Ontario data and discuss the application in 
some detail. This will allow us to deal with all 
other data sets more summarily. Finally, results of 
a controlled evaluation are compared with what is 
obtainable from an uncontrolled study from which the 
bias is eliminated. 

Application to Ontario Road Sections 

The numbers in Table 5 summarize the application of 
all three estimation rules to the data on Ontario 
road sections that were introduced earlier and de­
scribed in Table 1. The left part of Table 5 deals 
with the application of rules 1 and 2, the right 
part with estimation rule 3. 

Column 2 gives the number of road sections that 
during the before period had k = 0,1,2, ••. acci­
dents. These values are copied from Table 1. 
Column 3 gives the total number of accidents occur­
ring on these sections during the before period. 
Thus, for example, on the 374 sections that during 
the before period had 4 accidents, the total number 
of accidents was 374 x 4 = 1496. 

By estimation rule 1, one should expect that dur­
ing the after period, the total number of accidents 
on road sections that during the before period had 3 
(= 4 - 1) accidents will be 1496. This is the entry 
in row 4 of column 5. Note that the estimate in 
column 5 is simply the entry in column 3 lifted by 
one row. The number of accidents actually recorded 
during the after period is given in column 7. It is 
the comparison of the entries in columns 5 and 7 by 
which the performance of estimation rule 1 is to be 
judged. Thus, while on the basis of the accidents 
in the before period one would have estimated that 
1496 accidents will occur on the 791 road sections, 
the number of accidents actually recorded was 1456. 
W<>re one to follow the common practice and assume 



170 Transportation Research Record 905 

Table 5. Application of estimation rules to Ontario data. 

Estimation Rules 1 and 28 

Estimation Rule 3 b 
Total No . of Accidents 

Aggregate No. of Accidents at 
No. of After Period (second year) No. of Sections Identified Sites 
Sections Before Period with k or More 

No.of with (first year) Estimated Recorded Accidents One Year After 
Accidents Exactly k 
(k) Accidents Rule I Rule 2 Rule I Rule 2 Rule I 

0 12 859 0 0 HS? 0.354 5199 
1 4 457 4457 1 3768 0.845 3706 
2 1 884 3768 2 2373 1.260 2452 
3 791 2373 3 1496 1.891 1456 
4 374 1496 4 800 2.139 883 
5 160 800 5 570 3.563 513 
6 95 570 6 434 4.568 351 
7 62 434 7 264 4.258 308 
8 33 264 8 126 3.818 159 
9 14 126 9 80 5.714 97 

10 8 80 10 74 
;. I I 25 360 269 

8 For sites Mth exactly k accidents before. bFor sites with k or more accidents before. 

that what happened before is an indication of what 
should be expected after, one would expect 2373 ac­
cidents to occur on these road sections, an obvious 
overestimate. Furthermore, were some treatment ap­
plied to such sections, one might erroneously con­
clude that the apparent reduction from 2373 to 1456 
can be attributed to the treatment when in fact it 
is but an artifact of the regression to the mean. 

Columns 4, 6, and 8 give the entries relating to 
the application of estimation rule 2. Thus, column 
4 gives the number of accidents during the before 
period for an average road section in the group. 
Entries in column 6 are the estimates of the number 
of accidents expected to occur on such a road sec­
tion during the after period. To apply estimation 
rule 2, one has to divide the entry in column 5 by 
the entry in column 2. For example, a section for 
which k = 3 should be expected to have, during the 
after period, 1496/791 = 1. 891 accidents. The per­
formance of estimation rule 2 is to be judged by the 
comparison of columns 6 and 8. Note that entries of 
column 8 are taken from Table 1. 

It is easy to visualize the performance of the 
estimation rules with the aid of the graphical rep­
resentation in Figure 1. Each pair of numbers from 
columns 6 and 8 is represented by a solid circle. 
Perfect agreement between the unbiased estimate and 
the recorded number of accidents would place the 
solid circle on the diagonal. It is easy to see 
that the solid circles do hug the diagonal. 

The performance of the biased estimates is repre­
sented by open circles based on the entries of col­
umns 4 and 8. The vertical distance between the 
open circle and the diagonal indicates the magnitude 
of the bias due to the regression to the mean. A 
line through the origin has been fitted to each set 
of points and its slope is indicated in the figure. 

Estimation rules 1 and 2 app:i:y- to sections with k 
accidents; rule 3 applies to systems with k or more 
accidents. Accordingly, one has to first put the 
data from columns 2 and 3 into the cumulative form 
shown in columns 9 and 10. Starting from the bottom 
of column 2, 25 + 8 = 33 is the number of road sec­
tions with 10 or more accidents during the before 
period as listed in column 9. Similarly, 360 + 80 = 
440 is the number of accidents occurring on these 
road sections during the before period and listed in 
column 10. By estimation rule 3, one should expect 
that in the after period the number of accidents on 
road sections that during the before period had, 
say, nine or more accidents, will be the same as the 

During One Year 
Rule 2 Before Period Before Estimated 

0.404 20 762 14 646 14 646 
0.832 7 903 14 648 10 191 
1.301 3 446 IO 191 6 503 
1.841 1 562 6 503 4 130 
'2.361 771 4 130 2 634 
3.206 397 2 634 I 834 
3 .695 237 I 834 I 264 
4.968 142 I 264 830 
4 .818 80 830 566 
6.930 47 566 440 

33 440 360 
25 360 

Figure 1. Application of rule 2 to Ontario data. 
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number of before-period accidents on road sections 
with 10 or more accidents, i.e., 440. This is the 
entry in column 11. As before, to obtain estimates, 
raise the entries in column 10 by one row. The per­
formance of estimation rule 3 is judged on the basis 
of the comparison of the estimate in column 11 and 
the recorded number of after-period accidents in 
column 12. The entries of column 12 are obtained by 
the cumulation from below of the numbers in column 
7. The performance of rule 3 in the case of Ontario 
road sections is shown in Figure 2. 

Application to Other Data Sets 

Estimation rules 2 and 3 have been applied to all 
data sets introduced earlier. We forego here the 
presentation of detailed comparisons as in Table 5 
and describe the performance of biased and unbiased 
estimates in graphical form only. Figures 3-12 re­
late the number of accidents recorded during the 
after period to what one would expect on the basis 
of the number of accidents occurring during the be-
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fore period. Solid circles depict the correspon­
dence obtained by using the unbiased estimates and 
open circles the correspondence of the biased esti­
mates. The slope of the best-fitting line to the 
solid circles and to the open circles is shown on 
each rule-2 graph. Figures 10 and 12 are plotted on 

Figure 2. Application of rule 3 to Ontario data. 
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Figure 3. Application of rule 2 to Israeli data. 
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a log-log scale because of the range of numbers. 
Some important observations can be made on the 

basis of these figures: 

1. As is indicated by the slopes of the best­
fitting lines, estimates obtained by using the rec­
ommended rules appear to be largely free of bias . 
Thus, in spite of the unavoidable limitation of com­
paring the safety of a system in two different peri­
ods of time, the theoretical considerations that led 
to the formulation of estimation rules seem to be 
supported by empirical data. 

2. When estimates are based on a small number of 
accidents, they are unreliable, as should be ex­
pected. To illustrate, consider, for example, Fig­
ure 5, which is based on data in Table 3. Since 
each point is based only on a few accidents, the 
difference between the biased and unbiased estimates 
is entirely obscured by the random variations. How­
ever , when accidents are accumulated as for the ap­
plication of estima t ion r ule 3 (Figure 6), the same 
data clearly show t he superiority of unbiased esti­
mation. 

Driver violations and accidents are overestimated 
by the unbiased method as well. This is not sur­
prising due to the maturation of the driver popula­
tion. Drivers who have had accidents or violations 
during the before period might be expected to have 
fewer accidents or violations subsequently, not only 
because they are more careful, but possibly because 

Biased (Slope = 1,297) 

Figure 4. Application of rule 3 to Israeli data. 
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they tend to drive less due to hospitalization, li­
cense revocation, and similar reasons. 

Comparing Results of Controlled Study 
to Study Without Control 

The best way to avoid problems due to regression to 

Figure 5. Application of rule 2 to U.K. roundabout data. 
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the mean is to match to each system treated another 
system with the same accident experience that is 
left untreated and draw conclusions from their per­
formance during the after period. However, when 
this is not practical, the suggested estimation 
rules should be applied. 

The study on the safety effect of yellow bar 

Figure 8. Application of rule 3 to Swedish intersection data. 
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Figure 9. Application of rule 2 
to North Carolina driver 
violations. 
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Figure 10. Application of rule 3 to North Carolina driver violations. 
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Figure 11. Application of rule 
2 to driver-accident data. 
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Figure 12. Application of rule 3 to driver-accident data. 
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markings was of the controlled type, and therefore 
the reported 57 percent reduction in susceptible 
accidents is free from bias. It is interesting to 
examine what the estimate of effectiveness obtained 
by the use of estimation rule 3 would be had the 
researchers not enjoyed the luxury of being able to 
identify appropriate control sites. 

By using only data about treated sites and apply­
ing estimation rule 3, we obtain the results shown 
below: 

No. of Accidents 
in Two-Year 
Period Before 
Treatment 
>4 
>"3 
>2 
>1 

No. of 
Sites 
in Group 

7 
15 
27 
36 

Apparent 
Treatment 
Effective­
ness (%) 

74 
76 
66 
64 

Unbiased 
Estimate 
of Treat­
ment Ef­
fective­
ness (%) 

63 
63 
52 
60 

Column 3 is based on the simple (biased) before­
and-after comparison; column 4 gives the unbiased 
estimate of treatment effectiveness. Two points 
deserve mentioning. First, as has been argued ear­
lier, the apparent treatment effectiveness is an 
overestimate. Second, the unbiased estimates are 
quite consistent with the finding of 57 percent re-

173 

duction based on the more elaborate controlled ex­
periment. 

SUMMARY AND DISCUSSION 

We have shown that when systems are selected for 
remedial treatment because of their poor accident 
history, simple before-and-after comparisons tend to 
overestimate the safety effectiveness of the treat­
ment due to the regression-to-the-mean phenomenon. 
Several real-world data sets have been used to show 
that this phenomenon is real and important. A 
method for purging the bias from simple before-and­
after comparisons has been suggested and summarized 
by three equivalent estimation rules. The perfor­
mance of these rules for the data sets introduced 
earlier has been examined. 

The estimation rules are based on analytical con­
siderations described fully elsewhere (~). The same 
results were published earlier by Robbins (6). 

Within the limits of accuracy influenced by the 
random variations of the data and the fact that the 
before conditions are never identical to the after 
conditions, the validity of the estimation rules is 
supported by the findings. It should be noted that 
when estimation is based on a small number of acci­
dents, the accuracy is correspondingly limited. 

To improve estimation accuracy when conclusions 
must be based on the comparison of a relatively 
small number of accidents, an empirical Bayes ap­
proach has been suggested (7,8). The performance of 
the two alternative methods of estimation has been 
examined in a different context (~). There it has 
been concluded that for large sample sizes and under 
certain other conditions, the estimation-rule ap­
proach is preferable. 

A similar examination in a safety context has not 
yet been performed. 

ACKNOWLEDGMENT 

This publication was supported by the Insurance In­
stitute for Highway Safety. The opinions, findings, 
and conclusions expressed are ours and do not neces­
sarily reflect the views of the Institute. 

REFERENCES 

1. Sir Francis Galton. Typical Laws of Heredity. 
Proceedings of the Royal Institute, Vol. 8, Feb. 
9, 1877, pp. 282-301. 

2. R.D. Helliar-Symons. Yellow Bar Experimental 
Carriageway Markings: Accident Study. U.K. 
Transport and Road Research Laboratory, crow­
thorne, Berkshire, England, TRRL Rept. 1010, 
1981. 

3. u. Brude and J. Larsson. Regression-to-the-Mean 
Effect: Some Empirical Examples Concerning Ac­
cidents at Road Junctions. Proc., OECD Seminar 
on Short-Term and Area-Wide Evaluation of Safety 
Measures, Organization for Economic Cooperation 
and Development, Netherlands, April 1982. 

4. E. Hauer. Bias-by-Selection: overestimation of 
the Effectiveness of Safety Countermeasures 
Caused by the Process of Selection for Treat­
ment. Accident Analysis and Prevention, Vol. 
12, No. 2, June 1980. 

5. H. Robbins. Prediction and Estimation for the 
Compound Poisson Distribution. Proc·eedings of 
the National Academy of Sciences, Vol. 74, No. 
7, July 1977, pp. 2670-2671. 

6. D.F. Jarrett, C. Abbess, and C.C. Wright. 
Bayesian Methods Applied to Road Accident Black­
spot Studies: Some Recent Progress." Proc., 
OECD Seminar on Short-Term and Area-Wide Evalua­
tion of Safety Measures, Organization for Eco-



174 

nomic Cooperation and Development, Netherlands, 
April 1982. 

7 . c. Abbess, o. Jarrett, and c.c. Wright. Acci­
dents at Blackspots: Estimating the Effective­
ness of Remedial Treatment, with Special Refer­
ence to the "Regression-to-the-Mean Effect". 
Traffic Engineering and Control, Vol. 22, No. 
10, 1981, pp. 535-542. 

Transportation Research Record 905 

8 . o.G. Morrison and D.C. Schmittlein. Predicting 
Future Random Events Based on Past Performance, 
Management Science, Vol. 27, No. 9, Sept. 1981. 

l'Ublication of this paper sponsored by Committee on Methodology for Evalu-
ating Highway Improvements. · 


